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Received September 1985

1. INTRODUCTION

In recent years there has been a growing awareness of
the potential provided by massively parallel systems to
bridge the frustrating gap between computer perform-
ance and the computational demands of present-day
scientific research. While performance limitations have
tended to set fairly tight constraints on the applicability
of integrated microprocessing units to highly CPU and
memory-intensive concurrent computations,! VLSI
fabrication techniques have increased the processing
power of such devices by up to two orders of magnitude
in the last decade. In consequence, many of the micro-
electronics manufacturers are now acutely aware of the
potential of their latest products to influence the designs
of high-performance computer architectures, as wit-
nessed, for example, by the marketing of the Inmos
IMS T424 ‘transputer’, a 32-bit single-chip micro-
computer proclaimed by its designers as an ideal
building block for extensive multiprocessor assemblies.?

While significant national programs are currently
directed at the development of general purpose ‘fifth-
generation’ parallel architectures, the performance of
‘state-of-the-art” VLSI technologies can be brought to
bear on intractable numerical or logical calculations by
means of more specialised, but relatively low-cost,
modular multiple microprocessor systems, dedicated
to the solution of particular classes of problem. This
approach has several important advantages as follows.

(1) The performance attained can be very high, even
in terms of absolute comparison with contemporary
supercomputers, and is subject to incremental improve-
ment when required.

(2) Since the machine has the character more of a
laboratory-based super-calculator than a computer
installation, comparisons of absolute performance are
in any case grossly pessimistic. The effective processing
capacity (power/availability product) at the disposal of
a research group can be several orders of magnitude
greater than that provided by an annual allocation on a
centralised supercomputer installation.

(3) Running and maintenance costs of a well-designed
machine are so low that it should be possible to recoup
the initial construction outlay rapidly in saved mainframe
time. Modularity, in particular, if effectively exploited,
facilities rapid repair of hardware failures.

* Now at Department of Computing Science, University of
Glasgow.
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The difficulties involved in an undertaking of this kind,
however, are not negligible. There is a fundamental
requirement for a flexible and extensible hardware
design, optimally adaptable within often rigid financial
and operational constraints. Adaptability is important
since future perturbations or extensions to a method
cannot always be foreseen. There is, in addition, the
potential bonus that an architecture with a sufficient
degree of inherent generality might form the basis of
similar dedicated systems devoted to other, perhaps quite
unrelated, computational problems, thus reducing re-
search and development effort in future undertakings.

The idea of machines dedicated to specific problems or
classes of problems is not, of course, new, and has found
favour especially in theoretical physics.? The authors are
interested in the design of systems of this kind and have,
in particular, been concerned with calculations of the
type arising in the theory of the Nuclear Shell Model. The
remainder of this paper will outline a design for a Nuclear
Shell Model Processor which exemplifies the above
approach, and which has, in fact, already been partially
implemented in an ongoing development project.

2. THE SHELL MODEL PROCESSOR: WHY
A MULTIPLE MICROPROCESSOR
SYSTEM?

In quantum mechanics, each observable quantity
(position, momentum, energy, etc.) is represented as a
linear operator acting on a configuration space of state
vectors, corresponding to the allowable ‘states’ of the
target system. The Nuclear Shell Model involves a study
of such quantum mechanical configuration spaces of
very large dimension. State vectors with as many as
108 elements, and matrix operators with 102 entries are
generated by nuclei of only medium mass number. An
ideal Nuclear Shell Model Processor should be capable
of performing a range of relevant computations
including the determination of the eigenvalues and
eigenvectors of quantum operators, density matrix
elements of state vectors, expectation values of observ-
ables, etc. The calculation of the energy eigenstates (the
eigenvectors of the energy operator) of a given nucleus,
in particular, is at the same time both crucial to the
theoretical development and exceptionally computation-
ally demanding, involving the evaluation and diagonal-
isation of a symmetric matrix operator, the Hamiltonian,
acting on the nuclear configuration space. The Lanczos
algorithm is now accepted as the standard method of
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tri-diagonalising the Hamiltonian matrix in an angular-
momentum uncoupled representation, since the approxi-
mations to the lower eigenvalues converge after only
relatively few (say 100) iterations.! The capacity to
execute this algorithm is, therefore, a necessary, but by
no means a sufficient, condition for a successful Shell
Model processor.

A Lanczos iteration involves several matrix/vector
operations, of which the most time consuming is the
multiplication of a nuclear state vector by the Hamil-
tonian. While, at least in principle, modern VLSI
technology makes the construction of a powerful and
dedicated parallel matrix-vector multiplier a fairly
straightforward undertaking, the capability of a machine
of this kind is severely constrained when the arrays
involved are very large and, as in this case, irregularly
sparse. The matrix, with perhaps more than a thousand
million real entries, cannot be held in primary storage,
so that there is a practical limit to the rate at which
operands may be fed to an arithmetic processor (see
Fig. 1).

There are two alternative approaches to this problem.

(1) Matrix storage. The matrix can be computed
once and held on disk, being retrieved and fed to the
arithmetic unit during each iteration.

(2) Matrix generation. The matrix can be generated
in real time during each iteration, without ever being
actually stored.

Since the number of elements is so large, the former
approach would require some tens of gigabytes of on-line,
fast secondary storage, and the technique is inevitably

extremely expensive; indeed for large calculations it is
probably not feasible. Matrix generation, on the other
hand, appears to have a greatly superior overall ratio of
performance to cost, but requires substantial additional
computational power. The authors have developed
and tested a prototype generator, the MFG (Matrix
Format Generator), which combines a high-performance
MC68000 microcomputer and a dedicated ECL hard-
ware accelerator, to produce in real time partial
descriptions of the Hamiltonian matrices of sd-shell
nuclei (i.e. those with between 9 and 20 protons and
between 9 and 20 neutrons) identifying the positions, but
not the values of all non-zero elements. The problem of
evaluating these elements is highly parallel in nature, but
has an asynchronous heterogeneous nature which
demands the versatility of a multiple CPU machine rather
than, say, an array processor. A multiple microprocessor
system of the kind discussed above is an ideal solution in
this situation. Although it does not exclude a storage
approach for smaller calculations, it can provide the
flexibility and performance, at suitably low cost, to run
generation algorithms.

The Shell Model Processor project is seen as consisting
of two phases. Phase I, now approaching completion, is
a practical feasibility study, involving the construction
of a ‘pilot’ multiple processor, driven by the MFG,
and capable of handling calculations with up to 32
single-particle nuclear orbitals. Phase II will require the
production of a significantly more ambitious machine
with up to 4 times this orbital capacity. The Phase II
system, as currently envisaged by the authors, is
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Figure 3. Matrix format generator. Logical block diagram

essentially an extension of the existing Phase I processor;
in the following discussion the complete extended
architecture will be described, indicating those areas not
applicable to the prototype.

3. GENERAL ARCHITECTURE

The multiple microprocessor system developed by the
authors for application to Nuclear Shell Model calcula-
tions is based on the modular architecture illustrated in
Fig. 2. The fundamental building block is a self-contained
station called a Multiple Microprocessor Unit (MMPU)
which has stand-alone capability but can be linked to
other stations, providing scope for horizontal expansion
should it ever be desired. The present work will be (even
in Phase II) restricted to the construction of a single
MMPU which should have performance characteristics
more than adequate for projected requirements. Within
an MMPU, control resides with a single Supervisor
Module (SM), which coordinates the activities of a
number of general-purpose processing elements called
Microcomputer Modules (MCMs), each an independent
computer in its own right. All the MCMs may randomly
access the shared Central Memory Modules (CMMs),
which provide bulk storage for global data such as the
vectors in a Lanczos iteration. Additionally they may
obtain parameters from an external generator which can
act as a data driver for internal MCM processes. This
generator, which could be a massive secondary storage
facility or a front-end processor, acts as the source of
matrix elements during the Lanczos matrix-into-vector
step. The present arrangement uses the prototype MFG
in this role (Fig. 3), and is expected to continue until the
system is required to execute calculations involving
nuclides with active pf shells.

The fundamental feature of any multiple processor
system is its communications subnet to which all its
constituent processors (hosts) interface. The subnet’s
properties are defined by the system interconnection
topology and, for many applications, determine the
absolute limits of performance. Conventional multi-
microprocessors fall squarely into Flynn’s MIMD
category:® systems consisting of many processors
running what are essentially autonomous but, in general,

intercommunicating processes. It is now widely accepted
that, for large machines in this class to be successfully
implemented, individual processors must be endowed
with local resources (especially memory) so that the
global subnet is loaded only when necessary. In
particular, CPU references to the instruction stream and
to local variables can be removed from the subnet
altogether, significantly reducing the utilisation ratios of
individual CPUs (i.e. the ratio of subnet bandwidth
required by a processor to total bandwidth required by
that processor).

Many structures have been proposed for multiple
processors: for example the crossbar switch in Carnegie
Mellon’s C.mmp;® shared memory in UMIST’s
CYBA-M;" a binary ‘n’cube’ in Caltech’s COSMIC
CUBE;? linked buses in Cm*, etc’® The MMPU subnet
is based on a simple multiple shared bus. Despite, or
perhaps because of, their simplicity, bus-oriented subnets
have several significant and desirable natural properties.

(1) The subnet does not require internal ‘intelligence”’.
The routeing, congestion and flow control problems
characteristic of, for example, packet-switched networks,
are eliminated or, more precisely, are reduced to the
level where they can be handled by fast hardware. Bus
hardware, in general, is simple, fast, reliable and
relatively easy to debug.

(2) The subnet is itself symmetrical in the sense that
any node can reach any other directly with no routeing
delay. The symmetry makes it particularly easy to
interface special devices to the system, such as, for
example, shared memory modules or special processors.

(3) The subnet is flexible in that total available
bandwidth can be divided in any desired way amongst
hosts. Thus a specialised host requiring, say, heavy bursts
of traffic (e.g. an array processor) can be allocated as
much bandwidth as arbitration protocols permit, up to,
of course, the total available limit.

(4) The structure makes not only point-to-point but
also broadcast transfers extremely easy to effect. The
latter are often very useful where globally significant
information has to be transmitted, or where multi-host
synchronisation is desired.

Although these advantages are clear, bus structures
have tended to be regarded as rather restrictive. The total
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available bandwidth, B, on a given bus, is a characteristic
upper limit determined by the technology. No matter
how large B is, there is a point beyond which the system
cannot grow without encountering overloading (below
this point the modularity of bus systems is excellent). If
B is high enough this objection is more a matter of
aesthetics than a serious practical worry (any parallel
machine designer would like to believe that his
architecture is infinitely extensible), but until recently the
problem has been precisely that values of B have been
too small.

Modern bus specifications, however, offer bandwidths
of between 30 and 40 megacycles/s: notably the IEEE
896 Futurebus'® and the NIM FASTbus,'' now being
adopted as IEEE Standard 960-1984. Using advanced
ECL drivers it is probably already feasible to achieve a
transfer rate of 50 MHz, so that, say, a 32-bit bus with
a bandwidth of 150-200 Mbytes/s is not by any means
inconceivable. If restricted to essential data transfers
(i.e. no code or avoidable data transfers) such a bus
can satisfy the peak requirements of at least 50-100
high-performance microprocessors (e.g. NS32032 or
MC68020). Hence, although the objection remains valid
in the sense that a pure bus-based system is not feasible
for massive parallel systems with thousands of pro-
cessors, an extremely powerful flexibly coupled multi-
processor based on message passing, shared memory
or both, can be constructed. Such machines could, of
course, form ‘supernodes’ on a more extensive ‘super-
subnet’.

The MMPU uses four buses (Fig. 4) to provide the
necessary interconnection between its host components.
(As yet only two have been implemented in the pilot
machine, but a reduced CMA-Bus will be added
eventually.) Before discussing these individually, a
general comment might be helpful. The Phase Il MMPU
subnet is intended to provide bandwidth requirements
well in excess of those currently projected as necessary
for the most powerful Phase II module designs, which
might each have, say, 20-30 times the performance of
a Motorola MC68000L 8. The Shell Model application
requires a fairly low subnet utilisation ratio for each
processor, so that in fact, in this case, the communications

structure described below is powerful enough to support
processing technology almost an order of magnitude
faster than the best available today. It is therefore
feasible that a future (Phase I11?) Shell Model Processor
could use virtually the same subnet, but support, say, 20
modules, each with sufficient processing power to execute
100 million operations/sec.

(1) C-Bus (Command Bus) is the primary MMPU
communication highway, connecting all modules together
and intended to carry system-level command and control
messages. It is also used in the pilot machine to transmit
bulk data and process code, although this function will
probably be largely subsumed by COMbus in the Phase
IT implementation. In order to obtain access to a pool of
available off-the-shelf hardware, it was decided to base
C-Bus on the now widely accepted Motorola/Mostek/
Signetics/Thomson VMEDbus.!?2 Although the perform-
ance of this standard is moderate by comparison with the
structures discussed above (< 40 Mbytes/s), it was felt
that the C-Bus function could be adequately supported
and that compatibility with an industry standard was
consequently a more important consideration. VMEbus
includes 32-bit data and address buses, four levels of
daisy chained arbitration and seven levels of interrupt.
Data transfer occurs via a fully interlocked asynchronous
handshake.

The authors have augmented the standard VMEbus
specification in two ways intended to enhance multi-
processor support.

(@) A Bus Broadcast facility has been included,
enabling a suitably privileged master to write data
simultaneously to any subset of MCMs.

(b) The lowest bus request/grant priority level BRO*
BGOIN*/BGOOUT* uses a decentralised daisy-chain
grant protocol which removes the position-dependent
prioritisation inherent in the normal VMEbus system
(none the less retained for levels BR1* —BR3*). MCMs,
which are by definition isomorphic modules, share this
line and thus have virtually equal priority on C-Bus.

Despite these changes, upward compatibility with
VMEbus is maintained by identifying C-Bus-specific
accesses using the VME Address Modifier lines. Thus a
standard VME card is entirely compatible with custom-
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issd MMPU modules designed to accord with the C-Bus
enhancements.

(2) I-Bus is a dedicated data bus which provides
MCMs with a high-speed communications route to as
many as 32 single-address devices and, in particular, to
the Shell Model Processor’s MFG front end. Advanced
Schottky bus drivers enable transfer rates in excess of
120 Mbytes/s to be attained on a 56-bit data pathway.
This is considerably in excess of requirements, in keeping
with the philosophy outlined above: in fact a fully
populated Phase II machine would require an I-Bus
bandwidth of no more than 20 Mbytes/s. Data transfer
is again asynchronous, governed by a four-edged
handshake; arbitration is single priority and is accomp-
lished by means of the same decentralised daisy-chain
protocol employed for C-Bus priority level 0.

(3) CMA-Bus is a bidirectional 64-bit shared data
pathway designed to support fast random read/write
cycles, over a 2 Gbyte range, for transfer of operands
between MCMs and CMMs. The incorporation of a bus
devoted to such transactions is necessary to free the
system from the constraints of a conventional shared-bus
architecture. The specification allows the data and
address buses to operate concurrently on independent
transfers so that very high performance is attainable
(Fig. 5). With ECL interfaces, bus cycle times of less
than 30 ns, and fully pipelined arbitration a bandwidth
potentially in excess of 300 Mbytes/s would be attainable
(Phase II requirements are projected as < 50 Mbytes/s).
To support these access rates the CMM address space

would need to be interleaved between several (say 16)
independently accessible memory banks distributed over
a number of CMMs: clearly, an ability to queue
incoming read and write requests for later service would
be required. Data determinacy during multiple read—
modify-write operations on CMA-Bus will be preserved
by means of hardware-driven lockout flags which will
protect each CMM location.

(4) COM-Bus is a high-speed message-passing inter-
MCM link proposed for the Phase II machine, with a
maximum bandwidth of up to 200 Mbytes/s, shared on
a cycle-by-cycle basis, in such a way as to allow many
concurrent private conversations (a broadcast facility
could easily be accommodated). High bandwidth
communication between MCMs is not required during
any sd-shell applications, and anticipated needs in the
pilot system can easily be satisfied by C-Bus alone or,
exceptionally, by means of a Central Memory ‘mailbox’
system.

The MMPU modules are inevitably subject to design
constraints imposed by the requirement that they
interface consistently to the protocols of the subnet. In
the next section the three major categories of applicable
design constraint will be briefly examined: hardware-
imposed, C-Bus-imposed and function-imposed. Despite
these restrictions there is still almost total freedom in the
details of internal module design, maintaining flexibility
and facilitating the replacements of older units as
technological improvements permit. The following
discussion is necessarily, however, incomplete and must
draw heavily on experience of the Phase I implementation
of the subnet.

4. DESIGN CONSTRAINTS SPECIFIED BY
MMPU

4.1 Functional constraints

The functional constraints imposed on a module are
dictated by the operational requirements of its role
within the system. Although the Shell Model Processor
could legitimately be regarded as a ‘calculator’ it would
be misleading to restrict a discussion of its target problem
set to the Lanczos iteration for, as indicated earlier, not
only is this set currently more extensive (e.g. calculation
of density matrix elements, expectation value of quantum
observables, etc.), but in addition there is the need, as
already emphasised, for inherent functional flexibility.
An MCM, for example, must be capable of performing
a large and, indeed, still incompletely specified list of
widely differing tasks.

For these reasons it is important to construct a system
which is configured to run a range of software packages,
including future user-generated programs. This kind of
freedom is only realistically available if an appropriate
independent operating system is installed to provide a
user/machine interface. The MMPU is capable of
providing hardware support for operating systems
ranging from the centralised to the distributed, as desired
by the user. For example, the Supervisor Module could
be programmed to exercise tight control over all system
activities in a strictly hierarchical manner, or to intervene
only when asked for assistance by an MCM.

In the case of the Shell Model Processor, since the
users are liable to be themselves experienced program-
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mers, and since the range of applications is liable to be
relatively restricted, the operating system can be fairly
unsophisticated. As envisaged at present (current
software packages for the MMPU have only very limited
operating system support), it will consist essentially of a
supervisory executive running in a multiprogrammed
environment on the Supervisor Module, overseeing a
series of distributed local kernels, each physically resident
on one of the slave modules. User processes will be
assigned by the executive, arbitrarily or by user
specification, to given modules, where they will run
under the control of the local kernels. The operating
system will handle all interprocess, and hence all
interprocessor, communication, task scheduling and
resource management.

User programs may be written directly in assembler, or
in a high-level language provided with an appropriate
library of system call procedures (the authors have done
this for Pascal). In either case, operating system functions
are ultimately accessed via software-generated exceptions,
following a predefined protocol (e.g. in the present
rudimentary system, calls are made by means of the
68000 TRAP no. 15 instruction). Many hardware
resources, including the subnet and local peripherals
(co-processors, 1/O lines, etc.) are only available to a
processor running in system mode, so that, for example,
one user process wishing to pass data to another must
trap to the local kernel. System processes can, of course,
access the hardware directly. During a Shell Model
iteration the Supervisor Module functions mainly as a
watchdog, responding to interrupts generated by other
modules in need of central services (in normal Shell
Model processing such interrupts are typically initiated
by error conditions). It is also, of course, responsible for
overall coordination of the system as an iteration is
scheduled or terminated, and for providing a user
interface to the operator.

Functionally, each active module (i.e. each module
capable of running a user process) will be identified to the
operating system as either an MCM (general-purpose) or
a special-purpose unit. Unassigned processes will only be
run on MCMs, but at initiation time the operator can
declare that a newly installed process is to run on a
specified module.

Since modules may vary widely in their internal
topology, and may indeed support several micropro-
cessors, it will clearly be necessary to define software
interfaces governing communication between the local
kernel and the external operating system, consisting of
other local kernels and the supervisory executive. Once
this is done, internal kernel design can be tailored to suit
the architectural requirements of any given module.

4.2 C-Bus constraints

The overall processor-memory description of any
module must conform to the constraints imposed by the
C-Bus addressing structure. Since C-Bus supports a
32-bit address bus, a processor with C-Bus master
capability, when in operating system mode, will view the
physical system as a 4 Gbyte block, certain regions of
which may be restricted from access either by Supervisor-
level protection, or by target module memory manage-
ment. Of this total physical address space, each active
module is assigned 128 Mbytes which are internally

accessible to on-board processors without the use of
C-Bus.

Up to 20 active modules may reside withinan MMPU,
so that a total of 2.5 Gbytes of the system space are
reserved for their use. The remaining 1.5 Gbytes are
divided in any appropriate manner between modules
such as CMMs or other dedicated units. The 128 Mbyte
block of the system address space allocated to an active
module, called its Primary Module Map (PMM), does
not necessarily contain all addressable on-board devices.
It is also permissible for processors to use locations
which may be switched out of the PMM or, indeed,
which are inaccessible to it by direct random-access
operations. There is no constraint on the number of
processors which may reside within a module. If there are
several, they may be organised in any desired manner, for
example hierarchically, functionally or with co-equal
access to on-board resources (see Section 5).

4.3 Hardware constraints

At the hardware level the only significant constraints are
that each module should satisfy the electrical loading and
signal protocols specified for each bus interface which it
supports. Every module is interfaced to C-Bus but only
MCMs and CMMs to CMA-Bus, only MCMs and
peripheral interface modules to I-Bus and only active
modules to COM-Bus (Fig. 4). Although an MCM must
interface to the 4 system buses, only C-Bus can act as an
extension of the processor’s local bus. The CMA-Bus,
I-Bus and COM-Bus interfaces are specially designed
pre-fetch buffers (PFBs) which can conduct memory
cycles independently of, and in parallel with, the
on-board MPUs.

Also, there is a practical requirement for some degree
of low-level software compatibility between modules.
This implies a need to link the MMPU architecture to a
microprocessor architecture which essentially combines
currently available high performance with projected
upward-compatible 32-bit machines. The authors have
selected Motorola’s M 68000 family as, in their view,
providing the optimal mix of these qualities.!* The
MMPU as presently implemented is configured to
support the recently announced MC68020 micro-
processor,!*> but the prototype modules which are
already installed are based on the proven MC 68000 and
MC68010 MPUs.

5. MCM DESIGNS

To indicate the practical realisation of the concepts
discussed above, it might be helpful to give some
indication of the nature of the hardware which has been
designed for the Shell Model Processor project. The
MCM is not only the major determining factor in fixing
the limits of real system performance, but it is a paradigm
which can be used as a basis for the design of other active
modules, and its internal architecture might be expected
to be particularly instructive. A number of MCM designs
(Figs 6, 7, 8) have been studied seriously. These are
monoboard processing elements of increasing computa-
tional power and can perform well over a wide range
of applications. However, they are tailored to tackle
calculations of the type arising in the theory of the
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Nuclear Shell Model, and performance figures quoted
must be treated accordingly.

MCMI (Fig. 6), built as part of an early feasibility
study (1982), was designed rather to test system concepts
than for optimal performance. The local bus topology is
simple and supports only one processor, an 8§ MHz
MC68000, but all on-board devices are dual-port with
respect to C-Bus. As with all its successors there is no
on-board firmware, and all system code is loaded by the
SM at initiation time into protected areas of RAM. This
gives a tremendous amount of inherent flexibility,
allowing dynamic tailoring of a module kernel and
assisting enormously in its development and testing.

The MCMII design (Fig. 7), now operationally tested,

is intended to act as an advanced prototype capable of
providing processing power adequate for extensions of
the calculations to higher nuclear shells. The module is
hierarchically organised around a single master processor,
an enhanced-performance MC 68000 running at 16 MHz
(a steady 1-2 MIPs capability). An 8 Kbyte block of very
fast static RAM allows the 16 MHz processor to execute
a memory access (read or write) in 250 ns (no wait states)
and is intended to hold time-critical program sections and
frequently accessed variables. The master MPU is also
provided with 128 Kbytes or 512 Kbytes of local bulk
memory which runs with 4 wait states (375 ns cycle time).
A second 16 MHz 68000 acts as a slave on a local sub-bus
to which are directly interfaced the I-Bus and CMA-Bus
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A MULTIPLE MICROPROCESSOR SYSTEM

Shared RAM
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MC 68020 MC 68020
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MC 68020 MC 68020
system system
processor processor

Subnet interface

C-bus, CMA-bus, I-bus, COM bus
Figure 8. Design of proposed Phase Il MCM (MCMII)

pre-fetch buffers together with another 8 Kbytes of fast
dual-port memory, which can be used to pass data and
commands between the two microprocessors. The slave
also controls two National Semiconductor NS 16081
Floating Point Units (FPUs), which are accessed as 16-bit
peripherals and provide the arithmetic capability required
by the Shell Model application. During Shell Model
processing the slave handles allinteraction with CMA-Bus
and I-Bus as well as performing, with the aid of the
FPUs, all arithmetic operations. As a guide, if MCMI
performance is normalised to 1, then that of MCMII is
approximately 9 during a matrix generating iteration in
a Shell Model calculation.

On the basis of recent complete iterations on real nuclear
data, the authors estimate that, with two MCMII modules
in place, performance is approximately half that attain-
able on an IBM 360/195 mainframe using conventional
Shell Model programming techniques.* Further, within
the defined limits of the subnet, performance should
increase almost linearly with the number of similar
MCMs installed.

The Phase II MCM, now in the design stage, will be
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a powerful tightly coupled monoboard multiprocessor
based on four MC 68020 MPUs (Fig. 8), each equipped
with a ‘write-through’ 8 Kbyte set-associative cache.
In this design, the processors are paired, each pair
consisting of a ‘memory’ processor with access to local
bulk memory and a ‘system’ processor responsible for
control of the subnet interface. The local bulk memory
(1-4 Mbytes) is shared and divided into 1 Kbyte
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the data as the processor reads it; if it does not, no such
store may proceed. Thus only data in cacheable pages
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The proposed MMU will support demand-paged
virtual memory and facilitate intertask protection in a
much more general multiprogrammed multiprocessor
environment. For the Shell Model application, the
design of Fig. 8 is expected to yield a performance of
approximately 30 on the above scale.

6. CONCLUSIONS

As outlined above, the MMPU designed for the Shell
Model Processor project employs the latest 16/32-bit
microprocessor technology to implement a small but
powerful and flexible multiple CPU system. By empha-
sising modularity and linking the development to a
particular microprocessor family, technological enhance-
ment may be achieved without loss of user software
compatibility. The MMPU global structures are designed
to perform well above their currently projected load
and it is hoped that, with scope for the integration of
very-high-performance general-purpose processing ele-
ments and, indeed, of optimised dedicated processor
modules where necessary, the range of applicability of
the system will be significantly extended in the future.
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Announcements

10-14 May 1987

APL 87, The International APL Conference on
APL computer programming language, is to
be held at the Fairmont Hotel, Dallas, Texas,
USA. It is sponsored by the Special Interest
Group of the Association of Computing
Machinery and the Southwest APL Users’
Group.

For further information please contact: APL 87
Registrar, 440 Northlake Shopping Center,
suite 210, Dallas, TX 75238, U.S.A.

1-4 SEPTEMBER 1987

13th International Conference on Very Large
Data Bases, Brighton, England, U.K.

VLDB Conferences are a forum and focus for
identifying and encouraging research, devel-
opment, and the novel applications of database
management systems and techniques. The
Thirteenth  VLDB Conference will bring
together researchers and practitioners to
exchange ideas and advance the subject.
Papers of up to 5000 words in length and of
high quality are invited on any aspect of the
subject but particularly on the topics listed.
All submitted papers will be read and carefully
evaluated by the Programme Committee.

Programme

The programme will include an exhibition, six
tutorials by eminent speakers which are
specially oriented towards the needs of in-
dustry, and a high standard of refereed papers.
The topics covered include: Data Models;
Design Methods and Tools; Distributed
Databases; Query Optimisation; Concurrency

Control; Database Machines; Performance
Issues; Security; Knowledge Base Represen-
tation; Multi-media Databases; Implemen-
tation Techniques; Object-Oriented Models;
The role of logics.

Social Programme

There will be an extensive social programme
including a civic reception, traditional English
events, a conference dinner, sightseeing tours
and ‘weekend breaks’ in London.

For further information and registration forms
please contact:

Miss Christine Edginton, Conference Mana-
ger, BISL Conference Department, The
British Computer Society, 13 Mansfield Street,
London WIM OBP (44-1-637 0471; Telex
262284).

7-11 SEPTEMBER 1987

People and Computers HCI °87

The third annual conference of the BCS
Human-Computer Interaction Specialist
Group will be held at Exeter University,
Devon, England from Tuesday 8 September to
Friday 11 September 1987. The conference will
be preceded by a day of tutorials on Monday
7 September.

The goals of the conference will again be: (i)
to represent the current state of HCI, (ii) to
increase communication between people work-
ing in the different disciplines of HCI and (iii)
to discuss the future of HCI. .

The conference has been planned in the
knowledge that there is to be an international
conference on a similar theme (Interact ’87) in
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Germany the previous week. HCI 87 is
designed to complement Interact '87. Many
people who work in HCI in the U.K. will not be
able to attend a conference held outside the
U.K. Furthermore, the type of papers presented
at the two conferences are likely to be of a
different type. The papers in HCI 87 will be of
a substantial length and will deal in detail with
specific topics within HCI. In fact, HCI ’87
plans to take advantage of the coincidence of
Interact '87 by inviting to the U.K. inter-
national speakers, particularly from the U.S.A.
and Japan, who will be in Europe at the
beginning of September. There will also be
workshops during HCI 87 that will report and
discuss in detail issues raised, but perhaps not
answered, during Interact *87. We hope that
many of those who attend Interact '87 will also
attend HCI °87 and play a major participatory
role in making HCI 87 the success it has been
in previous years.

For further details contact:

HCI ’87 Conference, B.I.S.L., 13 Mansfield
Street, London WIM OBP. Telephone:
(01) 637 0471.

8-11 SEPTEMBER 1987

IFIP TC 8 Conference on Governmental and
Municipal Information Systems will be held in
Budapest, Hungary.

For further information please contact:

IFIP TC 8 Conference Secretariat, John von
Neumann Society for Computing Sciences,
Budapest 5, P.O.B. 240 H-1360, Hungary.
Telephone: 361 329-390. Telex: 22 5369.
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