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A method of scanning raster graphics pictures based on the use of Peano and Hilbert space-filling polygons is discussed.
This leads to significant data reduction for transmission or storage of pictures. Quadtree encoding and a generalisation
of this occurs as a special case. The aliasing problem in raster scan graphics is also alleviated if a space-filling curve
scan is used to refresh the screen. A possible application to pattern recognition is briefly discussed.
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1. INTRODUCTION

The concept of a space-filling curve based on a
continuous mapping of the unit line on to the unit square
was introduced by Peano.! The proof used a base-three
representation of all coordinates, although Peano
indicated that corresponding results followed for any
odd-number base, and also showed how the concept
could be extended to space-filling curves in n-dimensions.

Hilbert? derived an alternative method of defining a
space-filling curve as the limit of polygons enclosed in the
unit square, using a fourfold repetition of successive
polygons which correspond to a base 2 number
representation. A similar result based on the Peano
technique was given by Moore® to obtain a limiting
polygon based on ninefold repetitions of successive
polygons.

Recursive algorithms for drawing these and other
space-filling curves have been given by Wirth!
Goldschlager® and Witten and Wyvill,® and Cole? has
shown how Peano, Hilbert and Sierpinski® polygons can
all be obtained recursively from a single point. Griffiths®
discusses table-driven algorithms for generating space-
filling curves.

All of these methods, apart from those of the original
Peano paper, generate the points on the nth approximating
polygon sequentially according to their position on the
corresponding polygon. Cole!® 1! has obtained explicit
mappings between the first » non-negative integers and
the n sequentially traversed vertices of any of the Peano
or Hilbert polygons, including the generalisations of these
polygons as suggested by Peano for his continuous
curves. These results coincidentally lead to fast scanning
algorithms for both Peano and Hilbert polygons. In
addition, if any polygon is clipped it is possible to pass
to the next point within the corresponding window by
direct computation.

A raster graphics screen can be regarded as a finite
rectangular array of pixels with integer coordinates. Thus
any of the above polygonal types of suitable order may
be used to scan either part or the whole of the screen using
windowing if necessary. In this paper we will be
concerned primarily with polygons which fit exactly into
the selected part or whole of the screen. Techniques for
scanning other rectangles and indeed other shapes will be
discussed in a later paper.

The advantages of using space-filling polygons for this
purpose arise from the fact that in general the curve passes

U
through many points local to each other in twos

dimensions. In particular, the Hilbert polygons include 3
quadtrees!?™'® as a particular case with no addltlona13
computation or complex data structure required toZ
record or to scan them. The concept of quadtreesg
generalises in an interesting way corresponding to Peano=
and Hilbert polygons derived from any number base. 8
In addition, if the screen regeneration is carried outm
using a space- ﬁllmg curve scan the aliasing problem is&
diminished, since pixel joins change direction veryS
frequently, thus avoiding the linear alignment ofo
conventional raster scanning.

2. TRANSFORMATIONS FOR PEANO
POLYGONS

Cole!® discusses the general problem of explicit mappings2
between sets of integers and vertices on n-dlmen51ona1°
Peano polygons derived from any odd-number base andﬁ
gives formal proofs of the results. We are prlmarlly\
interested in the two-dimensional case using base 3%
integers although other odd-number bases may also be of & 3
interest. We give here a brief description of the idea%;
behind these special cases. For further details the reader
is referred to the above paper.

The first three Peano polygons P1, P2, P3 are shownm
in Fig. 1. By inspection of P2 it can be seen that P2 1so
obtained from P1 by placing suitable orientations of P1~,
in nine positions in the plane and joining their end points
by horizontal or vertical line segments. Cole” noted thatm
P1 could be generated s1m11arly from a single point PO, S

since the polygon P1 has nine vertices if each of theo
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horizontal segments is broken by a vertex at its mid point.
Exactly the same algorithm as for the higher-order cases
can be used to generate P1 from PO, since rotation of a
point leaves it unchanged.

Consider the Peano polygon Pn in two dimensions.
Assuming as above that PO has nine vertices, it follows
that Pn has 327 vertices. We therefore need to define a
one-one mapping between the integers 1, 2, 3, ..., 327 —1
and the points [0, 0], [1,0], [2,0], [2,1], ..., [n—1,n—1]
which are the successive vertices of Pn. The explicit
mapping used is similar to that described by Peano but
based on base 3 Gray code integers. Gray!2 discussed ways
in which cyclic progressive number systems could be
defined, and Cole'® gave conversion rules and addition
and multiplication tables for such systems. Essentially
cyclic progressive-number systems are such that successive
integers differ in only one digit. Although there are many
ways of defining cyclic progressive-number systems the
most common is as defined below and is, by convention,
called the Gray code.

Suppose that
a=a,da,,...,a, 0<a<ni=12..m)

is a base n non-negative integer and let
j
pj= <Z ai) mod 2.
=1

Then the Gray code odd base n integer corresponding
to a is defined to be

a=bb,..b,
where
b,=a
and
b {ai if piy=0
Y ln=1—q; if p;=1

fori=23,...,m.

Thus the first few base 3 Gray-code integers are 0, 1,
2,12, 11, 10, 20, 21, 22, 122, 121, ....

For even-base Gray code integers the corresponding
conversion rule is

b, =a,

is even
is odd

b — { a; if a;,_,
Y oln—1—a; if a;_,
fori=2,3,...,m.

Suppose now that

a=a,a,...0,, (0<a,<3,i=1,2,...,2m)
is a base 3 integer and
a =bb,.. by,
is the Gray code equivalent of a. Note that for both even-
and odd-number bases (a’)’ = a. Let
x=byb,bg...b,,
y=>b,bs...byp,

Then the point (x, y) relative to integer Gray-code scale
axes is the ath vertex on the Peano polygon Pm and
conversely. Note that the leading digits of a, x and y may
be zeros, so any pair of integers must be made up to the
same length.

The formal proof of this result, which is given in Cole, !¢
is dependent on the commutability of the operations of
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conversion to Gray code and reduced radix complement-
ation. That is, if

a*=cc,...cp,
were
i=12,....m)
is the n reduced radix complement of a then
(@)* = (a*)

This curious result is only true for odd-base numbers
so, for example, a corresponding conversion from base
2 Gray code integers to successive points on Hilbert
polygons does not hold.

As an example, the 50th point on P3 is found by
converting 50 to base 3 giving 1212, with Gray-code
equivalent 1012.

The required point now has Gray code coordinates
(02,11), which also happens in this case to be the
coordinates in standard base 3 integers. This result may
be easily verified from the diagram for P2 in Fig. 1.

Similar results hold for any odd-based number system.

c;=n—1—aq

3. TRANSFORMATIONS FOR HILBERT
POLYGONS

As has been indicated above, the obvious extension of the
result given for Peano polygons is not valid when applied
to even-base number systems. It is easy to see that the
problem of non-commutability of conversion to cyclic
progressive form and radix complementation arises for
any even-number base, and consequently the method
leading to the Peano result does not apply for any of the
possible even-base cyclic progressive number systems. A
less elegant, but computationally efficient method based
effectively on table lookup is given in Cole.!!

The method is closely related to the recursive
derivation of the vertices of Hilbert polygons. For the
simplest Hilbert polygons as shown in Fig. 2 we use a base
2 representation of the vertex number and its coordinates.

Consider each of the first 227 non-negative integers in
binary form

a,a,...0y, ay,
with all digits including leading zeros present. Since the
Hilbert polygons fill each of the four quadrants of the
enclosing square in anti-clockwise order the first pair of
digits (a,, a,) uniquely determine the quadrant in which
the corresponding vertex lies and therefore the most
significant digits of that vertex. The process can now be
repeated, but with the complication that there are four
possible orientations for the new sub-polygons.We
therefore need four tables corresponding to these four
orientations each having four columns corresponding to
the next pair of digits, the next x and y digits and the next
table number. These four tables are displayed in Table 1.

= bk

Figure 2
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Table 1
Digit Next
pair X y table
0))
00 0 0 2
01 1 0 1
10 1 1 1
11 0 1 4
)
00 0 0 1
01 0 1 2
10 1 1 2
11 1 0 3
3)
00 1 1 4
01 0 1 3
10 0 0 3
11 1 0 2
C)
00 1 1 3
01 1 0 4
10 0 0 4
11 0 1 1
Table 2
X,y Integer Next
pair pair table
Q)]
00 00 2
01 11 4
10 01 1
11 10 1
(2
00 00 1
01 01 2
10 11 3
11 10 2
(3)
00 10 3
01 01 3
10 11 2
11 00 4
)
00 10 4
01 11 1
10 01 4
11 00 3

Similarly, given a vertex with coordinates (x, y), by
considering the digit pair formed by taking corresponding
digits from x and y it is possible to use successive table
lookups to build the corresponding integer position of
this vertex on the Peano polygon. The tables for this
inverse operation are given in Table 2.

Corresponding tables can be built for any number base,
both odd and even.

4. THE COMPACTION TECHNIQUE

Consider first a black-and-white raster graphics picture
which can be enclosed in a square of pixels of side length
n? for some positive integers n and p. In practice it is
computationally simpler to fix » and let p vary, but this
is not essential. We return to this point later.

If n is even we choose the corresponding Hilbert
polygon derived from base n numbers and similarly for
Peano polygons when 7 is odd. In practice, if n = 2, then
we use the appropriate Hilbert polygon as typified in Fig.
2,and if n = 3 then we use the appropriate Peano polygon
as typified in Fig. 1. In either case, as we traverse the
corresponding polygon we record the number of
successive pixels without a colour change giving a

sequence €1y Careees Crmy

of segment lengths for pixels of the same colour. We need
some way of indicating the colour associated with the first
segment, and the simplest way to handle this is arbitrarily
to fix the colour of the first segment to be white, say. If
the first pixel is black then we simply record the first
segment length as 0.

A typical compacted colour sequence for a square of
side 8 could be

639182207143

with meaning that the first 6 pixels are coloured white,
the next 3 black and so on. Similarly the sequence

0548273101825

would have the first 5 pixels coloured black, the next 4
coloured white and so on. Note that the sum of segment
lengths in both cases is 82.

The picture may now be reconstituted either in its
original position or at any arbitrary starting point by
scanning the corresponding polygon from the new
starting point.

It is also necessary to record the frame size. If the
picture fits exactly into a square of side n? then it would
be sufficient to record »n and p, or if n is fixed, then p only.
This is unnecessarily restricting since n? increases rapidly
with p. It is therefore better to record the actual lengths
a, b of the sides of the smallest enclosing rectangle and to
use these values to determine when the chosen space-filling
polygon goes outside this rectangle. Since the mapping
function is known explicitly for each integer and
corresponding vertex pair it is possible to continue
scanning at the next entry point to the enclosing
rectangle. If this happens to have the same colour as the
exit point then counting continues on the same segment.
More efficient ways of handling this problem are to be
discussed in a later paper.

The reason for obtaining good compaction by this
technique is that, with blocks of colour, the number of
segments per block is roughly proportional to half the
number of points on the perimeter of the block rather
than the total number of points contained within the
block. When the space-filling curve enters the block the
corresponding segment continues until it leaves the block,
having used up two perimeter points which will not be
traversed again. Sometimes the space-filling curve will
only touch the perimeter at one point but these cases are
balanced out by internal segments which touch the
perimeter and go back inside, or follow the perimeter
without change of colour.
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A number of examples are discussed and a further
compaction is defined in the results section of this paper.

In reconstituting black-and-white pictures in different
parts of the screen it is useful either to be able to
reproduce the picture exactly with each black or white
pixel being exactly as in the original, or alternatively
choosing one colour as the dominant one and leaving the
other coloured pixels unchanged. In this way it is possible
to superimpose silhouettes on an existing picture.

In colour graphics it is necessary to store the associated
colour code with each segment. A method of doing this
efficiently is discussed in the section below.

5. CODING

In real pictures a high proportion of the segments will be
short, and it is therefore inefficient to use integer locations
to store them. It is better to use a fixed number of bits
which will be sufficient to record most segment lengths,
together with a possible extension bit. Thus if a byte were
to be used for this purpose 7 bits could be used to record
possible segment lengths between 0 and 127, with the 8th
bit being a flag to indicate when extension to subsequent
bytes was required.

In colour coding, sufficient additional bits are needed
to allow for all possible colour codes. In low-quality
colour systems these could be packed into one byte along
with the segment length, again with a flag to indicate
subsequent extensions. In high-quality colour systems,
where a large number of isolated pixels of different
colours are likely, it is probably better to extend the
colour code by a single bit which, if set to zero, indicates
that the corresponding segment is of length 1 and
otherwise that the associated segment length is recorded
in the next byte or agreed number of bits. This solution
gives an acceptable coding in the extreme cases where a
large number of pixels differ in colour from all their
neighbours.

6. QUADTREES

Quadtrees have been proposed and discussed by a
number of authors as a method for compact pixel
encoding.!?"1® Essentially the method is to divide an
initial square repeatedly into four equal subsquares and
to repeat this process until a subsquare is uniquely
coloured. The collection of such subsquares is built into
a tree structure which can then be compactly stored and
reconstituted when required. Processing of quadtrees for
certain raster graphics operations is also discussed by
these authors. The principal disadvantages of this
technique arise from the amount of scanning that has to
be done to break down the pixels into coherent parts, the
complexity of the algorithms to ensure efficient coding of
the quadtrees and the fact that, in order to avoid serious
complexity problems, the initial boundary of the picture
needs to be a square with sides equal to a power of 2.
The quadtree compaction is obtained immediately as
a consequence of a Hilbert scan, since the Hilbert polygon
scans the whole space in successively larger squares. Each
point is inspected once only, and in many cases adjacent
squares are coalesced to form larger uni-coloured
blocks. If exact quadtree representation for compaction
is required, a minor modification to the scanning
algorithm is all that is necessary. Further, the size of

bounding rectangle is arbitrary, as has been indicated
above.

Note that the above discussion relates to Hilbert
polygons based on four successive subdivisions. Similar
results follow with Peano polygons based on nine
subdivisions and similarly for n? subdivisions, where the
corresponding space-filling curve is of Peano or Hilbert
type according to the parity of n.

7. SOME COMPACTION RESULTS

Table 3 summarises the results of applying Peano, Hilbert
and normal linear (run-length encoding) compaction to
the black-and-white pictures shown in Fig. 3-7. The
quality of the diagrams is poor relative to normal
reproduction since they have been reproduced using a
dot-matrix printer to indicate the actual pixel colouring. -
Two numbers are given in each of the columns for Peano S
and Hilbert entries, being the number of segmentsZ
required and the number of bytes required to store these
segments using the compaction technique describedr_&h

o

3

Table 3 =
N

@

Figure Peano  Peano  Hilbert Hilbert Linear o
number segments bytes segments bytes segments
[}

3 343 378 385 426 5718 2
4 989 1070 967 1056 1248 2
5 2085 2165 2055 2141 2372 %
6 1939 2026 1633 1755 2376 S
7 1161 1223 1133 1190 1404 g
3.

=1

Table 4 3
o

Q

Minimum &

Figure percentage =
number Peano Hilbert Linear of linear <
N

3 245 251 578 2 3
4 683 603 1248 48 >
5 617 767 2372 26 g
6 1707 1427 2376 60 Q
7 793 677 1404 48 i(,,'i
o

5

@

<

o

o

=

N

N

S

Figure 3
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Figure 4

Figure 7

above. Any of the normal Huffman codings could also
be used to further reduce these sets of numbers.

A further reduction with some loss of quality can be
made by choosing a small integer #» and replacing any
three adjacent segment lengths a, n, b by a+n+ b, which
effectively changes the colour of the central segment to
that of the surrounding segments. Table 4 summarises the
results when segments of length 1 have been removed and
similarly for Table 5 with segments of length 1, 2 and 3
successively removed. The quality of the pictures is
illustrated in Figures 8, 9 and 10. Fig. 8 corresponds to
the case in which segments of length 1 have been
removed. In Fig. 9 the segments of length 1, 2 and 3 were

Table 5

Minimum
Figure percentage
number Peano Hilbert Linear of linear
7 1161 1133 1404 81
8 419 411 1404 29
9 353 309 1404 22

Figure 6

Figure 8
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Figure 9

Figure 10
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removed successively. In Fig. 10 the segments of length
1, 2 and 3 were removed simultaneously, with a
significant loss of picture quality.

The reason why removal of segments of length 1 does
not lead to greater picture distortion is that apart from
truly isolated pixels the segments of length 1 are on the
boundary of colour blocks and so it is only the
boundaries which are, in general, distorted.

8. CONCLUSIONS

The use of space-filling curves in raster scan data
compaction leads to data reduction of between 60 and
809, of the normal linear scan data. Quadtree representa-
tion is included as a special case. A simple reduction
technique reduces the data to between 20 and 50%, of the
linear scan data without too serious reduction of picture
quality.

There appears to be no special general advantage as
between Peano and Hilbert scans, with one sometimes
being marginally better than the other. In cases in which
data reduction is important it might be advantageous to
carry out both scans in parallel and to choose the smaller
for transmission or storage. A leading code number could
specify which algorithm should be used for reconstitution
of the picture.

Computationally, both algorithms could be based on
table lookup, but the direct Peano algorithm would
probably be faster and more flexible if special hardware
to carry out base 3 arithmetic was built.

The principal applications apart from data storage are
in reduced data transmission and as an aid to pattern
recognition systems. This follows from the localised
scanning technique with a correspondingly simple
identification of large blocks of similarly coloured pixels.
For example, seven of the eight eclipses in Fig. 6 are
immediately identified as being of likely interest from the
segment data alone, and their limiting coordinates may
also be easily calculated.
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