An Automatic System for File Compression

T.RAITA

Department of Computer Science, University of Turku, SF-20500 Turku, Finland

This paper presents a compression system for disc files. The system is automatic in the sense that once started, it selects
those files from the user directory which have not been recently used, compresses them, builds a directory for them and
Places the data as a whole under one filename. This has resulted in savings of approximately 50 %, in a DEC2060
computer system and in university use, which is due to the coding and to the space saved in avoiding the allocation of
unnecessary directory pages of the file system. Alternative ways to design a compression system are also discussed.

Received May 1985

1. INTRODUCTION

Text compression, although for many years researched
and discussed,? % 13- 14 has been neglected almost every-
where as a potential tool in a data manipulation
environment. Only simple techniques, such as null or
blank suppression, have been implemented as minor
enlargements to operating systems or database manage-
ment systems.! & 13,

There are reasons for this reluctance; for example, the
usage of compressed data might get complicated if no
(standard) compression technique has been in advance
agreed upon, or if the end user has to wait too long for
compression or/and decompression. Also, the rapid
growth of data on a disc seems to continue no matter
what actions we do to slow it down.

There are, however, certain situations where data
compression is worth considering:

(a) when the data are static in nature, that is, the most
frequent operation is the insertion of new data and

(b) when the available storage space is small. This
concerns specially microcomputers and the like, where
the capacity of a diskette determines what kind of
application programs one can run.

The characteristics in (a) are often found in an
information retrieval system; for example, in a library
application,® 213 where a huge amount of reports,
abstracts, titles, etc., is stored. This, as well as the limited
capacity of a microcomputer,”? !> has resulted in the
consideration of a coding system.

It is also worth considering compression when the
performance of a time-sharing system (with hundreds of
users and thousands of files) begins to deteriorate as a
consequence of a small free disc space. An alternative for
compression (excluding buying more equipment) is
migration, where the files which have been unused for a
long period of time are archived from disc to tape. This
is acceptable at least for some files but there are always
programs and data files for which the migration only
causes unnecessary data transmission between two
different storage levels.

Also, an individual end user is usually not willing to
archive his files voluntarily because the retrieving of a file
is not under his own control and may take a long time,
depending on the operator’s work load. Therefore the
user regards the archiving of a file almost the same as
deleting a file. Thus, storing rarely but periodically used
files in compressed form on the disc seems to be a flexible

way both from the computer system’s and the user’s
point of view.

A general-purpose compression system is described in
Section 2. The system scans automatically the files on the
disc (or drum), selects the unused ones and compresses
them. The system is adaptive in the sense that it does not
use a fixed code table but forms for each file a table of
its own on the basis of the structure of the data.

In Section 3 some results obtained with the system in
our computing environment are presented. Different
ways to build the system are discussed in Section 4, and
in Section 5 some further ideas are presented.

2. THE DESCRIPTION OF THE SYSTEM

In order to keep a minimal amount of data on the disc
and to avoid superfluous complexity in the migration
operation, a compression system was designed and
implemented. The aim was to make a flexible system for
an end user to code and decode his files. The two most
important requirements for the system were stated as

(a) the decoding of a file should be fast and

(b) the compression gain achieved should be high.

The coding time was not considered to be of great
importance, because coding does not demand any
activities from the end user and is therefore suitable to
be carried out as a background job.

The system consists of the coding system and the
decoding system (Fig 1). The coding system contains:

(a) a routine, which searches for the header blocks of
the files under the given directory and determines from
that data the files to be coded (program ‘Search’),

(b) a routine, which codes the files selected by ‘Search’
into a compressed form by using an improved version of
Rubin’s 17 text compression algorithm (program ‘Code”)
and

(c) a routine for building or updating a directory for the
compressed files and deleting the original ones (program
‘Build”’).

Compression system

Coding system Decoding system

‘Search’ ‘Code’ ‘Build’ ‘Retrieve’

Figure 1. The parts of the compression system.

80 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥202 I4dy 01 uo 1senb Aq £98/0%/08/1/0€/201e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

AN AUTOMATIC SYSTEM FOR FILE COMPRESSION

The decoding system consists of a routine for retrieving
and decoding a given file and updating the directory and
the bucket of compressed files (program ‘Retrieve’).

The system includes also two utility programs: the first
outputs the names of the compressed files and the second
compresses the files independently from the automatic
system.

The system was designed so that it can be started in
two ways: an end user can start it by running the
appropriate routine or the operator invokes it just like
the migration operation. If started by the operator, the
system works as follows. The ‘Search’ routine scans all
the files of the directory of a user, looks for the file
description blocks (FDB) and determines the activity of
each file by using the number of days since the creation
of the file and the number of days since the latest
non-write access (read) of the file. If more than k days has
passed since the file creation and the file has not been read
during the n days before the moment the FDB is examined,
the file is considered to be inactive and is included in the
group of coded files. The quantities k and n are system
parameters, which are chosen to suit the particular
computing environment. They can also be varied in a
specific environment at different times to control the
amount of disc space freed. After all inactive files have
been found, they are coded one at a time and gathered
under a single filename in the same directory from which
the files were selected.

Figure 2 shows the layout of the compressed data. It
consists of the header and the coded data. The header
starts with the number of files (m) stored in the bucket.
After that follow the names and the starting points of the
files. Each compressed file itself consists of two different
parts: the code table and the actual coded form of the
data. The code table is used to expand the codes to the
original character strings.

After the file bucket has been formed, the ‘Build’
routine deletes the original files. Then the same is done
in the next directory. This is continued until all direct-
ories have been scanned.

Another way to utilize the system is to let every

Starting
point,

m Filename, Filename,

Starting
point,

Filename,

> Header

.
.

Starting
point,, _,

Filename,, Starting

point,,

Code table,

Coded file,
Compressed data,

Code table, l

Compressed data,

Coded file,

Code table,,

Coded file,,

Compressed data,,

| —— —— -

Figure 2. The structure of the compressed data.

individual end user compress his own files any time he
wants. He can choose proper parameter values every time
he uses the system to suit his purposes. Moreover, the
user can also explicitly name the files he wants to be
compacted independently of the automatic selection
process.

It is obvious that the performance of the compression
system depends crucially on the code routine used. The
choice of the compression algorithm is determined by the
type of data coded, the application area and the way
the compression process is started (by the user or by
the operator). Huffman coding!! is one of the most
frequently used coding schemes. In this situation,
however, it was felt that its decoding time is too long. In
addition, the compression gain achieved with the
character-based Huffman coding is usually moderate as
compared to more sophisticated methods.

A further factor which makes the use of Huffman code
complicated in this context is that it codes fixed-length
blocks (characters) to variable-length bit strings. If a
fixed-length block is used as a basic unit of the
compression system, the managing of the directory and
inserting/retrieving a file from the bucket of coded files
remains simple. Therefore we have chosen a modified
version of F. Rubin’s incremental encoding technique,?
which codes character blocks of variable length into
single characters. This leads to the restriction that we can
compress only character files and not binary files — for
example, program object files. Appendix 1 contains the
description of the compression technique used.

The compression system needs a way to determine
whether or not it is profitable to compress a certain file.
In our system this decision is based on two facts: how
long ago the file has been created (parameter k) and how
many days have passed since the latest read access to the
file (parameter n). There are no other details in the file’s
description block which could help us in the decision
problem. Because no additional information about the
files is gathered between the compression dates, we are
equipped with only a minimal amount of data with which
to characterise the behaviour of the file. The better values
we can get for the parameters, the less coding and
decoding must be done. To find good approximates for
k and n, we must study the behaviour of the files.

In our computing environment, where the files of
students and researchers play a central role, it is natural
to assume that after a relative short period of testing and
using a file, its activity rapidly decreases. This is
particularly true as regards the program source files and
the data files. The observations we made on a sample of
70 files (see Fig. 3) strengthen this assumption.® The files
were chosen randomly from different user directories and
they were selected to be representative of various kinds
of usage. The owners of the files did not know they were
observed.

From Fig. 3 we can see, for example, that during the
five days from the 16th to the 20th day after the file
creation, the file is read only during 0.3 days on the
average. The cumulative count of read access days was
calculated to be 4.0 during the first 60 days the file exists.
Using the negative exponential distribution extracted
from the statistics of Fig. 3 we can calculate the next
reference date for the ‘average’ file in the sample (Fig. 4).

A single file may, however, behave very much unlike
the average file. Therefore we cannot rely entirely on the

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 81

cpJ 30

¥202 I4dy 01 uo 1senb Aq £98/0%/08/1/0€/201e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

T.RAITA

-
&

o

2]

)

=

2 o

;g 1.2 +

o0

=

£2 104 N
3 o N
T = N
2 08+ RN
o 2 N
g N
°c 3 | N
w e 06+ N
28 N
ES 04+ R
S ~~
o 2 ~
Fo 024+ N
g S
;: ~J

Read operations

(1 7

Write operations

1

6-10 16-20

The number of days since the creation of the file

Figure 3. The number of read and write accesses as a function of the time from the creation of the file.

curve of Fig. 4 when we are determining the activity of
the file. To increase the probability that the file is not
needed sooner than predicted, a check is made to see
whether it has been recently referenced. This means that
the file is compressed only if

(@) according to the curve g it is profitable to compress
the file and

(b) the file has not been referenced during the n
previous days.

The conditions (a) and (b) measure the activity of a file
somewhat roughly because they are based on average
values taken from a sample. To make the selection more
precise, the features of each file should be taken into
account. This is discussed in more detail in Appendix 2.

3. THE ENVIRONMENT AND THE
EXPERIMENTAL RESULTS

The DEC2060 computer system services approximately
2000 users from the six faculties of our university.
Extremely heavy work load in the computer has resulted
in a very weak performance, which to some extent is due
to the small free disc space.

When analysing the contents of the disc area, we found
out!® that

90 +
80 -
70 +
60 +
50 4
40
30 +
20
10

The number of days
to the next file reference

] i } } >

} } T 1 T I
5 10 15 20 25 30

The number of days since the creation of the file

Figure 4. The dependency of the next reference to the file as a
function of the time since file creation.

Smg%%&%%ﬁ

11-15 21-25

31-40 51-60
26-30 41-50

04} papEOjUMO(]

(a) almost 759 of the files were ASCII files (byte size:3r
is 7); =
(b) small files were dominant (95.7% of all files were‘z
shorter than 20 pages, those of length one page (= 5123
36 bit words) constituted alone almost 60%, of all files) ;?}

(c) the number of read and write operations to a files.
as a function of time from the time of creation show a5
negative exponential distribution as was shown in Fig. 3.

According to (a) there are good reasons for using a8
character-oriented coding scheme. Observation (b)s
makes the efficiency of the coding algorithm seem of3
somewhat secondary importance, because the smaller the%
file, the smaller the percentual saving achieved by codingg»_
but the bigger the gain from the bucketing. On the othero
hand, for the large files the space is saved mainly becauseS
of the compression and the bucketing has only a minors
influence on the result. Observation (c) indicates that 2
there are, as expected, a lot of files which are left unused 3
once written and used (this result is expected to vary in%
different environments). g

Let us study how the bucketing of the files affects thec
space allocation. Many operating systems use a tree-$
structured file system in managing the user data. Theo
DEC2060 file system is sketched in Fig. 5. 2

On the lowest level (leaves) are the actual data blocks. b
Above them reside the index blocks, the super index =
blocks (needed if a file is longer than 512 pages) and the §
directory blocks. Concentrating only on small files (with =
no super index block), we can see that we can always save
space by putting files together, since

(a) unnecessary index blocks can be added to the list
of free pages and

(b) internal fragmentation'® which is caused by the
fact that memory is allocated on a block-by-block basis,
is eliminated.

This means that m—1 directory pages are saved in
bucketing and on the average m/2 pages in avoiding the
internal fragmentation. This yields on the average total
savings of 3m/2—1 pages.

The compression algorithm was used to code several
randomly selected character files (mainly source program
files) of different types and sizes. The results are given in
Table 1. The modest space saving obtained with the

82 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

AN AUTOMATIC SYSTEM FOR FILE COMPRESSION

| |
Master file | User file |
directory | directory | User files
| |
Home Index Root | Index User | Index
block block directory | block directory | block Data
> Smith I, | File |1 >
| | |
I I
Jones |
I Index
| | block
Index User >
I| block directory |
| Test 1 { Su —L_>
per
| ~ | index block L__,
' I Index
Test 2 »> block
I I
[| >
I I

Index
block

-

Page 602

Figure 5. The structure of the DEC2060 file system®.

Table 1. Comparison of the savings using incremental encoding
and Huffman coding

The average savings

(%) achieved with
Number of Incremental Huffman

Type of test file test files coding coding
Assembler program 7 37.0 23.2
Cobol program 9 42.6 30.8
Fortran program 8 42.7 28.7
Pascal program 10 40.1 26.4
Finnish text 7 38.2 34.8
Data files 7 63.3 48.0

Average 44.0 32.0

character-based Huffman coding is due to the fact that
the method does not take into consideration the cor-
relation of adjacent characters.

The observed coding/decoding times per 1000 bytes
were 1.25/0.06 s for incremental coding and 0.25/0.17 s
for Huffman coding respectively.

To sum up, if we had m equal size files in the bucket,
then the space needed before compaction is on the
average mx(Sopg+256+512) bytes and after
m X (1= Seomp/100) X Sypig+256 + 512 bytes, where S;¢
is the actual size of the original file (in bytes) without the
fragmentation and S.,y, the savings (expressed in
percentage) obtained with the coding technique used.
Table 2 shows the total savings achieved with incremental
coding.

The results of Table 2 show the relative importance of
coding to the bucketing. We can see that the larger the
file is, the smaller is the savings due to the bucketing. All
in all, the bucketing produces only approximately 15%;
of the average 52%, total savings and the rest is gained
by the coding.

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

Table 2. The total savings with bucketing and coding

Space needed (bytes)

Sorig Before After Savings
(bytes) m compaction compaction &)
2000 5 13840 6268 54.7
10 27680 11768 57.5
15 41520 17268 58.4
4000 5 23840 11768 50.6
10 47680 22768 52.2
15 71520 33768 52.8
6000 5 33840 17268 49.0
10 67680 33768 50.1
15 101520 50268 50.5
8000 5 43390 22768 47.5
10 86780 44768 48.4
15 130170 66768 48.7

4. ALTERNATIVE DESIGN
CONSIDERATIONS

Another strategy in implementing the system was to put
together all the files the ‘Search’ routine has found and
then compress the whole bucket in one pass. This has the
advantage that only one coding phase must be
performed and this is usually faster than coding each file
separately. In addition, only one code table must be
formed when the bucket is set up. The same table could
possibly be utilised also when new files are inserted into
the existing bucket.

The strategy has, however, some disadvantages, which
cannot be easily overcome:

(a) the retrieving of a file becomes more complex,
because the file boundaries disappear in the coding. This
can be avoided, if we use special markers on the

83
62

¥202 I4dy 01 uo 1senb Aq 298/0%/08/1/0€/2101e/|ufwoo/woo dno-olwsapeoe//:sdiy wolj papeojumoq

T. RAITA

boundaries, but it adds unnecessary complexity to the
coding algorithm and the file directory,

(b) the code table is constructed on the basis of all files
in the bucket. If the files are heterogeneous, the savings
in compression may be poor. When new files are coded
and appended to the bucket, the result gets still worse.

The problems in statement (b) can be solved in two
ways. Firstly, we may decode and code the whole bucket
when updating must be done. This obviously costs a lot
of CPU time and therefore we should delay the deletions
and insertions until time is available for it. This means
that we must have some way to mark the retrieved files
as logically deleted. Secondly, we can try to improve the
coding result by building more than one bucket. For
example, we can put all Pascal files into one bucket,
COBOL files into another, and so on. This results in a
new directory level and has still the disadvantages just
mentioned above. Also the benefit gained from the
bucketing becomes questionable, because it depends on
the gain achieved by the coding. In addition, some kind
of reorganisation is needed.

The compression system has been designed so that the
‘nucleus’ of the system, the incremental encoding
algorithm, is easily changeable. If another coding
technique is preferred, the module which implements
Rubin’s method is substituted by another. If the codes
are of variable length, the directory must be organised to
point to bits instead of bytes. Also, some complications
might occur in this situation, if a file were to become
larger when the compression routine is applied and it
were therefore stored in the bucket in its original form.

In any case, the change from a character to a bit
compression algorithm (see, for example, Ref. 3) would
be justified, because it would make the system more
general; we would be able to compact all files regardless
of their byte size and more savings could be achieved.

5. OUTLINES FOR FURTHER
DEVELOPMENT

The compression system could be improved/extended so
that:

(@) Really large files could be coded by taking a
sample from the file and forming the code table on the
basis of the sample. An analysis should be carried out to
show that the sample is representative of the original
data.

(b) The files could be coded using bigram coding or
some other quick but less-space-efficient method and
standard code table(s).”®

(c) The selection of files for compression becomes still
more reliable. This could be accomplished by gathering
data about references/writes to the files at regular time
intervals and using the statistics to predict the next
reference time,

(d) the coding and decoding routines are to be
embedded in the existing system, rather than being used
as voluntary utility programs. In microcomputers they
could be placed into the operating system or into a device
driver. They would always be executed before the data is
transferred from the main memory (input buffer) to the
output buffer (main memory) in the case the data is
written (read) to? (from) the diskette.

In larger computers it seems reasonable that the

responsibility for the compression and decompression
should be left to an advanced disc controller.!?

6. CONCLUSIONS

An implementation of an automatic disc file compression
system is discussed. The system makes use of a coding
algorithm and of the structure of the file system to get a
saving of approximately 529 in disc space. The savings
achieved may be regarded in some instances as only
moderate while in others even ‘too good’, depending on
the relative emphasis given to the CPU time as compared
to the free disc space. The different needs of systems can
be taken into consideration by adjusting the coding
algorithm and the compression system parameters
accordingly.

Up to this point we do not have sufficient empirical
results concerning the choice of system parameters. It is
obvious that there are files which the system cannot
manage properly because of their exceptional usage
pattern. Further research in this field is still in progress.

Acknowledgement

The author wishes to thank Dr Olli Nevalainen for many
valuable comments on the manuscript.

APPENDIX I. THE DESCRIPTION OF THE
CODING ALGORITHM

The incremental encoding algorithm!? substitutes fre-
quently occurring substrings by codes, which are characters
not found from the original file. The substrings are found
by iteratively calculating the frequency of character pairs
and coding the pair with which most savings is achieved.
This is done until all codes (or pairs for which savings are
gained) are exhausted. Then the original file is coded
optimally with the substrings obtained so far. If the
benefit of some pairs deteriorates during the process, they
are returned to their original place and the corresponding
codes are freed. The whole process is repeated until no
new substrings are found or all codes are in use. For a
detailed presentation of the coding technique, see.?

The basic algorithm is very time-consuming because of
the repeatedly performed character pair frequency
calculation, pair substitution and optimal encoding. We
have speeded up the algorithm at the expense of some
loss in the compression gain. The modified algorithm
selects and replaces a bucket of pairs in one scanning of
the file. No pairs are returned nor is the file coded
optimally. The algorithm works as follows:

(1) Find the characters not used in the file.

(2) Calculate the frequency of the character pairs.

(3) Choose the r pairs with greatest frequencies and
sort them into descending order by frequency.

(4) Of these r pairs exclude those which are overlap-
ping. That is, starting from the pair which has the highest
frequency, eliminate every pair which has a common
component (i.e. a character or a code) with some pair
already examined.

As a result from this phase no two pairs have identical
characters as their component. This avoids the situation
where coding one pair precludes the coding of some other
pair.

84 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

¥202 I4dy 01 uo 1senb Aq £98/0%/08/1/0€/201e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

AN AUTOMATIC SYSTEM FOR FILE COMPRESSION

(5) From the remaining pairs, exclude those which do
not bring any compression gain.

(6) Choose codes for the rest of the pairs and substitute
the pairs for the codes in the file.

(7) If no more codes exist or no profitable pairs can
be found, then stop. Otherwise go to 1.

The size of the bucket (that is, the number of pairs to
be substituted in each iteration) can be varied using
different values for r. The more we select pairs in step 3,
the larger is the size of the bucket after all exclusions have
been made. If the size is kept large, the fewer the buckets
and the shorter the substrings found. At the same time
the sorting time becomes dominant in the selection
process. On the other hand, if small buckets are used, the
coding time becomes long because of many passes
through the file. Therefore some kind of ‘optimal’ size
for the bucket must be found. According to the
experiments we have done, an initial size of 40-50 pairs
which results in the final size of 7-15 pairs per bucket has
given the best performance. With these bucket sizes the
coding requires 5-14 passes through the file. The last
bucket is usually not full because of missing code
characters. To make the algorithm work more efficiently,
two solutions may be used:

(a) the value of r is made dependent on the number of
free codes, or

(b) the coding is continued only if the bucket size
exceeds a fixed threshold value.

The latter procedure is chosen in our implementation.

APPENDIX 2. AN ADVANCED MODEL FOR
FILE SELECTION

The selection of a file for compression can be made more
reliable if the characteristic features of the file are used.
Let us consider a particular file and three dates associated
with it (Fig. 6.).

g(CD-TOC;)
e ———

T 1 T "
Time
TOC; cD DD = TOC;, ,
Figure 6. The basic period of a file. TOC = the time of file
creation; CD = the compression date; DD = the decompres-
sion date.

TOC,; is the time of (ith, i=1, 2, ...) file creation.
After some time the file is considered to be inactive and
it is coded at CD. Suppose the file is needed again at DD
and it is therefore decompressed. Decompression is
regarded as a recreation date of the file from the system’s
point of view. Therefore, DD = TOC,,,; and the time
interval from TOC; to DD can be regarded as a cycle
which is repeated until the file is removed from the disc.

Using the curve g shown in Fig. 4 we can write

DD = CD+g(CD—TOC)).

The running time needed for coding and decoding can be
calculated using the characteristics of the compression
algorithm. The cost of 1 CPU second, which is largely
determined by the computing environment in which we
are working, is then used to express the total costs from
compression. Also, the cost of storing a page of data on
the disc is known. From these quantities we can (at least

theoretically) determine when it is profitable to compress
a file. The decision may be dependent on the behaviour
of the file. The behaviour can be partly determined from
the extension of the filename which is stored in the FDB.
We could, for example, compress the files with standard
source language extension earlier than the one with object
language extension.

Let T, and T denote the CPU time needed to code and
decode a file and C, the cost of using the CPU 1 s. Then
the costs from the compression are (7,+ T;) x C,.

The cost of storing the file on the disc is composed of
the original and the coded form of the file (see Fig. 6).
If we denote by S,,;, and C,; the size of the file (pages)
and the cost of storing data on the disc per day and page
respectively and further dt = CD—TOC;, the cost of
storing the uncompressed fileis d x S, X C4. During the
time from CD to DD the costs are

g(dt) x((1- Scomp/loo) X Sorig + l/m) X Cd’

where S, means savings achieved with using a certain
compression technique (percentage from the original file)
and m the number of files in the bucket. Therefore, when
using the compression system, the total costs for the file
are

Ccomp(dt) =dt x Sorig X Cd +g(dt) X ((l _Scomp/loo)
X Sorig+1/m)x Cq +(T+Tg) x C.. (1)

The term 1/m is the file’s share of the directory page
needed in the file system. It is here assumed that the
bucket of compressed files and the associated directory
are under the same filename. Note that Sg,m, is a
function of the contents of the file (see Table 1) and could
therefore also have effect on the time of coding.

On the other hand, if we leave the file uncompressed,
the cost during the same time is

Cunc(dr) = (dt+g(dt)) X (Sorig+ 1) X Cq,)

where the constant 1 is due to the directory page needed.

From equations (1) and (2) we can see that, although
the characteristics of the compression algorithm are
important, the structure of the file system and the page
size also have a substantial influence on the total amount
of space saved. In the particular case of DEC2060 and
its file system, it can easily be shown that, as to the
storage space, it is always worth adding a file to the
bucket regardless of the space savings gained with the
actual compression algorithm.

The three variables T;, T; and S¢,mp in equations (1)
and (2) are dependent on the compression algorithm.
After they have been fixed, the first day the compaction
of the file is profitable is found by solving

Cunc(d) = Ceomp(dt). 3

The form of the file has an effect on the amount of
savings obtained with the compression algorithm. Also,
as mentioned earlier, the behaviour of the file may differ
substantially from that shown in Fig. 3. Due to the
fluctuations in the file’s activity, the solution of equation
(3) still gives us only an approximation. To get more
knowledge about the usage pattern of the file, we could
use a control period which is located around the earliest
compression time from (3); see Fig. 7.

If the file is not read during the control time CT, it is
compressed, otherwise not. The value of the CT as well
as the difference between EMC and the start of the CT

THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987 85

¥202 I4dy 01 uo 1senb Aq £98/0%/08/1/0€/201e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

T.RAITA

CT
l | ! >

T T 1 Ti g
TOC EMC DFE ime

Figure 7. Important dates of a file. TOC = the time of file
creation; EMC = the earliest moment for the compression to
gain profit; DFE = the day when the file description block is
examined (today); CT = the control time.

can be varied according to the experiences gained.
Depending on the file type, the CT can be located on
either side of EMC or it can be extended on both sides
of it as shown in Fig. 7. Specifically, if the CT is placed

REFERENCES

1. P. Alsberg, Space and time savings through large data base
compression and dynamic restructuring, Proceedings of the
IEEE, 63, (8), 1114-1122 (1975).

2. J. Aronson, Data Compression — A Comparison of Methods.
Report No. NBS-SP-500-12, National Bureau of Stand-
ards, Washington, USA (1977).

3. L. R. Bahl and H. Kobayashi, Image data compression by
predictive coding 11, IBM Journal of Research and
Development 18, 172-179 (1974).

4. A. Bookstein & G. Fouty, A mathematical model for
estimating the effectiveness of bigram coding. Information
Processing and Management 12, 111-116, (1976).

5. A. C. Clare, E. M. Cook and M. F. Lynch, The identifica-
tion of variable-length, equifrequent character strings in a
natural language data base. Computer Journal 15 (3),
259-262 (1972).

6. H. Corbin, An introduction to data compression. Byte,
pp. 218-250 (1981).

7. D. Cortesi, An effective text-compression algorithm. Byte,
pp. 397-403 (1982).

8. R. H. Davis, C. Rinaldi and C. J. Trebilcock, Data com-
pression in limited capacity microcomputer systems. Infor-
mation Processing Letters, 13 (4, 5), 138-141 (1981).

9. DECSYSTEM-20, Operating system, Digital Equipment
Corporation, Educational Services Manual (1980).

86 THE COMPUTER JOURNAL, VOL. 30, NO. 1, 1987

in front of EMC or it is set to zero, the file is always
compressed as soon as it is calculated to be profitable.

The use of the CT helps us on the next DFE to
determine what caused the file to remain uncompressed.
At that time we can possibly make use of another CT,
which is placed earlier than DFE in time. In this way we
can continually notice that the file has been active earlier
and we only have to show that this assumption is still
valid. The longer the file has been noticed to be active, the
shorter is the time during which its activity is observed.
Thus the size of the CT is a function of the difference
DFE—-TOC and may be made to converge to some
fixed constant.

10. A. N. Habermann, Introduction to operating system
design. The SRA Computer Science Series (1976).

11. D. A. Huffman, A method for the construction of
minimum-redundancy codes. Proceedings of the IRE 40 (9),
1098-1101 (1952).

12. M. F. Lynch, Compression of bibliographic files using an
adaptation of run-length coding. Information Storage and
Retrieval 9 (4), 207-214 (1973).

13. C. A. Lynch and E. B. Brownrigg, Application of data
compression techniques to a large bibliographic database.
Proceedings of the 7th International Conference on Very
Large Data Bases, Cannes, France, pp. 435-447 (1981).

14. A. Mayne and B.James, Information compression by
factorising common strings. Computer Journal 18 (2),
157-160 (1974).

15. M. Pechura, File archival techniques using data compres-
sion. Communications of the ACM 25 (9), 605-609 (1982).

16. T. Raita, A compression system for disk files [in Finnish].
Thesis for the degree of licentiate, University of Turku
(1984).

17. F. Rubin, Experiments in text file compression. Communi-
cations of the ACM 19 (11), 617-623 (1976).

¥202 I4dy 01 uo 1senb Aq £98/0%/08/1/0€/201e/|ufwoo/woo dno-olwspede//:sdiy Wwolj papeojumo(q

