Programmer Experience-Level Indicators

J.A. W.FAIDHI anp S. K. ROBINSON

Department of Computer Science, Brunel University, Uxbridge, Middlesex UB8 3PH

If we interpret ‘teaching’ as a process of controlled learning it is tempting to try to mechanise the teaching of
programming as a feedback control process. One major difficulty is the identification of program measures that indicate
student experience which can be automatically collected. Based on a static empirical analysis of student Pascal
programs, we detail those measures that we have found to be affected by programmer experience. We also give the
general results of the empirical analysis which are of interest to other researchers.

Received October 1985, revised July 1986

1. INTRODUCTION

‘Teaching’ can be defined as a process of controlled
learning,?®¢ and from this it has been suggested that the
process of teaching could be mechanised as a control
process or, more specifically, as a series of prescriptions
provided for the controlled subject (the student). For
reasonable control, a prescription must often be
contingent upon evidence of the current state of the
controlled subject.

It is generally accepted that any course which attempts
to teach computer programming as a control process
must require its students to actually write programs and
to run these programs on a computer. It is helpful for
those teaching the course, the ‘controllers’, to monitor
the source code and the run-time results, as this provides
feedback which can be used in a number of ways to
improve the learning process:32

(1) To provide the basis of a formal assessment of
student performance.

(2) To indicate the part of the course that has been
understood, and which parts are still unclear. This allows
material to be re-emphasised.

(3) To show how well individual students are coping
with the course, so that additional tuition can be provided
for those who need it.

Unfortunately, there can be difficulties in obtaining
feedback data automatically. Most difficult of all is
finding metrics appropriate for the analysis of student
progress. Researchers have used two different approaches
for this. One quantifies the behaviour and performance
of the programmer him/herself,?® whilst the other utilises
models of complexity to assess the programs produced.?

Studies of programmer behaviour measure perform-
ance indirectly by scoring how well the subject can
memorise, modify, debug, hand-trace and answer
questions. It is assumed that the easier a program is to
comprehend, the easier it is for the programmer to
accomplish the task. However, many researchers have
found difficulties in attempting to mechanise program
understanding, both at the semantic and the pragmatic
level.3%:31

Program complexity models try to identify factors that
contribute to the complexity of software and thereby
derive objective metrics. The depth of analysis required
to obtain any metric, and the relevance of the source
language involved, varies between models. The software
science model,>? for example, simply requires the

52 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

identification of operators and operands, whereas models
based on the empirical approach?-1*-2> require specific
knowledge of the syntax of the source language as well
as knowledge of the baseline sample. The empirical
approach offers many applications, particularly in a
teaching environment: it can indicate plagiarism between
programs®?> and it can aid in the construction of
automatic marking schemes for student assignments23.26
(including attempts to combine this with improvements
in the learning process).® The empirical approach yields
results that prove useful in other areas including code
optimisation,®# the construction of empirical prediction
formulae,!-®* computer architecture quality evaluation®-24
and language efficiency monitoring.?”

2. THE SAMPLE SOURCE LANGUAGE

Within a university teaching environment many pro-
gramming languages are used. While certain languages
are considered unsuitable for honours computer science

40 4

Statements (%)
[%]
IS
B —

_Statement sequence
Fig. 1. Comparison of Pascal with other languages.

———, Pascal; ————— , Algol; , FORTRAN;
—_————, COBOL; W ————— , PL/1.
Statement sequence: 1, Assignment; 2, Procedure

call; 3, Conditional; 4, Loop; 5, GOTO.

¥20¢2 I4dy 60 U0 1senb Ag 0£8201/2S/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(q

PROGRAMMER EXPERIENCE-LEVEL INDICATORS

(such as BASIC),® others, Pascal for example, have
distinct educational advantages. Fig. 1 empirically
compares a Pascal language sample with other language
samples, all produced by university students. We see that,
in general, Pascal programs use procedure/function calls
more frequently and contain less GOTO statements.
Even this simple observation suggests that Pascal is a
better teaching vehicle. Pascal, when introduced, ““was a
significant contribution to the evolution of programming
languages. It is a simple but powerful language in the
tradition of Algol 60.!! Compared with Algol 60 it
contains more mechanisms for the definition of data
structures, enumeration types, records, pointers, and
input/output.”® Pascal is the ‘“perfect” teaching
language.® Compared with FORTRAN, besides contain-
ing better data structures and access mechanisms, it has
been shown that a Pascal program is substantially faster
in both compilation and execution speed than its
equivalent FORTRAN program.!? For these reasons,
and others, Pascal is one of the languages utilised at
undergraduate level at Brunel University, and as such
was used as our sample source language.

3. THE EMPIRICAL APPROACH

For an empirical approach to complexity measurement
two kinds of statistical analysis may be used:

(1) A static analysis, which records occurrences of
various features of a source program sample. The results
of this analysis reflect how a language is used in actual
program source.

(2) A dynamic analysis, which investigates program
execution. This may be used, for example, to study the
frequency of specific types of expression in execution, or
the frequency of reference to a declared name or constant.

Both types of analysis for Pascal have been reported
by Shimasaki ez al. (1980)!2 and Brooks et al. (1982).14
However, compiler source was used as the analysed data
in the first study whilst a comparison study between
scientific and non-scientific programs was undertaken in
the second. Further levels of detail in a Pascal static
analysis are presented here.

As we require to identify those program complexity
metrics that reflect experience, our analysis ranges over
three student program samples that embody the
undergraduate experience spectrum. There were four
potential samples, one for each year of the computer
science undergraduate course at Brunel. However, the
third year at Brunel involves little in Pascal programming
coursework, and hence was omitted from the study.

4. TOWARDS A COMPLEXITY
MEASUREMENT OF PASCAL PROGRAMS

The result of applying a static analysis on programs is the
production of a static profile. The main mechanism of
static analysis is the counting of the occurrence of certain
program features. For our analysis the questions to be
answered, then, are

- What features of a program contribute to its
complexity?

- How do we count these features within the program
structure?

18 4 [_-
14 4
12

104 —

No. of programs

1 T
0 200 400 600 800 1000 1200
No. of lines

Year

1 2 4

Program source
length (lines)

No of programs according
to their length

0-100
101-200
201-300
301400
401-500
501-600
601-700
701-800
801-900
901-1000

1001-1100
1101+

Fig. 2. The University sample distribution

b

CO =mO=mOSNAAL®L
CONWARMN=NNSN
Ne=O OO OOSNN =

Too often, approaches to complexity measurement
centre on a particular aspect of a program without
incorporating other relevant program characteristics.
Here we find the Delphi Survey,'® on program design,
constructive in that it identifies those essential features
that affect complexity.

Counting the occurrences of program features is not
trivial in the case of Pascal due to the nested structure of
statements.!® To achieve a systematic solution to this
problem two approaches are possible: to produce a
specific syntax analyser; or to modify an existing
compiler. To achieve flexibility in our counting method
we chose the first approach.

To achieve results all that needs to be done is to run
the syntax analyser on source samples. Fig. 2 shows the
distribution of student programs within our samples.
Each stage sample group was arranged to have
approximately the same size (average 10,900 lines).
Seventy-nine programs in total were analysed. The
longest program in this analysis had 2,354 Pascal lines.
The sample consists of 47 programs from the first year,
19 programs from the second year and 13 programs from
the fourth year.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 53

¥20¢2 I4dy 60 U0 1senb Ag 0£8201/2S/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(q

J.A. W.FAIDHI AND S. K. ROBINSON

Table 1: Distribution of basic Pascal statements (where sys
pr-call indicates system, predefined procedure call, and user
pr-call indicates user-defined procedure call).

First Second Fourth
Statement year (%,) year (%) year (%)
Assignment 39.45 43.61 36.67
sys pr-call 28.16 16.52 13.81
compound 12.32 16.62 20.72
if 11.82 11.89 13.85
repeat 3.19 1.11 0.14
for 2.31 2.48 1.68
while 1.56 1.85 2.23
case 0.63 0.63 0.35
user pr-call 0.52 5.23 9.80
with 0.00 0.02 0.40
goto 0.00 0.01 0.24

5. THE GENERAL CHARACTERISTICS OF
UNIVERSITY UNDERGRADUATE PASCAL
PROGRAMS

In this section an analysis of the general pattern of the
language use for a university undergraduate environment
is reported. The results are given in relation to four
attributes that can be seen to be related to the experience
level of the student:

— Pascal statement utilisation,

— declaration profile,

— readability features,

— other programming elements.

5.1 Basic statement profile

Each successful statement recognition was counted; the
results are displayed in Table 1. As can be seen, several
statement utilisations vary with the experience level, most
noticeably (a) the compound, if, while, user-defined
procedure call and goto (positively), and (b) the
system-defined procedure call and repeat (negatively).

The average distribution of statement types compares
well with that from the study on scientific and
non-scientific, large system programs performed by
Brooks et al. (1980).1 Fig. 3 summarises this comparison.
The most utilised statement type proves to be the
assignment statement, with an average 409, of the source.
Standard procedure call statements come second highest,
proving to be approximately 199 of a program.
Compound statements (begin—end) and if statements
come next highest, proving to be 179, and 13% of a
program respectively. Among those having the lowest
percentage are the ‘case’, ‘with’ and ‘goto’ statements,
throughout the sample stages. Here we should note that
the low utilisation of ‘with’ in the first year is due to
difficulty in setting realistic elementary assignments that
require its use while the low utilisation of the ‘goto’
statement is due to the lecturer’s instruction that it should
be used only when suitable.

5.2 Declaration part profile

The declaration components found to vary consistently
(Table 2) with the experience-level of the students are (a)

40 -

35

30 4

25 4

20 4

Statements (%)

154

Pascal basic statements

Fig. 3. Comparison of student programming sample vs. system
samples. ———, Average student sample; ————— , System
sample (scientific); ——, System sample (non-scientific).
Pascal basic statements. 1, Assignment; 2, Procedure call
(standard); 3, If; 4, Procedure call (user); 5, For; 6, While; 7,
Repeat; 8, Case; 9, With; 10, GOTO.

Table 2: The declaration part distribution in the university
sample (excluding aggregate components)

First Second Fourth

year (7;) year (%) year (%)
Aggregate type
array 76.92 52.63 49.43
record 2.58 30.17 26.54
set 17.94 5.63 8.53
file 2.56 0.00 0.00
pointer 0.00 11.57 15.50
Simple type
integer 52.13 66.18 65.08
real 2.00 6.14 2.00
boolean 19.07 16.32 19.12
subrange 1.00 2.62 4.11
enumeration 2.25 0.00 7.85
char 23.55 8.74 2.02

the array and the char type (negatively), and (b) the
pointer and the subrange type (positively). Although the
most utilised data structure is the array, the more
experienced students tend to use others, such as pointers
and records, instead.

The Pascal aggregate types which were most frequently
employed (independent of experience) were the array
(average 609;), record (20%) and pointer (99) (all
percentages are averages). The most significant Pascal
simple types were integer (619), real (3%), boolean
(18%;) and char (119%). The university undergraduate
sample has an overall low utilisation of enumeration (3%,)
and subrange (average 39, of the total simple types
declared). Although the ability of these features to
improve the readability of source code is pointed out to

54 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢2 I4dy 60 U0 1senb Ag 0£8201/2S/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(q

PROGRAMMER EXPERIENCE-LEVEL INDICATORS

g —-
/
60 / -------- ©
~~ / ’v‘—‘
g S
[50 -1 Vg
a e
2 ,
2 /'l
[=% ’
£ 404 ¢
w
Ed
o
5]
S 30+
b
o
§
20 A
=
b}
o
£
10 1
T T T —
0 1.0 2.0 3.0 4.0

Experience level (years) .

Fig. 4. The declaration of ‘integer’ names.
—&—, Integer identifier; ——O——, Integer * predefined’ word.

80.0 1
72.0 4

64.0

56.0 4

48.0

40.0

32.0 1

24.0 4

Total number of comments (%)

16.0

8.0

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 5. Experience level vs. comments percentage.
[, University undergraduate sample.

the undergraduate it appears to take some time for this
to become apparent in practice.

It is interesting to note that we counted the number of
names declared of a certain type rather than counting the
type identifier ‘integer’. Fig. 4, however, illustrates that
this was unnecessary.

5.3 The program readability profile

The readability of a program cannot be automatically
measured. However, specific attributes which affect
readability can be identified.!®* The use of meaningful
identifiers, suitable indentation, pagination and descrip-
tive comments all improve readability.

The students at Brunel University are advised to use
an indentation package ‘pind’, which is suppported by

==

o I

144 :‘:I“I\‘ :}“:

Y

NS

g 1] '.‘ l‘ A \'.

oyl V(Y
- . i/," // \;‘\/‘,IL \/
‘ \, 1

¥

47 / / \ “ v
| Yo
24 L e \
RV
: ; mis ;
0 5 10 15 20 25 30
ID length
Fig. 6. University ‘identifier length’ distribution.
———, First year; —————, , Second year; —---— Fourth year.
100.0
90.0
_ 80.01
8
s 70.0 -
-]
=
2 60.0
&
b= 50.0 -
]
= 40.0 1
30.0 1
30.0 1
10.0 1
1.0 2.0 3.0 4.0

Experience level (years)

Fig. 7. Experience level vs. identifier length percentage.
O, ID length > 3 characters.

the Honeywell Level 68 (Multics) system, so we expect
their programs to be indented correctly. Moreover,
although comments may help to increase program
readability, a simple count of the number of program
comments can represent a misleading measure of
readability.!” Fig. 5 illustrates the percentage of
comments used in our sample, and we find the first-year
programs showing the highest usage! Other readability
measures suggest themselves. We consider three: an
identifier length measure, an average module size
measure and a program modularity measure.

The identifier length may represent an effective
measure for readability: the longer an identifier is, the
more likely it is to be readable. Fig. 6 shows the
distribution of identifier length (up to 30 characters) from
our sample. We see that the use of more lengthy

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 55

¥20¢ I4dy 60 U0 1senb Aq 0£8201/2S/1/0€/2101e/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

J.A.W.FAIDHI AND S. K. ROBINSON

s 10- \ \
‘§ ” ;\//\\ :
g gd| 1 \\'\
R Y
64 | | \'.‘
VARt
]
AV \
:I ‘\,
2 4 '," \\\\\
”_: \\\ \\
“ T T = ~T T -1
0 5 10 15 20 25 30

No. of characters

Fig. 8. Length comparison of Pascal identifiers and English
words. ———, Average student Pascal identifier length
(char); ————-, , English word length (char).

50.0
45.0

40.0 |

35.0 1

30.0 1

25.0 1

20.0 1

Average module size (lines)

15.0 1

10.0

5.0 1

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 9. Experience level vs. module size.
[, Function and procedure size.

identifiers increases with experience as first-year students
most frequently utilise identifiers of length one (139,),
whereas second- and fourth-year students mostly utilise
five characters (139, 119,) or eight characters (159,
109,) respectively. To clarify this point, Fig. 7 illustrates
the use made of identifiers with three and more
characters.

As an aside, a further result was obtained when Pascal
identifier length was compared with the word length in
a word processor’s spelling checker’s dictionary (Fig. 8).
Here we find that the Pascal identifier length distribution
is similar to that of English word length, suggesting that
Pascal identifiers are close to English word structure. The
only difference is that the students use slightly less
identifiers between lengths 5 and 10 characters and

50.0 1

~ 450

ot

5 4001

o

8 350

g

[=]

3 3001

H

2 2501

8

g 2004

g

2 15.0
10.0-
5.0

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 10. Experience level vs. user module calls.
[, Percentage of user module calls.

100.0

90.0 1
80.0 1
70.0
60.0
50.0
40.0 -

30.0 1

Identifier declared as local or global (%)

20.0

10.0 +

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 11. The scope of declarations.
O, Local identifiers; [, Global identifiers.

slightly more between 1 and 5 (mostly caused by the first
year’s high use of single character identifiers).

The average module size (procedure-function) may be,
in our opinion, another readability factor: the shorter a
module is, the more readable it is likely to be. Fig. 9 shows
the behaviour of this measure. Again it proves to be
related to experience. The use of procedures and
functions, as presented in Fig. 10, shows that program
modularity also increases with an increase in experience.
Using these three measures we find that first-year
programs are not necessarily the most readable as was
suggested by comment usage, but that, in general, the
readability of programs increases with the experience
level.

A detailed study that compares grades from experience-
dependent style measures (including the readability

56 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢ I4dy 60 U0 1senb Aq 0£8201/2S/1/0€/2101e/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

PROGRAMMER EXPERIENCE-LEVEL INDICATORS

70.0 1
63.0

56.0 1

49.0
42.01

35.01

28.01

21.0

14.0

7.0

Percentage of identifiers declared as data structures

—— |

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 12. The static utilisation of arrays.
[, Single-dimension array; [ll, Multi-dimension array.

70.0

63.0
56.0
49.0 1
42.0 1
35.01
28.0 1
21.01

14.0 1

7-0-

1.0 2.0 3.0 4.0
Experience level (years)

Percentage of identifiers declared as data structures

Fig. 13. The static utilisation of arrays.
W, Packed array type; [], Unpacked array type.

metrics) with those from human assessors is reported by
the authors elsewhere.2¢

5.4 Other programming measures

Fig. 11 shows details of the two scopes that names may
possess: those declared in the main program declaration
part (global) or those declared in the declaration part of
a block (local). It is known that global identifiers affect
the program structure by increasing a module’s coupling,
whereas local identifiers exist only in the lifetime of the
declaring block and hence do not affect block dependency
(cohesion). We would suggest a preference for variable
localisation over the use of global variables, as their use
minimises certain program complexity measures.?2 We
note that this preference is not supported by all
researchers and that some advocate exactly the reverse.2!

100.0

90.0 -

80.0

70.0
60.0 -
50.0 1

40.0 -

30.0 +

Array declared as string type (%)

20.0 4

10.0

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 14. String utilisation.
[, Percentage of the total number of arrays.

100.0

90.0
80.0 1
70.0 1

60.0

50.0

40.0 1

Standard procedure calls (%)

30.0 1

20.0

I — |

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 15. The utilisation of 1/O procedures.
I, Input procedures; [], Output procedures.

We see, from Fig. 11, that although students in general
use more local identifiers than global, a trend is visible
towards the use of global variables as experience
increases.

Since arrays are the most frequent data structures used
in the sample (Table 2) it is interesting to detail their use
further. The factors contributing to array size and access
are packing and dimension. Fig. 12 illustrates the use
made of single- and multi-dimensional arrays within the
university sample. Single-dimension arrays are used in
preference to multi-dimensional (though this may well
reflect our setting of course-work), and the use of
multi-dimensional arrays decreases with experience.
Packing concerns the density of data in memory: it should
decrease memory utilisation but may be slower to access.
Fig. 13 illustrates the use of packed and unpacked arrays
in the university sample. Since the most common use of

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 57

¥20¢2 I4dy 60 U0 1senb Ag 0£8201/2S/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(q

J.A. W.FAIDHI AND S. K. ROBINSON

14.0 {
§ 12.6
8
g 112
o
= 938
3
=
£ 84
Z 10
C
2T 56
E
Gt
5 42
)

8 2.8
g
- l.w

1.0 2.0 3.0 4.0
Experience level (years)
Fig. 16. The parameters of input statements. (], Read(In) with
one parameter; [, Read(In) with two parameters; [,

Read(In) with three parameters; E, Read(In) with >4
parameters.

80.0 4

72.0

64.0 -

56.0 -
48.0 -
40.0 1
32.0

24.0

16.0

8.0
"|“||"|||||"|||||||||||]||||||||l" A %"‘ |

1.0 2.0 3.0 4.0
Experience level (years)

Fig. 17. The parameters of output statements. [], Write(In) with
one parameter; [, Write(In) with two parameters; [,
Write(In) with three parameters; B, Write(ln) with > 4
parameters.

Usage (%) of write(In) within all I/O statements

packing is for defining ‘strings’ (packed array of char),
Fig. 14 illustrates this use, and we note a decreasing trend
in use with experience.

Finally, we look at the way university students utilise
I/0 routines. Their use is problem-dependent, but at the
same time I/O plays an important role in program
testing. To measure I/O use we counted the use of
‘read(1n)’ and ‘write(1n)’ statements in the sample and
the number of variables that were read or written in each
I/0O statement (‘get’ and ‘put’ were also considered but
were found not to occur). Fig. 15 illustrates the use of the
I/0 procedures among the standard procedure calls and
we note a decreasing trend in the use of input procedures

600

500

400

300 4

Total no. of expressions

200 A

100

T T T T
400 600 800 1000

Program line numbers

T
0 200

Fig. 18. The relation between number of expressions and number
of lines. ——, Sample taken from second year.

50.0
45.0
40.0
35.0

30.0

25.0

20.0 1

15.0 1

Total number of parentheses (%)

10.0 1

5.0 1

1.0 2.0 3.0
Experience level (years)

by
<)

Fig. 19. Experience level vs. parentheses percentage. [],
Percentage of parentheses or grouping factors.

with experience. Figs 16 and 17 detail the number of
variables read and written respectively.

6. ADETAILED ANALYSIS OF PASCAL
EXPRESSIONS

In this section we analyse expressions. Expressions play
a very important role in program complexity.!8 There is
an expression in nearly every program line, as Fig. 18
illustrates. The way expressions are utilised not only
affects complexity but also alters readability and
efficiency.

Conventionally, expression complexity is judged by
the number of parentheses (grouping factors) utilised;
the less they involve the less complex they are.2° Fig. 19
illustrates the result of applying this technique to our

58 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢2 I4dy 60 U0 1senb Aq 0£8201/2S/1/0€/2101e/|ufwoo/wod dnoolwsepeoe//:sdpy

wioJy pepeojumoq

PROGRAMMER EXPERIENCE-LEVEL INDICATORS

L ettt R ettt D L L P e | =T ®
22.54 — & e
604 e

20.01 VI - ’__,_—4’
5 . . o
2 Foo-- -==- === === J
g 17.51 -— . N 50 4
el ’
E 51% of expressions in WHILE had > 3 tokens
=

15.01
S » 404
] &
S 1254 E o
o 2 _—
3 & 304 _—
8 10.04 -
£ /
s
5 751 20 4 29% of expressions in WHILE of type complex
&
= 5.04
5 10 4
O
& 254

0.0 T T T T n ' ! !
1.0 20 3.0 4.0 0 1.0 2.0 3.0 4.0

E i level
Experience level (years) xperience level (years)

Fig. 20. The utilisation of expression components. —[]—,
Factor;—— O ——, Term;— A —, Simple expression; —— +——,
Expression; —— x ——, Complex expression.

Fig. 21. Complex expressions within a ‘while’ statement.
—4&—, Complex expression; ——O——, Complex expression
tokens.

Table 3: The relationship between the expression classes in each main Pascal statement with the experience spectrum. Where
s. exp. = simple expression, c. exp. = complex expression; I.O.E. = Independent Of Experience.

Relationship Experience level
with the
Statement Exp. experience First Second Fourth Average
types types level year year year I.O.E.
IF statement Factor Increasing trend 7.62 15.15 20.82 14.53
Term No trend 0.19 0.15 0.24 0.19
S. exp. Decreasing trend 1.12 1.08 0.80 1.0
exp. Decreasing trend 70.45 63.06 62.91 65.47
C. exp. Decreasing trend 20.63 20.56 15.24 18.81
CASE statement Factor No trend 99.1 99.29 95.0 97.79
Term Increasing trend 0.99 0.71 5.0 2.23
S. exp. No variation 0.0 0.0 0.0 0.0
exp. No variation 0.0 0.0 0.0 0.0
C. exp. No variation 0.0 0.0 0.0 0.0
WHILE Factor No trend 14.1 20.19 16.24 16.84
statement Term No trend 2.56 2.88 0.0 1.81
S. exp. Decreasing trend 55.12 6.73 2.62 21.49
exp. Increasing trend 10.25 32.69 43.98 28.97
C. exp. No trend 17.94 37.5 37.17 30.87
REPEAT Factor No trend 20.23 11.94 24.56 18.91
statement Term Increasing trend 1.15 1.49 1.75 1.46
S. exp. No variation 0.0 0.0 0.0 0.0
exp. No trend 35.26 68.65 17.91 40.60
C. exp. No trend 43.35 17.91 57.89 39.71
FOR statement Factor Decreasing trend 100.0 100.0 93.1 97.7
Term Increasing trend 0.0 0.0 6.9 2.3
S. exp. No variation 0.0 0.0 0.0 0.0
exp. No variation 0.0 0.0 0.0 0.0
C. exp. No variation 0.0 0.0 0.0 0.0
ASSIGNMENT Factor No trend 79.5 84.23 78.22 80.65
statement Term No trend 17.62 11.82 18.36 15.93
s. exp. Increasing trend 1.49 1.8 1.81 1.7
exp. No trend 0.19 0.22 0.0 0.13
C. exp. No trend 1.18 1.93 1.61 1.57

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 59

¥20¢ I4dy 60 U0 1senb Aq 0£8201/2S/1/0€/2101e/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

J.A.W.FAIDHI AND S. K. ROBINSON

]
° 100.0 -
80 4
1. 90.0 -
$ 4 3
o - 5
£ 60- L 9 70.0
5 . *+] S 60.0 1
S 504 +
" & % 500
e + ° al 4+ ﬁ
_a 40 1] - § 40.0 4
k> - ° 5
§ 307 ° + £ 300 -
s - N 5
€ ° ° = 20.0
5 204 8 ° 4
A 10.0
U]
104 * °
? °
1.0 2.0 3.0 4.0
0 —_—————ilel 1l 1 lel L 1, .
A BCDEF GHI JKLMNDO Experience level (course works)
Student codes Fig. 24. An example of ‘poor’ student performance.

Fig. 22. Student program evaluation vs. long identifier length Poor improvement for student no. 13.

percentage. O, First; A, Second; +, Third; (], Fourth course

work program.
100.0
- 90.0 1
] S
100.0 > 800
900 5
@ 70.0]
g 80.0 E
g v 60.0
° A
9 70.0
E 4.;‘:50 50.0 -
i 6001 T 4004
J b
£ 50.0 2 300,
5 3
: 40.0 = 00
fis]
g 300 10.0 1
()
= 200
100 4 1.0 2.0 3.0 4.0
Experience level (course works)

o Fig. 25. An example of ‘oscillating’ student performance.
1. 20 3.0 4.0 No improvement for student no. 1.
Experience level (course works)

Fig. 23. An example of ‘good’ student performance. Good

improvement for student no. 6. Table 4: The average identifier length percentage for each

¥20¢2 I4dy 60 U0 1senb Ag 0£8201/2S/1/0€/2101e/|ufwoo/wod dnoolwspede//:sdiy Wwolj papeojumo(q

course-work

sample. This suggests that as experience increases there Percentage of identifiers
is a tendency to use ‘simpler’ expressions. Course-work exceeding five characters

The conventional measure appears to us to be number in length
over-simplified. We feel that any analysis of the
complexity of expressions should be made in relation to 1 26.92
their component expressions and in relation to the 2 45.89
statement type that utilises them. However, due to the i gg%
recursive nature of the expression syntax, no direct)
conclusion can be extracted from expression components.
However, by analysing complete expressions within a
statement context, and grouping like expressions into (1) < factor > class: where < factor> :: = <iden-
classes, we may observe complexity in a greater detail tifier> | <integer constant> | <real constant> |
than the conventional approach offers. We therefore split < string constant> | NOT < factor>.
Pascal expressions systematically into the following (2) <simple> class: where <simple> ::=
classes: <factor> ADDOP < factor>.

60 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

PROGRAMMER EXPERIENCE-LEVEL INDICATORS

Table 5: The experience relationships’ prediction of third-year student performance

The Regression Absolute
measure Actual Regression determination error
%) value value factor percentage A B
(a) Based on linear regression (Y = 4+ BX)
ID-length 89.6 93.4 0.95 4.2 79.9 44
Average 27.6 31.3 0.79 11 40.2 -29
module
size
User 5.41 7.1 0.96 24 —-1.7 29
Proc.
and func.
calls
(b) Based on exponential regression (Y = 4* exp(B*X))
ID-length 89.6 93.2 0.95 3.8 80.5 0.05
Average 27.6 31.1 0.82 10 40.6 —0.09
module
size
User 5.41 5.3 0.76 0.5 0.38 0.88
proc.
and func.
calls
(c) Based on logarithmic regression (Y = B* In (X))
ID-length 89.6 94.1 0.84 5.0 83.9 9.2
Average 27.6 30.5 0.92 9.2 38.2 -7
module
size
User 5.41 7.9 1.0 31 0.54 6.6
proc.
and func.
calls
(d) Based on power regression (Y = 4 (X**B))
ID-length 89.6 88.6 1.0 1.1 85.6 0.03
Average 27.6 30.4 0.94 9.0 38.2 -0.2
module
size
User 5.41 7.0 0.90 23 0.69 2.1
proc.
and func.
calls

(3) <expression> class: where <expression> :: =

<factor> RELOP <factor>.

(4) <term> class: where <term> :: = <factor>
MULTOP < factor >

(5) <complex > class.

Fig. 20 illustrates, independent of the utilising
statement, how expression class percentage varies with
experience level. The resulting percentages are quite close
to each other and therefore no useful relation can be
derived between expression complexity and experience.

To delve even deeper, another method for determining
expression complexity was utilised: that of counting the
individual expression tokens. Both strategies were found
to exhibit similar behaviour as illustrated in Fig. 21.

Using the first counting strategy, and taking statement
context into account, we obtain Table 3. From this we
may conclude that the utilisation of expression classes
can be related, in some cases, to experience when
statement context is taken into account.

7. VALIDATION CASE STUDIES

In order to measure the usefulness of our experience-level
relationships, two trials were conducted.

(a) Experience level for consecutive course works. In
this trial we test programmer performance in four
consecutive course-works within one undergraduate year
(Year 1). We should expect that student experience
increases as more programming assignments are com-
pleted. We selected fifteen first-year students as our
sample (encoded A-O for anonymity). Fig. 22 shows
the distribution of one of the experience-dependent
measures, the long identifier length percentage, and Table
4 summarises this. Overall we find that average identifier
length increases with experience. This suggests that we
may use this experience measure to evaluate the
performance of each individual student, and then use this
as a guideline in the overall assessment of a student’s
ability. Figs 23-25 show three examples of student
‘behaviour’ taken from the fifteen-student sample.

(b) Predicting the third-year performance. In this trial
we show that the experience-level relationships can

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 61

¥20¢ I4dy 60 U0 1senb Aq 0£8201/2S/1/0€/2101e/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

J.A.W.FAIDHI AND S. K. ROBINSON

predict third-year student performance. To act as a
control we collected a sample of 26 third-year Pascal
programs with a total length of 8,229 lines. This is smaller
than the average student-stage sample of 10,900 lines,
due to the low variety of Pascal programming assign-
ments given to the third-year students. If the experience
measure is reliable, this reduction should be insignificant.
The prediction strategy is based on taking metric data
from the first-, second- and fourth-year samples and
performing various regression analyses. The regression
models that prove to be the most suitable (selected on
minimal absolute error value and the regression
reliability determination factor nearest unity) are as
follows:

(a) Power regression, to predict the identifier length
measure and the average module size (see Table 54).

(b) Linear regression, to predict the percentage of
user-declared procedure/functions (see Table 5a).

REFERENCES

1.

2.

3.

62

. H. A. Linstone and M. Turoff (eds.),

J. L. McTap, The complexity of an individual program.
AFIPS 49, 767-771 (1980).

A. Fitzsimmons and T. Love, A review and evaluation of
software science. Computing Surveys 10 (1), 3-18 (1978).
S. K. Robinson and I. S. Torsun, An empirical analysis of
Fortran programs. The Computer Journal 19 (1), 56-62
(1976).

- A. S. Tanenbaum, Implications of structured programming

for machine architecture. CACM 21 (3), 237-246 (1978).

. M. H. Halstead, Elements of Software Science. Elsevier

North-Holland, New York (1977).

. G. Lovegrove and M. J. Rees, Some steps towards auto-

matic teaching and marking. University Computing 6,
16-23 (1984).

. K. J. Ottenstein, An algorithmic approach to the detection

and prevention of plagiarism. ACM Sigcse Bulletin 8 (4),
3041 (1976).

. S. K. Robinson, The study and application of the static

and dynamic evaluation of source programs. Ph.D. Thesis,
Brunel University (1976).

. A. M. Addyman, Short communication. Computer Bul-

letin, series 2, no. 8, p. 31 (1976).

. K. Jensen and N. Wirth, Pascal User Manual and Report,

third edition. Springer-Verlag, Heidelberg (1979).

. P. Naur (ed.), Revised report on the algorithmic language

Algol 60. CACM 6 (1), 1-17 (1963).

- R. H. Perrott and P. S. Dhillon, An experiment with For-

tran and Pascal. Software — Practice and Experience 11,
491-496 (1981).

. M. Shimasaki et al., An analysis of Pascal programs in

compiler writing. Software — Practice and Experience 10,
149-157 (1980).

. G. R. Brooks et al., A static analysis of Pascal programs

structures. Software — Practice and Experience 12, 959-963
(1982).

The DELPHI
Method: Techniques and Applications. Addison-Wesley,
New York (1975).

. K. V. Roberts, The readability of computer programs.

Computer Bulletin 10, 17-24 (1967).

. J. L. Elshoff, Analysis of some commercial PL/1 programs.

IEEE Transactions on software engineering SE-2 (2),
113-120 (1976).

As can be seen, the experience-level relationships are

generally capable of predicting programming perfor-
mance and thereby illustrate their reliability.

8.

CONCLUSION

An empirical analysis has been performed on university
undergraduate Pascal programs. Certain complexity
indices are found to be affected by programmer
experience, and this may afford quite useful measures for
any teaching system.

Acknowledgements

Suggestions from Professor M. L. V. Pitteway, Brunel
University, and the referee were invaluable to the
development of the final shape of this paper. It is a
pleasure to acknowledge the assistance of Miss A.
Shrimpton in gathering the data samples.

18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

C. Shimon, Simplicity = Efficiency = Readability. Sigplan
Notices 16 (9), 83-89 (1979).

D. E. Knuth, An empirical study of Fortran programs.
Software — Practice and Experience 1, 105-133 (1971).

D. Coleman, 4 Structured Programming Approach to Data.
The Macmillan Press, London (1978).

D. L. Fisher, Global variables versus local variables.
Software — Practice and Experience 13, 467-469 (1983).
G. J. Myers, Reliable software through composite design.
Van Nostrand Reinhold Publishing Company, London
(1975).

S. K. Robinson and I. S. Torsun, The automatic measure-
ment of the relative merits of student programs. Sigplan
Notices 12 (4), 80-93 (1977).

H.J. Curnow and B. A. Wichmann, A synthetic bench-
mark. The Computer Journal 19, 43-49 (1976).

J.A. W. Faidhi and S. K. Robinson, An empirical ap-
proach for detecting program similarity and plagiarism
within a university environment. The Computers and
Education Journal (1986) (in the Press).

J. A. W. Faidhi and S. K. Robinson, Pascal program style
analysis and its application to a university environment.
Software — Practice and Experience (submitted).

B. A. Wichmann, The efficiency of Pascal. In Pascal —
The Language and its Implementation, edited D. W. Barron.
Wiley, Chichester (1981).

G. Pask, Learning and Teaching Systems, edited J. Rose.
Butterworths, London (1970).

F.J. Lukey, Understanding and debugging programs.
International Journal of Man—Machine Studies 12, 189-202
(1980)

B. Shneiderman and R. Mayer, Syntactic/semantic intei-
actions in programme behaviour: a model and experimental
results. International Journal of Computer and Information
Sciences 9 (3), 219-238 (1979).

R. Brooks, Towards a theory of the cognitive processes in
computer programming. International Journal of Man-
Machine Studies 9, 737-751 (1977)

A. Cowling and J. McGregor, HANDIN - a system for
helping with the teaching of programming. Software —
Practice and Experience 15 (6), 611-622 (1985).

¥20¢ I4dy 60 U0 1senb Aq 0£8201/2S/1/0€/2101e/|ufwoo/woo dno-olwspeoe//:sdiy wolj papeojumoq

