Towers of Hanoi: The Derivation of Some Iterative Versions

J.S. ROHL

Department of Computer Science, University of Western Australia, Nedlands 6009, Western Australia

This paper responds to a challenge by Hayes to convert the recursive solution of the Towers of Hanoi problem to the
iterative form given in his paper. In the process it derives a number of other iterative solutions, including the ‘ binary

digits’ solution of Gardner and MacCallum.

Received September 1985

1. INTRODUCTION

The Towers of Hanoi, a nineteenth-century toy, has been
completely solved by the world’s puzzlists, but over the
last twenty years it has attracted the attention of the
computer scientists, whose interest lies in the program-
ming of the solution.

There are two reasons for this interest. First, the
problem has an elegant recursive solution, which is an
excellent paradigm of binary recursion, being more
interesting than, for example, the generation of Grey
codes. For a long time, no iterative version was given in
the computing literature (although Martin Gardner?
described a couple of algorithms in his books), and the
impression gained ground that an iterative solution was
somehow rather difficult. This leads to the second reason
for the interest in the problem: iterative procedures, in the
style of Gardner, have appeared, which are also elegant.
Furthermore, there appears to be little relation between
the versions, and some authors, for example Hayes,? have
thrown down the challenge:

It would be a very nontrivial exercise to convert (the recursive
version) to (the non-recursive version), let alone convert it
mechanically. In fact...I hereby offer it as a challenge to
optimistic optimisers, and to those who make it their business
to prove that equivalent programs are equivalent.

So far this has not been answered. In this paper we show
how the two archetypal iterative procedures may be
derived by transformation from a recursive version. In the
process, a succession of iterative procedures will be
derived, and a number of properties of the problem will
be revealed.

2. DESCRIPTION

The problem has been described many times: almost
every author has felt it necessary to describe it in his own
words. We give here what we believe to be the original
description in English given by Rouse Ball in 1892.2

It consists of three pegs fastened to a stand, and of eight circular
discs of wood or cardboard, each of which has a hole in the
middle through which a peg can be passed. These discs are of
different radii, and initially they are all placed on one peg, so
that the biggest is at the bottom, and the radii of the successive
discs decrease as we ascend: thus the smallest disc is at the top.
This arrangement is called the Tower. The problem is to shift
the discs from one peg to another in such a way that a disc shall
never rest on a disc smaller than itself and finally to transfer the
tower (i.e. all the discs in their proper order) from the peg on
which they initially rested to one of the other pegs.

Note that the problem explicitly mentions eight discs, so
that a procedure to solve the problem is inherently
parameterless. However, the puzzle is said to be derived
from the mythical Tower of Bramah, which has 64 discs,
and is traditional for procedures to solve the problem for
any number of discs. Accordingly, we introduce:

type disc =0. .64

Note also that the problem does not refer to discs or pegs
by name. Different solutions may do so, of course, and
will in general do it differently. Accordingly, we adopt a
two-level solution in which the outer procedure has only
one parameter (the number of discs) and a simple body
which, apart perhaps from some initialisation, simply
calls the inner procedure which does all the ‘real” work.

3. THE STANDARD RECURSIVE VERSION

The standard recursive procedure is based on the
observation, first made by Rouse Ball,

The method. . .is as follows. (i) If initially there are n discs on
peg A, the first operation is to transfer gradually the top n—1
discs from peg A to peg B, leaving the peg C vacant. . . (ii) Next,
move the bottom disc to peg C. (iii) Then, reversing the first
process, transfer gradually the n—1 discs from B to C.

Note that he has named the pegs! Almost every author
has followed suit by defining a type to specify the pegs,
sometimes an enumerated type, more often the subrange:

type peg =1..3

Rouse Ball also numbered the discs, though he didn’t
specify the numbering system in detail. We follow the
usual convention that discs are numbered consecutively
from 1 starting from the smallest, so that the bottom disc
of a tower size n is always numbered n.

If we choose to make as the special case the moving of
a tower of size 0, the procedure Hanoi follows directly:

procedure Hanoi (n: disc);
type
peg =1..3;
procedure MoveDisc (k: disc; pl, p2: peg);
begin
writeln(‘ Move disc’, k:1, ‘from’, pl: 1,“to’, p2:1)
end ;{of procedure ‘MoveDisc’}

70 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

TOWERS OF HANOI: SOME ITERATIVE VERSIONS

procedure H (k: disc; pl, p2, p3: peg);
begin
if K <> 0 then
begin
H(k—1, p1, p3, p2);
MoveDisc(k, pl, p2);
H(k—1, p3, p2, pl)
end
end; {of procedure ‘H’}
begin
H(n, 1, 2,3)
end ;{of procedure ‘Hanoi’}

4. ELIMINATING THREE OF THE
PARAMETERS

Let us transform this recursive version into a form more
amenable to the recursion elimination which follows. The
aim is to remove all but the first parameter of H.

First, we notice that p3 is redundant, since pI +p2+p3
= 6, so we eliminate it.

Secondly, we eliminate p2, though this will take a
couple of steps. As a first step, we refer to the second peg,
not by its name, p2, but by its direction, d, clockwise or
anticlockwise from pl. (It is easiest to think of the pegs
as being a triangular arrangement, as was the case with
the original form of the toy.)

H and Movedisc must be modified to calculate the
destination of the move from pl (renamed p since there
is only one left) and d. To move a tower of size k from
peg p to its neighbour in direction d, we must first move
the tower of size k—1 to its neighbour in the opposite
direction; then move the bottom disc in direction d; and
finally move the tower of size k — 1 again in the opposite
direction. To this end it is convenient to introduce
functions, Opp, which yields the opposite of a direction,
and Neigh, which yields the number of the peg which is
p’s neighbour in a given direction. To improve
readability, we will, in this description, use functions and
procedures rather than in-line code. In practice, of
course, we might use other criteria.

The complete procedure Hanoi is:

procedure Hanoi (n: disc);
type
peg=1..3;
direction = (clock, anti);
function Opp (d: direction): direction;

begin
if d = clock then
Opp: = anti
else
Opp: = clock

end;{of function ‘Opp’}
function Neigh (p: peg; d: direction): peg;
begin
Neigh: = (p+ord(d)) mod 3+1
end;{of function ‘Neigh’}
procedure MoveDisc (k: disc; p: peg; d: direction);
begin
writeln(*Move disc’, k: 1, ‘from’, p: 1, ‘to’, Neigh

(p, d):1)
end;{of procedure ‘MoveDisc’}
procedure H(k: disc; p: peg; d: direction);
begin
if Kk <> 0 then

begin
H(k—1, p, Opp(d));
MoveDisc(k, p, d);
éf(k— 1, Neigh(p, Opp(d)), Opp(d))
en
end ;{of procedure ‘H’}
begin
H(n, 1, clock)
end;{of procedure ‘Hanoi’}

Notice that, at a recursive call the values of the variables
k and d of the newly created activation record are related
in a very simple way to the values of k and d in the calling
activation: k is reduced by 1 and d is inverted. Thus d is
redundant, since it defined by the parity of k, and so we
can eliminate Opp, transform H and modify MoveDisc
and Neigh accordingly.

procedure H (k: disc; p: peg);

begin
if kK <> 0 then
begin
H(k—1, p);
MoveDisc(k, p);
H(k—1, Neigh(p, odd(n—k+1)))
end -

end ;{of procedure ‘H’}
procedure MoveDisc (k: disc; p: peg);
begin
writeln(‘Move disc’, k: 1, ‘from’, p: 1, ‘to’, Neigh
(p, 0odd(n—k)): 1)
end;{of procedure ‘MoveDisc’}

Note that in doing this transformation we have
discovered a property of the solution to the Hanoi
problem: a disc always moves in the same direction.
Further, odd-numbered discs move in one direction,
while even-numbered ones move in the opposite
direction.

We now eliminate p. Any parameter called by value can
be replaced by a global variable, provided there exists an
inverse for each expression used as an actual parameter
for it. Here the expressions and their inverses are:

P P
Neigh(odd(n—k+1)) Neigh(odd(n— k))

To eliminate the parameter, we assign the global variable
p its value before the call, and reassign it its original value
by using the inverse after the call. Both Neigh and
MoveDisc are modified to access p non-locally, too. If we
eliminate p: = p as redundant we produce for H:

procedure H (k: disc);
begin
if k <> 0 then
begin
H(k—1);
MoveDisc(k);
p: = Neigh(odd(n—k +1));
H(k—1);
p: = Neigh(odd(n—k));
end
end;{of procedure ‘H’}

The body of Hanoi itself is modified to assign I to p.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 71

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

J.S. ROHL

5. REMOVING THE POSTORDER
STATEMENT

We now eliminate the postorder statement. Consider the
following schema:

procedure C (x: xtype);
begin
if P(x) then
begin
C(FI(x));
S1(x);
C(F2(x));
S2(x)
end
end

and suppose the the current invocation is the bottom one.
Immediately after S2(x) is obeyed control returns to the
previous invocation, and either S/ or S2 is obeyed, with
the appropriate value of x, say x’. In the latter case, as
soon as S2(x’) is obeyed, control returns up one further
invocation, and either S/ or S2 is obeyed with the
appropriate value of x, say x”. And so on. Thus S! in any
level is obeyed immediately after obeying a sequence of
S2 statements, one for each of the succeeding invocations
in reverse order. Thus the S2 statement can be replaced
by a loop of S2 statements placed immediately before the
S1 statement. In general this will require a stack, but if
FI has an inverse, then the following schema:

procedure C (x: xtype);
begin
if P(x) then
begin
C(FI1(x));
xl: = x;
while P(x) do
xl:=FI(xI),
while x/ <> x do
begin
S2(x1);
x1:=FI~Y(xI)
end;
S1(x);
C(F2(x))
end
end

together with a loop of S2 statements after the initial call
to C, is equivalent to the one above. In our example where
the Hanoi procedure exits immediately after the call to H,
we can forget this loop.

This second schema looks much worse than the
original, as is usually the case with such transformations.
However, for our particular example, both loops can be
eliminated. With the appropriate substitutions, the first
loop becomes:

kl:=k;

while k/ < > 0 do

kl:=kl-1
and this simply assigns 0 to k1.
The other loop becomes:

while k1 < > k do

begin
p: = Neigh(odd(n—kl)),
kl:=kl+1

end

Given that k1 is initially 0, this corresponds to a sequence
of statements:

p: = Neigh(odd(n));
p: = Neigh(odd(n— 1)),
p: = Neigh(odd(n—2));

p:= Néigh(odd(n —k+1))

Consecutive pairs cancel, so that the total effect is null if
k is odd, or just reduces to the last statement if k is even.
Thus we have, for H:

procedure H (k: disc);
begin
if Kk <> 0 then
begin
H(k—1);
if odd(k — 1) then
p: = Neigh(odd(n—k +1));
MoveDisc(k);
p: = Neigh(odd(n—k+1));
H(k—1);
end
end; {of procedure ‘H’}

Finally, we move the assignments of p into the MoveDisc
procedure:

procedure MoveDisc (k: disc);
begin
if odd(k — 1) then
p: = Neigh(odd(n—k+1));
writeln(‘Move disc’, k: 1, ‘from’, p: 1, ‘to’, Neigh
(odd(n—k)): 1);
p: = Neigh(odd(n—k +1));
end ;{of procedure ‘MoveDisc’}

to produce for H:
procedure H(k: disc);

begin
if kK <> 0 then
begin
H(k—1);
MoveDisc(k);
H(k—1);
end

end;{of procedure ‘H’}

Note that the form of H is identical to that of the initial
version, a pure inorder procedure. Note, too, the clear
separation of concerns: MoveDisc is concerned with
determining pegs and writing out the moves, while H is
almost completely control structure.

If we wished Hanoi to write out the moves in terms of
discs and directions, for example:

Move disc 1 clockwise
we simply modify MoveDisc accordingly.

6. REPLACING THE RECURSION BY A
STACK

The procedure H is in the form of an inorder binary
recursive procedure. The elimination of recursion by
utilising a stack has been well studied and a number of
strategies have been described. We choose the technique
due to Rohl* called substitution. Using that strategy

72 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

TOWERS OF HANOI: SOME ITERATIVE VERSIONS

for our inorder example, we get the following pair of

schemata.
procedure C (x:xtype); procedure C (x:xtype);
var
s: stack of xtype;
done: Boolean;

begin begin
if P(x) then clear s;
begin repeat
C(Fl(x)); while P(x) do
S(x); begin
C(F2(x)); push x onto s;
end x: = FI(x)
end;{of procedure ‘C’} end;

done: = s empty;

if not done then
begin
pop x from s;
S(x);
x: = F2(x)
end

until done

end;{of procedure ‘C’}

Making the appropriate substitutions we produce:

procedure H (k: disc);
var
s: stack of disc;
done: Boolean;
begin
clear s;
repeat
while £k < > 0 do
begin
push k& onto s;
k:=k-—1
end;
done: = s empty;
if not done then

begin
pop k from s;
MoveDisc(k);,
k:=k—1
end
until done

end;{of procedure ‘H’}

Since this procedure is no longer recursive, and is called
only once, from within Hanoi, it could be unrolled: that
is, the text could be substituted for the call, with the
appropriate initialisation for the parameter. Again, for
readability, we do not do so.

The inner loop of this procedure has its exit effectively
in the middle, since on the last traverse half the body is
skipped. This can be eliminated by using the trans-
formation:

repeat SI;
S, while not P do
if not P then begin
S2 S2;
until P S1
end

which produces the procedure:

procedure H (k: disc);
var
s: stack of disc;
done: Boolean;
begin
clear s;
while £k <> 0 do
begin
push k onto s;
k:=k—1
end;
done: = s empty;
while not done do
begin
pop k from s;
MoveDisc(k);
k:=k—1,
while k <> 0 do
begin
push & onto s;
k:=k—1
end;
done: = s empty,;
end
end;{of procedure ‘H’}

This procedure can be tidied up. First, we eliminate the
variable done, replacing its one applied occurrence by
the value assigned to it, s empty. Secondly, we replace the
loops on k by for-statements. Thus:

procedure H (k: disc);
var
s: stack of disc;
begin
clear s;
for k: = k downto 1 do
push k onto s;
while not(s empty) do
begin
pop k from s;
MoveDisc(k);
for k: = k—1 downto 1 do
push & onto s;
end
end;{of procedure ‘H’}

The procedures of this section are not in Pascal, which
does not support stacks. It is a trivial matter, though, to
implement these facilities using an array, and we leave it
as an exercise for the interested reader.

7. REPLACING THE STACK BY A SET

The stack has an interesting property that we can

capitalise on since:

@ It is initialised to the value <k,k—1,...,2, 1) where
the top of the stack is to the right.

® Whenever a value, say i, is popped we immediately
push the values {i—1,i—2,...,2,).

That is, all the elements on the stack must be no greater

than k, and each element is strictly less than the element

beneath it. Thus the stack can be represented by a set of

the integers / . . k. To pop a value from the stack, we need

a loop searching for the smallest element of the set; and

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 73

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

J.S. ROHL

to push <k—1,k—2,...,2,1> we simply add {/. .k—1}
to the set. This leads to the procedure:

procedure H (k: disc);
var
s: set of disc;
begin
s:=[1..k],
while s <> [] do
begin
k:=1;
while not (% in s) do
k:=k+1;
s:=s—[k];
MoveDisc(k);
s:=s+[1..k—1]
end
end;{of procedure ‘H’}

8. REPLACEMENT OF THE SET BY AN
INTEGER

Now there is a one-to-one correspondence between
subsets of the set {/. .k} and the integers /. .2 —]. It is
the usual mapping that Pascal implementations adopt,
except that the base set here starts at 1. Assuming the
existence of an exponentiation function, Power, we have
the equivalences:

s: set of disc s: natural

s:=[1..k] s: = Power(2, k)—1
s<>[] s<>0

not (k in s) s mod Power(2, k) =0
s—[k] s— Power(2, k—1)
s+[1..k—1] s+ Power(2, k—1)—1

Thus we can transform H:

procedure H (k: disc);
var
S: natural
begin
s: = Power(2, k)—1;
while s < > 0 do
begin
k:=1;
while s mod Power(2, k) = 0 do
k:=k+1;
s: = s—Power(2, k—1);
MoveDisc(k);
s: =5+ Power(2, k—1)—1
end
end;{of procedure ‘H’}

We can now eliminate most of the powering. First, we
combine s: =s—Power(2,k—1) and s: = s+ Power(2,
k—1)—1 to get, simply, s: = s— 1. Secondly, we rephrase
the inner while-statement to calculate the sequence of
powers it uses. Finally, we express the outer loop as a
for-statement, absorbing the s: = s—1 statement:

procedure H (k: disc);
var
s, power2k: natural;

begin
for s: = Power(2, k)—1 downto 1 do
begin
k:=1;
power2k: = 2;
while s mod power2k = 0 do
begin
k:=k+1;
power2k: = power2k*2
end;
MoveDisc(k);
end
end;{of procedure ‘H’}

From this transformation we deduce that the number of
moves required is 2" —1.

9. THE BINARY-DIGITS ALGORITHM

It is clear that the sequence which calculates k in the last
version of H is simply determining the position of the least
significant 1 in the binary representation of s, counting
from 1. We will therefore introduce a function LS/ to
return this value. Now s ranges over the values 2¥ —1 to
1. Since the position of the least significant 1 in s is the
same as that of 2% —s for all s in that range, the loop can
be made to run forwards instead of backwards. Thus we
arrive at the following procedure for H.

procedure H (k: disc);
var
s: natural,;
begin
for s: = 1 to Power(2, k)—1 do
MoveDisc(LS1(s));
end;{of procedure ‘H’}

This, probably the simplest iterative form known, is the
algorithm described by Gardner. He did not give a formal
description, however, and so did not specify the details
of MoveDisc.

Let us now transform H by partially unrolling the loop
on s by using the transformation:

fors:=1to2%+1do S(1);
S(s) for s: =1toido
begin
S(2*s);
S(2*s+1)
end
Now both 1 and 2*s+1 are odd, and 2*s is even, so that:
LSI(1)=1

LSI(2*s+1) = 1
LSI(2*s) = LSI(s)+1

Thus we arrive at the following procedure for H:

procedure H (k: disc);
var
S: natural,;
begin
MoveDisc(1);
for s: =1 to Power(2, k—1)—1 do
begin
MoveDisc(LS1(s)+1);
MoveDisc(1);
end
end;{of procedure ‘H’}

74 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

TOWERS OF HANOI: SOME ITERATIVE VERSIONS

This transformation reveals another property of the
solution: moves of the smaller disc alternate with moves
of the other discs.

Since half the moves involve the smallest disc,
advantage can be obtained by introducing a procedure
MoveDiscl, obtained by instantiation with kK = / from
MoveDisc. Both procedures are given below.

procedure MoveDisc (k: disc);
begin
if odd(k — 1) then
p: = Neigh(odd(n—k+ 1)),
writeln(‘Move disc’, k: 1, ‘from’, p: 1, ‘to’,
Neigh(odd(n—k)): 1);
p: = Neigh(odd(n—k+1));
end;{of procedure ‘MoveDisc’}
procedure MoveDiscl;
begin
writeln(‘Move disc’, 1: 1, ‘from’, p: 1, ‘to’,
Neigh(odd(n—1)): 1);
p: = Neigh(odd(n));
end ;{of procedure ‘MoveDisc’}

Except for the initial movement of disc 1, calls for
MoveDisc and MoveDiscl come in pairs. In each pair p
is changed 3 times, so that it always specifies the source
peg of the next move; and the destination peg is specified
in relation to it. There are only 3 pegs, and therefore only
3 possible values for p. We ask therefore whether we can
reduce the number of assignments to p to 1. We can do
so because the 3 assignment statements:

if odd(k —1) then

p: = Neigh(odd(n—k +1));
p: = Neigh(odd(n—k +1));
p: = Neigh(odd(n));

are equivalent to
p: = Neigh(odd(n—1))

as can be verified by trying all 4 cases of the parities of
k and n. If we now assign to p only after the movement
of the smallest disc, and express the source and
destination pegs in relation to it, we arrive at the
following procedures for MoveDisc and MoveDiscl.

procedure MoveDisc (k: disc);

begin
writeln(‘ Move disc’, k: 1, ‘from’, Neigh(odd(n—k)):

1, ‘to’, Neigh(odd(n—k+1)): 1);

end;{of procedure ‘MoveDisc’}

procedure MoveDiscl,

begin
writeln(‘Move disc’, 1: 1, ‘from’, p: 1, ‘to’,
Neigh(odd(n—1)): 1);
p: = Neigh(odd(n—1));

end;{of procedure ‘MoveDiscl’}

I believe that this version is due to MacCallum.? °
Note that this transformation has revealed that when

a larger disc is to be moved, the two pegs involved do not

include the one on which the smallest disc is resting.

10. THE OPERATIONAL ALGORITHM

None of the procedures so far maintains a representation
of the Towers, and all of them proceed by first
determining the disc number, from which the pegs

involved can be determined, generally with the aid of
some other variable or variables. This means that the
procedures are of little help to the person trying to solve
the actual puzzle. This comment has been made often
enough with respect to the initial recursive version, but
it is equally valid for MacCallum’s version. So now we
introduce a representation for the Towers. It doesn’t
much matter what data structure we use, so we will follow
Hayes and use a 3-element vector of lists, each list
containing the numbers of the discs on that peg starting
from the top. An appropriate definition is:

type
listptr =" node;
node = record
d: disc
I: listptr
end;
var
tower: array [peg] of listptr

The initialisation is simple enough, and we do not give
it. However, the Move procedures now must maintain the
structure, as well as print out the move. Accordingly, it
is convenient to merge them together again. Further, it
will be convenient to determine the pegs involved within
H, and transmit them as parameters, leaving MoveDisc
todeal only with printing and data structure maintenance,
thus:

procedure MoveDisc(k: disc; pl, p2: peg);
var
local: listptr,
begin
writeln(‘ Move disc’, k: 1, ‘from’, pl: 1, ‘to’, p2: 1);
local: = tower[pl] .1,
tower[pl] .l: = tower[p2];
tower[p2]: = tower[pl];
tower[pl]: = local,
end;{of procedure ‘MoveDisc’}

The procedure H follows directly from these changes:

procedure H (k: disc);
var
S: natural,
begin
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1));
for s: = 1 to Power(2, k—1)—1 do
begin
k:=LSI(s)+1;
MoveDisc(k, Neigh(odd(n—k)),
Neigh(odd(n—k +1)));
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1))
end
end ;{of procedure ‘H’}

Of course, this has not changed the algorithm: it has

simply added the representation of the towers, which has,

of course, introduced some redundancy. As it stands, H

determines the value of k at each step, even though it is

available in the data structure. Let us eliminate & entirely.
Consider the pair of statements:

k:=LSI(s)+1;
MoveDisc(k, Neigh(odd(n— k)), Neigh(odd(n—k + 1)));

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 75

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dnoolwspede//:sdiy Wwolj papeojumo(q

J. S. ROHL

Given the definition of Neigh, the expression
Neigh(odd(n—k))

can be expressed as:
(p+ord(odd(n—k))) mod 3+ 1

which reduces to pmeod 3+ 1 if n—k iseven, and to (p+1)
mod 34/ if n—k is odd. The expression Neigh
(odd(n—k+1)) also reduces to one or other of these
expressions.

If we knew k we could replace the call to MoveDisc by
either:

MoveDisc(k, p mod 3+ 1, (p+1) mod 3+ 1)
or:
MoveDisc(k, (p+1) mod 3+ 1, p mod 3+ 1)

Of course, k is also at the head of the list associated with
the destination peg. Therefore, since there are only two
alternatives, we can search for the correct one:

pl:=pmod 3+1;
p2:=(p+1)mod 3+1;
if tower[pI] .d < tower[p2] .d then
MoveDisc(tower[pl].d, pl, p2)
else
MoveDisc(tower[p2].d, p2, pl)

which leads to the following procedure:

procedure H (k: disc);
var
s: natural,
begin
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1));
for s: =1 to Power(2, k—1)—1 do
begin
pl:=pmod 3+1;
p2:=(p+1)mod 3+1;
if tower[p1]".d < tower[p2] .d then
MoveDisc(tower[pl] .d, pl, p2)
else
MoveDisc(tower[p2] .d, p2, pl);
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1))
end
end;{of procedure ‘H’}

To enable the comparison of the top elements of the lists
to work when one of them is empty, we add to each list
a node whose disc is larger than any real disc.

We still have the loop structure of H determined by
algorithm rather than data structure. However, when the
puzzle is solved, both p/ and p2 will have only the dummy
disc on them, and we can use this information to

REFERENCES

1. M. Gardner, Mathematical Puzzles and Diversions. Simon
and Schuster, New York (1959).

2. P.J. Hayes, A note on the Towers of Hanoi problem, The
Computer Journal 20 (3), 282-285 (1977).

terminate the loop. If we use a while-statement then pl
and p2 must be evaluated before the loop as well as inside
it. The procedure H becomes:

procedure H (k: disc);
begin
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1));
pl:=pmod 3+1;
p2:=(p+1)mod 3+1
while tower[pl] < > tower[p2] do
begin
if tower[pl]".d < tower[p2]" . d then
MoveDisc(tower[pl] .d, pl, p2)
else
MoveDisc(tower[p2] .d, p2, pl);
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1));
pl:=pmod 3+1;
p2:=(p+1)mod 3+1
end
end;{of procedure ‘H’}

This is almost the procedure given by Hayes. There are
two differences. First, he used the property, noted in
Section 4, that p+pl+p2=6, and calculated p2
accordingly. Secondly, he used BCPL which allows exits
from the middle of loops. The nearest we can do in Pascal
is to use a repeat-statement, with a conditional-statement
as its last statement:

procedure H (k: disc);
begin
repeat
MoveDisc(1, p, Neigh(odd(n—1)));
p: = Neigh(odd(n—1));
pl:=pmod 3+1,;
p2:=6—p—pl;
if tower[pl] < > tower[p2] then
if tower[pl1]".d < tower[p2]".d then
MoveDisc(tower[pl] .d, pl, p2)
else
MoveDisc(tower[p2] .d, p2, pl);
until tower[pl] = tower[p2]
end;{of procedure ‘H’}

This is Hayes’s algorithm.

11. CONCLUSIONS

This derivation has consisted of a long series of steps,
some purely mechanical, some relying on a understanding
of the structures being used. We have accomplished the
first part of Hayes’s challenge. It remains to be seen
whether the second part, mechanical conversion, can be
achieved.

3. W. W. Rouse Ball, Mathematical Recreations and Essays.
Macmillan, London (1892).

4. J.S. Rohl, Recursion via Pascal. Cambridge University
Press (1984).

5. I. R. MacCallum, private communication (1984).

76 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥20¢2 I4dy 01 uo 1senb Aq 848/0%/0./1/0€/2101e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

