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1. INTRODUCTION

Over the last decade there has been widespread research
directed at obtaining techniques for the analysis,
specification and development of concurrent systems.
Several of these lines of research have led to the belief
that temporal logic is a useful tool for reasoning about
such systems.’™* The use of temporal logic enables, in
particular, analysis of both safety and liveness properties
in a single uniform logical framework (see Ref. 5 for
extensive examples). More recently, techniques have
been developed for achieving compositional temporal
proof systems.®? Compositionality is an essential
requirement for the hierarchical development of imple-
mentations from formal specifications. Without compo-
sitionality, the check on consistency of a development step
would be delayed until all interactions between the
developed components are known, essentially, at the
implementation level; clearly, it could be rather costly if
such a consistency check then showed that the system did
not achieve the overall specification. In general,
compositionality can be achieved by realising that a
specification of any component must include assumptions
about the behaviour of the environment in which the
component will reside. In the temporal framework, this
requires that one can distinguish actions made by a
component from those made by its environment; in Refs
6 and 7 the coarse technique of labelling actions is used
for just that purpose. Although it is sometimes possible
to distinguish actions by other means, as will be shown
in a forthcoming article, in the presentation of the
specifications below the more general labelling technique
is assumed.

In this paper, I present a rather different application
of our temporal specifications. Over the last year
(1984/5), a lift control example has been gathering
interest amongst attendees of the Ada-UK Formal
Methods Group, and more recently amongst attendees of
the Ada-Europe Working Group on Formal Methods.
On many occasions I have been asked to produce a
solution for the Ada-UK group, but I never was quite
able to make their meetings! However, I believe the
following sections contain what I would have presented.

Section 2 contains a statement of the original problem
as set by Neil Davis of STL,} and some comments on the
interpretation I have taken. Section 3 presents a first
approximation, a much simpler single-lift system.
Section 4 discusses some initial modifications and Section
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5 presents the multiple-lift system. Final comments are
made in Section 6. For convenience, an appendix
contains the semantics of the logic used in this article.

2. INFORMAL REQUIREMENTS

The following is a description of the lift-control system
problem as set by Neil Davis.

A Lift-Control System

An n-lift system is to be installed in a building with m floors.
The lifts and the control mechanism are supplied by a
manufacturer. The internal mechanisms of these are assumed
(given) in this problem.

Design the logic to move lifts between floors in the building
according to the following rules.

(1) Each lift has a set of buttons, one button for each floor.
These illuminate when pressed and cause the lift to visit the
corresponding floor. The illumination is cancelled when the
corresponding floor is visited (i.e. stopped at) by the lift.

(2) Each floor has two buttons (except ground and top), one
to request an up-lift and one to request a down-lift. These
buttons illuminate when pressed. The buttons are cancelled
when a lift visits the floor and is either travelling in the desired
direction, or visiting the floor with no requests outstanding.

In the latter case, if both floor-request buttons are
illuminated, only one should be cancelled. The algorithm used
to decide which to service should minimise the waiting time for
both requests.

(3) When a lift has no request to service, it should remain at
its final destination with its doors closed and await further
requests (or model a ‘holding’ floor).

(4) All requests for lifts from floors must be serviced
eventually, with all floors given equal priority (can this be
proved or demonstrated?).

(5) All requests for floors within lifts must be serviced
eventually, with floors being serviced sequentially in the
direction of travel (can this be proved or demonstrated?).

(6) Each lift has an emergency button which, when pressed,
causes a warning signal to be sent to the site manager. The lift
is then deemed ‘out our service’. Each lift has a mechanism to
cancel its ‘out of service’ status.

2.1 My interpretation of the problem

The above problem description states °Design the
logic...’. Rather than present a model of a lift system
which would hopefully satisfy the above informal
constraints, the following sections of this paper present
an axiomatic specification of a lift system that possesses
the above properties. It is claimed that such a
specification could be used, say, as a top-level description
in a formal development of a lift system. One argument
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for adopting this approach can be phrased as follows. If
some model were given as a specification unless one
accepts the given model at face value it would still be
necessary to formalise the informal requirements in order
to demonstrate that the model is the right one, i.e.
behaves in the desired manner. Once such formalisation
of requirements has been made why not use it as the
specification? Clearly, the difficult question is ‘how is
such informality made formal?’.

The approach taken here is first to fix on the
observable quantities, then describe the behaviour of the
system in their terms. Designing criteria to determine
what should and shouldn’t be observable is a difficult
problem and one which is avoided here. However, one
must take great care in choosing what the observable
quantities should be, i.e. in determining the right level of
abstraction. If one looks with ‘X-ray eyes’ at a lift
system, say, then it is likely that one will see parts one was
not meant to see and which are likely to cloud the issue,
for example, triggers for causing the lift to decelerate.

Having decided upon the observable quantities, the
informal requirements are rephrased in their terms. This
leads to an axiomatic specification of the system (and to
all the problems that then ensue).

3. A SINGLE-LIFT SYSTEM

To motivate the specification for the multiple-lift system,
a simpler single-lift system is first introduced. The

informal requirements placed upon the system are as'

follows.

(1) The lift has a set of buttons, one button for each floor.
The buttons illuminate when pressed and cause the lift to visit
the corresponding floor. The illumination is cancelled when the
floor is visited.

(2) Each floor has one request button. The buttons
illuminate when pressed and cause the lift to stop at that floor
at the next possible moment. The illumination is cancelled when
the lift stops at the floor.

(3) When there are no outstanding requests for the lift, it
should remain stationary at the last floor visited with the doors
closed.

(4) (a) Every request for the lift must eventually be serviced.

(b) The lift should not stop at floors not requesting
service.

(5) The lift should travel as far as possible without changing
direction.

Note that a clause corresponding to 45 is missing from
the main problem description. This, I believe, must be an
oversight and, of course, demonstrates the dangers of
informal specification (the oversight was actually dis-
covered during the development of the formal specifica-
tion).

3.1 Observable quantities

As mentioned in Section 2 above, the first step to be
taken in obtaining the formal specification for the
single-lift system is to agree upon the externally
observable quantities. Of course, some help comes by
analysing the informal requirements. More generally
though, what does one observe as a user of a lift system?
There are buttons to push, which also illuminate (so there
must be corresponding lights), and there are lift doors
(which hopefully open and close). In fact it is just those

quantities, i.e. the buttons, lights and doors, which are
used to describe the behaviour of the lift system.
However, with regard to observation, it should be noted
that the observer here is not really a user of the lift
system. It is assumed the observer has a global view of
the system; the state of all the lift doors and buttons
(both inside and outside the lift) can be observed at any
one moment.

The interface between lift system and its environment
must therefore consist of these three quantities.

3.1.1 Lift doors

At this initial level of abstraction the doors of the lift are
considered to be either in an open state (here represented
by OpenDoors) or in a closed state (ClosedDoors) with no
intermediate states. In the next section, where various
kinds of interruption are considered, it is necessary to
introduce intermediate door states.

DoorState = OpenDoor | ClosedDoors

D : array (1. .m) of DoorState

Thus, the state of all lift doors is given by the vector
D. For convenience below, we refer to the state of the lift
doors on floor i by D,. In fact, we use that abbreviation
for all vector subscription.

3.1.2 Lift request buttons

Both types of buttons have the same possibilities in state,
a button may be in either a depressed state (Ooh, it does
hurt so when I’'m pushed!) or a released state. Again, for
ease in the description below TRUE is used to represent
the depressed state, and FALSE to represent the released
state. Clearly, there are the external buttons (for calling
a lift
) C : array (1. .m) of Boolean

and the internal buttons (for sending a lift to a floor)

S : array (1. .m) of Boolean.

Thus if C; is true then somebody has the call button on
floor i depressed and, likewise, if S is true then somebody
has the ‘send button for floor i’ depressed.

3.1.3 Lights

The lights illuminating the lift request buttons can,
obviously, be either on or off. Again, for ease, TRUE has
been chosen to represent on and FALSE to represent off.
There are the lights associated with the call buttons C

LC : array (1. .m) of Boolean
and lights associated with the send buttons S
LS : array (1. .m) of Boolean.

Note that there is a difference between the lights and the
buttons which forces both to be used in the specification.
The light within a button may well remain lit after that
button has been released.

3.2 Behaviours

The behavioural specification of this first lift system is
now presented as a collection of temporal formulae over
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the ‘interface’ (D, C, S, LC, LS). Given that a model of
a temporal formula is a possibly infinite state sequence,
the intention is that the models of the temporal
specification are just those state sequences which could
be generated by any lift system possessing the desired
properties. The temporal language used is essentially a
propositional temporal u-calculus which extends the
linear temporal logic by allowing recursive definitions of
temporal predicates. Rather than describe the language
formally here, it is introduced by example. For those
readers wishing a more complete description, Appendix
1 contains its interpretation over w-sequences. Further-
more, Ref. 8 describes the language in detail and provides
a proof of its expressive equivalence with extended
temporal logic (ETL) of Ref. 9.

3.2.1 Buttons and lights

The interaction between buttons and lights (and doors)
is given first. These interactions are examples of safety
properties.®

O /\ (C; = (LC; W service at i)) €))
where '

def
service at i = D, e OpenDoors

O is the ‘always in the future’ temporal operator.
Hence if (¢ is true, then the formula ¢ is true now and
in every future moment. The weak binary until #°
(usually referred to as unless) has also been used.
Informally, if ¢ #~ y is true then either ¢ holds for ever,
i.e. in every future moment, or ¢ holds continuously until
at least y is true. The above formula states therefore that
if ever any call button is depressed then it gets illuminated
(at the same moment) and stays illuminated unless the
request gets serviced. Servicing of a request at a floor is
simply characterised by the fact that the lift doors for
that floor are neither closed nor in a closing state (which
means the lift must be present and able to accept
passengers).

O /i\ (S; = (LS; # service at i)) ¥)

Similarly for the send buttons inside the lift. If one is
depressed then either it is illuminated or the lift is at the
floor able to provide immediate service.

a /,\ (LC;=>(LC;H () 3)

This property states that if ever a call light is unlit, it
must remain unlit unless the call button is depressed.
Actually, of course, because of the first property given
above, even if the C; button is depressed the light may
still remain unlit if the lift is currently at that floor.

O A GLS;= (~LS; # S)) )

This is similar to the above for the send button lights.

Finally, under this heading it is necessary to express
that if a light in a button is lit then there is no immediate
service at present, i.e. the corresponding lift doors are in
a closed state.

O /\ ((LC; = —service at i) A (LS; = —service at i)) (5)
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Actually, the above five properties can be combined as
the following single property.

O /\ ((C; = (LC; W service at i)) A

((service at iV ~LC))=> (~LC;, W'+ C;)) A (6)
(S; = (LS; # service at i)) A
((service at i v ~LS;)= (~LS; #'* S))))

This has introduced the strict version of the binary
unless operator. ¢ ¥+ y is equivalent to g A O(¢ #~ )
and hence requires ¢ to be true now. This neater
expression of the property is used in preference to the
formulae (1), (2), (3), (4) and (5) above!

In summary, the above formula (6) fixes the interplay
between buttons and lights. The description does not fix
how buttons get pushed or released (that is controlled by
the user’s finger, see 3.2.4); it does, however, fix how the
light inside the button goes on and off (controlled by the
state of the button and the lift doors). In fact, if a button
is pushed and never released then the lift will always
eventually return to that floor whenever it leaves it!

3.2.2 Lift door behaviour

Since, at this initial level of development of the list
specification, there are only two states for the doors
(open or closed) the only requirement that needs to be
placed is that lift doors on different floors are not open
at the same time (otherwise there may be passengers
falling down the lift shaft!). This requirement is captured
by following (health and) safety property.

O( /\ D, € ClosedDoors v \/ (D, € OpenDoors A
i i

/\ Dje ClosedDoors)) (7)
j#d

So, it is always the case that either all the doors are
properly closed, or that at most one door is open. By
overloading notation this can be more succinctly written
as below.

O (X D;e OpenDoors) < 1)
(2

3.2.3 Servicing behaviour

Here constraints on the order of servicing requests are
constructed. Three basic constraints are made.

(1) All requests must eventually be serviced, and no floor
should be stopped at when there is no unserviced request for
that floor.

(2) The lift should not pass a floor for which there is an
outstanding (unserviced) request.

(3) The lift should not change direction if there is an
outstanding request whose service would cause the lift to
continue in the same direction.

In order to express these constraints formally, it is
rather useful to define some higher-level temporal
interval schema. First is the notion of the lift travelling
uninterruptedly from floor i, say, to floor j. This is so
when the doors on floor i remain unclosed until all doors
(possibly apart from j) are closed until the doors on floor
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Jj are not closed. The diagram below typifies this
situation; time increase from left to right.

/\ Di€ ClosedDoors

D, e OpenDoors | & | D; e OpenDoors

Formally, this is written as below. For convenience,
the interval is constructed from when the door is in an
open state (rather than including the closing state).

from i to j (j——ngi € OpenDoors U+
« /k\ Dy ClosedDoors) % D;e OpenDoors)

Note that the strict version ( *) of the strong until
() has been used. The temporal formula ¢ # y is
equivalent to (¢ #” w) A Oy and hence guarantees that
w will eventually hold. The use above ensures that the
predicate characterises an inclusive interval ‘from i to j’.

A similar characterisation can be given for the lift just
having come from a floor to its current position. This
uses the past time equivalent to the binary until operator,
the since (&) operator. The temporal formula ¢ & y is
true when ¢ has held in every moment since y held and,
furthermore, y did actually hold in the past.

at i from j d=ef D,eOpenDoors &+

(« /\ D, € ClosedDoors) & D;e OpenDoors)
Kk

The characterisation of the lift travelling from floor i
stopping off at floor j then going on to floor k can be
constructed by conjoining the above two definitions.

from i via j to k= at j from i A from j to k

Unserviced requests can also be characterised using
the past time since operator. Thus,

request £ is unserviced « (LC, & CHVLS, & S,)

states that a request for the lift to go to floor k is
unserviced if either the light on floor £ has remained
illuminated since the button was pushed or the light in
the lift for the kth button has remained illuminated since
that button was pushed. Remember from (6) above that
the light being illuminated means that some call is
unserviced.

An alternative formulation of this requirement is that
the doors on floor k have been closed since the request
to go to floor k. Such a description is rather awkward to
modify when two call buttons per floor are introduced in
Section 4.3. Also, notice that the above definition
indicates that if the lift is at a floor and the doors start
to close then depression of the call button will not keep
the lift at that floor. This may seem unreasonable,
however, so an alternative strategy is developed in the
next section.

Building upon this notion, a lift leaves a floor with an
outstanding request if the following formula is true.

left i with request £ unserviced =y

D, e OpenDoors % *(D; e ClosedDoors

A request £ is unserviced)

The expression of the constraints 1, 2 and 3 above is
now straightforward. First, all requests must be
eventually serviced, and only requests are serviced.

/\[:] ((C; v S;) = < service at i) 8)

/\ O (service at i = (service at i & request i is unserviced)
[

®

Next, the lift does not miss floors.

from i to i
/l\/]\E] (from i to j =

ﬂ\/ (left i with request k unserviced (10)
k

A

k between i and j))
where

k between i and jd-—(if min (i, j) < k < max (i, j)

Consider any two consecutive stops which the lift
makes, say at floor i and then at j. There must not be an
outstanding request, which was made before leaving
floor i, for some floor between i and j.

Finally, the lift must keep travelling as far as possible
without any change of direction.

/\/\/\El(fromiviajtok=>
itk

(i<j>k=
—-\/ (left j with request / unserviced A

t i<j<l)

i>j<k=
—-\/ (left j with request / unserviced A
Lisj>1) (1)

This constraint considers the times when the lift
changes direction. Consider any three consecutive stops,
i, j and k. If the lift changed direction from up to down
(i <j > k) then, when leaving floor j, there must not be
an outstanding request for a floor above floor j (as the
lift should travel in the same direction for as long as
possible). Similarly, for the change from down to up
(i>j<k).

3.2.4 Actions

As yet only interactions between the observable
quantities have been described. Although the following
three clauses (12, 13, 14) are not essential, it is useful to
distinguish environment actions from component actions,
using the E and IT propositions of the computational
model.1®: 6.7 Here, actions of the environment are
considered to be just those which a passenger of the lift
may make. Since in this first system a passenger can only
push or release buttons, the environment action
proposition E is identified as below.

OE= \/(CiA O-C;
' v-aC;AOC;
VS;AO-S;
VS AOSy) (12)
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The component actions are those that the lift makes.
Essentially, the ‘driving’ actions are the door-movement
actions. These are identified by the proposition I1T.

myes =>\/ (D, € ClosedDoors A O D; € OpenDoors
i

V D; e OpenDoors A OD; e ClosedDoors) (13)

Note that the switching on (or off) of the lights occurs
as a consequence of the environment requests (or lift

door actions). O(EVII) (14)

This clause ensures that all actions satisfy the
requirements implied by (12) and (13).

3.2.5 Initial conditions

Initially, the lift doors are all closed and there are no
outstanding requests for lift service. The position of the
lifts is, of course, unknown to an observer of the system.

/\ (D, € ClosedDoors A~C; A=S; A= LC; A—-LS;) (15)
i

3.3 General remarks

The overall specification for the single-lift system is thus
the conjunction of all the appropriate preceding
temporal formulae. For example,

LIFTSPECI
(15) A initial conditions
(12) A (13) A (14) A action definitions
6) A call, send service
consequences
D A lift door sequencing

@ AO AU0)AAD

Given some implementation, say LIFT, it must then be
proved that

servicing behaviours

+{LIFT} LIFTSPECI

(following the proof systems presented in Refs 6-8).

In this paper such a development is not continued. It
should be observed that the specification as presented
places no restriction on the model of parallelism,
whether interleaving or otherwise. For example, it is
possible for buttons to be pushed when doors are
opening, etc. However, it should also be observed that
the model of parallelism assumed by the proof systems
mentioned above is interleaving. Hence a model of the
implementation would not have such overlap of
environment and component actions.

3.4 Exercising the specification

Having produced a formal specification, it can sometimes
be useful and reassuring to exercise or test it in some
sense to determine whether certain properties hold. There
are differing views on how this should be done. Some
researchers believe this should be a mental activity,
others believe that formal specifications should be
executable. What can be done with the above formal
specification? It is not executable (however note that
some temporal logic is executable),’! but the basic
language used is decidable and hence formulae can be
mechanically decided. Thus the specification can be

exercised by formalising queries about the system and
then proving that they are valid deductions.

Such an approach was adopted for verifying a few
simple properties of the single-lift system. For example,
it was validated that if no requests are ever made then no
lift door ever opens, if a request is made then the
associated illumination eventually gets switched off, etc.
These properties were checked with the decision
procedures described in Ref. 12.

4. ENHANCEMENTS TO THE SINGLE LIFT

In this section we consider three enhancements to the
system specified above. The first allows the doors to be
interrupted whilst they are being closed. The second
handles an emergency button as mentioned in Section 2
above. The third, seemingly quite trivial, extension is to
consider request buttons as originally defined in the
problem description.

4.1 ‘Foot in the door’

In the Mathematics Tower in Manchester there are two
lifts to service 18 floors. Imagine one of the lifts is
inoperable and the other is behaving as specified above.
You are at the ground floor and see the lift just about to
leave, i.e. the doors are closing (in fact the doors are
either fully open or fully closed). Unfortunately, there is
no immediate way of stopping the doors from closing. A
foot in the door just seems to send you to hospital!
Clearly, there is a need to allow this kind of interruption.
The basic problem is, however, that this type of
interruption is uncontrollable. Such an interruption
comes from the environment and therefore a badly
behaved environment could stop the lift from ever
leaving a floor. Thus, guaranteed servicing of requests
can no longer be promised. The obvious place to start the
modification is the ‘lift door opening and closing’
sequence behaviour. It is clearly necessary to introduce
intermediate door states, and so the following is now
taken as the door interface.

DoorState = CLOSED |QPENING |QOPEN|CLOSING
OpenDoors = QPENING |QPEN | CLOSING
ClosedDoors = CLOSED

The basic operation of any lift door causes it to cycle
through the possible states, i.e. from CLOSED to
OPENING to OPEN to CLOSING to CLOSED and so
forth. More formally,

/\ ¢ .[Dy = CLOSED '+
l (D; = OPENING U+
(D; = OPEN %+
(D; = CLOSING '+ ¢&)))))

The temporal formula v&. y(¢) denotes the maximal
fixed point solution to the temporal equivalence
¢<>x(#), where y is a formula dependent on the
temporal variable ¢ (one can think of y as the body of
a recursive definition).

Thus a door may remain closed for ever (D; =
CLOSED w'* ...), but should it start to open it will
eventually be fully open (... Z* (D; = OPEN ...)), will
eventually start to close (D;=QPEN%* (D;=
CLOSING ...)) and finally repeat the cycle (... #* &).

(16)
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The use of strict operators guarantees that every door
state will be entered.

Although the basic door control behaviour has been
described recursively, such behaviour could have been
described using just the (], % and #” temporal operators.
For example,

A O(D; = CLOSED =
l (D; = CLOSED # D, = QPENING))

A (D; = OPENING =
(D; = OPENING % D; = OPEN))

A(D; = OPEN =

(D; = OPEN % D, = CLOSING))

A (D; = CLOSING =
(D; = CLOSING % D; = CLOSED)))

A
/\ D = CLOSED

However, it is felt that this is rather clumsy. Also, do note
that such elimination of recursion is not always possible.

Now it must be arranged that the door closing
sequence can be interrupted. A fairly common behaviour
is to reopen the door when it gets jammed, and then to
try closing it again. Of course, that sequence may go on
indefinitely. This latter behaviour is most easily expressed
using two ‘recursive definitions’; a vector of fixpoints
results.

A (&1, .(D; = CLOSED %'+,

D, = OPENING U+
(D; =OPEN U+
(D; = CLOSING %+ (&, VEIND): (17)

So far so good, but there is the small matter of how
the normal closing sequence is enforced when no feet get
in the way. An extra interface vector variable is

introduced.
introduced. array(1. .m) of Boolean

If a foot gets in the way during the closure of the door
on floor i, J; is set from FALSE to TRUE which, in turn,
will cause the doors to start opening again. Thus both the
environment (12) and component actions (13) require

change.
O(E=\/(C;AO-C,
' v-C; A OC;
VS;AO-S;
VoS, AOS;
V=J;AOJy) (18)
O =\/(D; = CLOSED A OD; = QPENING

" VD, = OPENING A OD; = OPEN
VD;=0QPENAOD; = CLOSING
VD; = CLOSING A O(D; = CLOSED
v D; = OPENING))) (19)
Next, a jam can only occur if the appropriate door is

closing and when one does occur the door must
eventually start opening again.

/1\ O(; = (D; = CLOSING «* D; = OPENING)) (20)

Because the door state OpenDoors now includes the
CLOSING state, it is necessary to redefine the predicate
service at i.

def
service at i = D; = OPENING v D, = QPEN

And now, of course, eventual service can only be
guaranteed if a door does not get continually stopped
from closing properly (21).

/\ OWC;V S;) = O(service at i v

/\ O (D;€ OpenDoors))) (21)
Also, a door may now open because of a jam (22).

/\ [ (service at i = (service at | &
i

(request i is unserviced v J;) (22)

4.2 Other emergencies

Again it is usual to find an emergency or alarm button
inside the lift compartment. Here the above specification
is extended to handle such traumatic occurrences. In fact
the ‘emergency’ button as described in Section 2 above
will be specified.

The lift system can be thought of as cycling through
‘in-service’ and then ‘out-of-service’ phases. The
‘in-service’ phase is essentially the earlier lift behaviour;
the ‘out-of-service’ phase starts with an alarm *to the site
manager’ and then waits (allowing anything to happen)
for the lift system to be put back in service. Assuming
INSERVICE is a temporal formula which specifies
‘in-service’ behaviour and, correspondingly, OUTOF-
SERVICE specifies out-of-service behaviour, the lift
service behaviour is given by the following temporal
formula.

LIFTSPEC2 = v¢ .(INSERVICE €
OUTOFSERVICE € ¢&)

This definition introduces the temporal operator
(combine).

Informally, the combine of two temporal formulae, ¢
and y, is a temporal formula whose models (behaviour
sequences) can be seen as the fusion (concatenation with
overlap) of the models of the ¢ with those of y. Thus the
LIFTSPEC? behaviour cycles around the composition
of the INSERVICE behaviour followed by the OUTOF-
SERVICE behaviour. The composition is such that
INSERVICE may continue for ever if the emergency
button is not depressed.

To supply the appropriate signals from and to the
environment two further boolean variables are introduced
as part of the interface state, Em (for emergency) and A/
(for alarm). Like the other lift buttons, Em is TRUE when
in a depressed state and FALSE when in the released
state. Also, associated with the button is its illuminating
light LEm which is FALSE when unlit, etc. Al is TRUE
when the alarm is ringing and FALSE when silent. The
‘out-of-service’ behaviour is presented first.

def

OUTOFSERVICE = (Al A LEm) W'+

+ fis
where (LEm w* (init A fin))
def

fin = ~-®TRUE

and init defines some re-initialisation (here unspecified).
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@ is the strong (or existential) next-time operator,
introduced because of the possibility of no future state.
@¢ will be true only if there is a next moment in the
future and ¢ holds in that moment (note that O is taken
as a weak (or universal) next-time operator, Q¢ will be
vacuously true if there is no future state). fin, therefore,
will only be true in those states that have no future and
is thus a formula which can determine the end of time.
(Note that OFALSE is an equivalent formula to fin.) Its
use in OUTOFSERVICE above guarantees that the
‘in-service’ behaviour begins as soon as the service
engineer has reset the system.

So the alarm is ringing unless somebody shuts it off
and then the lift system is in a state of limbo unless it gets
re-initialised (presumably by the service engineer). Of
course, during the whole out-of-service period, the
emergency button is illuminated.

To define the ‘in-service’ behaviour it is necessary to
modify some of the previous behaviours. Before
proceeding with those modifications, it would be rather
annoying if the alarm started ringing for no apparent
reason. Thus,

(—AIA-LEm) % fin (23)

but, of course, remember that this ‘always’ is only
applying during the ‘in-service’ behaviour. Then, to
ensure that the service stops as soon as the emergency
button is pressed, the following must hold.

01 (Em = fin) (24)

The door control specification which made promises
about future openings and closings obviously needs
modification. Such behaviour must now be interruptable
by the emergency.

/i\ (<&, 82> . Dy = CLOSED W'+ (&, V Em),
D, = OPENING @+

((D; = OPEN u*

((D; = CLOSING U+ (&, Vv &,V Em))

v Em))

v Em) (25)

The control mechanism has been weakened such that
should the emergency button be pushed then the doors
stop whatever they are doing. Similarly, the promise to
open the door when a foot gets in the way must be
weakened.

/\ O ;= (D; = CLOSING %* (D; = OPENING
' v Em))) (26)

Clearly, the requirement on eventual service of lift
request is also in need of repair.

/\ O((C; Vv S;) = O(service at i v service blocked)) (27)

where
def

service blocked = \/ O (D;€ OpenDoors) v Em
j

Finally, the environment actions should be modified to
include the possible actions on Em, and the component
actions modified to include the alarm mechanism Al
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Such modifications are assumed as (18)" and (19)’. The
desired behaviour is therefore given as below.

INSERVICEdg(IS) A(18) A (19) A (14) A
(6)A
(23) A (24) A
(25) A (7) A
(26) A
Q27) A (22) A(10) A(11)

4.3 Two call buttons per floor

In this section the specification is further modified to
reflect the original requirements on lift call buttons and
their associated lights. Obviously, the vector variables for
the call button and its light, C and LC, should be
replaced by a pair, one for up and one for down.

CU, LU, CD, LD : array(l. .m) of Boolean

Similar to the requirements captured by the formula (6),
the following is obtained.

¢ /\”((CU,- = (LU; W up service at i)
i
A (up service at i = (~LU,#"+ CU,)))
A /\ ((CD;= (LD; % down service at i))
1#1
A (down service at i = (~LD; w'+ CD,)))
A /\ ((S; = (LS;#" service at i)
A (service at i = (-LS; #'*+ S))))) (28)
where
up service at i < service at i A up required at i A
(at i from above =

(—(servicing down at i) A
- \Z (request k is unserviced)))
k<i

down service at i ' service at i A down required at i A
(—(at i from above) =
(—(servicing up at i) A
- \Z (request k is unserviced)))
k>

up required at i e D, e OpenDoors &+

down required at i « D;e OpenDoors &+
(D; = CLOSED A LD; v CD;)

required at i = D;e OpenDoors &+
(D; = CLOSED A LS;)

servicing up at i . D;eOpenDoors &+
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servicing down at i « D;e OpenDoors &+

at i from above & \/ (at i from ))
i>i
request k is unserviced = (LU, & CU,)V
(LD, & CD)V (LS, & S;)

The formulation of up service at i (down service at i)
appears quite tricky, and some justification is clearly
warranted. The lift will be providing an up (down) service
if the following conditions are met. The lift must be at
the floor. There must have been a request to go up
(down). If it is the case that the lift came from above (not
above) in the down (up) direction then it must not be the
case that the lift is already servicing a down (up) request
or the lift has a request to continue in the same direction.
For, if the latter had been the case, the lift should have
possibly (because there may have been some other reason
for stopping) gone straight to that lower (higher) floor.

Although this appears satisfactory there are circum-
stances when a lift, quite correctly, travels down (up) to a
floor, services an up (down) request, but then continues
its travel downwards (upwards). Imagine the following
situation. The lift arrives at a floor from above with no
external request but satisfying an internal request. A
small boy presses the up button. It does not get
illuminated because the lift can service the request.
However, before the lift leaves he presses the down
button, as is the wont of small boys, and lo and behold
the button does not get illuminated, because of the lift’s
overall desire not to change direction. Note that if he had
pressed the down button and then the up button, the
down button would not light but the up one would light
up because the lift cannot change from its preferred
direction of travel. Naturally, the small boy can confuse
the system even further by then requesting, internally,
that the lift should go up. (I don’t know whether the up
light should go then go off! This system leaves the light
on so that when the lift comes back again the real
passenger who wants to go up can cuff the small boy’s
ears. Actually, the real passenger should not be able to
tell which way the lift went.)

In section 3.2.3 where servicing behaviour was defined,
the notions of unserviced requests were formulated.
These must be altered to reflect the new types of requests.

. . def
up request k is unserviced =
(LU, & CUYV (LS, & Sy)

down request & is unserviced =
(LD, & CDy)V (LS, & S))

left i with up request k& «
D, e OpenDoors U+ (D; = CLOSED
A up request k is unserviced)
.. def
left i with down request k =

D; e OpenDoors U+ (D; = CLOSED
A down request & is unserviced)

left i with request £ <

D, e OpenDoors U+ (D; = CLOSED
A request k is unserviced)

Property (8) requires minor alteration to reflect the
new types of request. Similarly, property (9) stating that
some service occurs only if it had been requested must
also change.

/\ OWCcu;vCD;v S, =
<O (service at i Vv service blocked)) (29)

/\ (service at i = (up service at i v down service at i
i
V required at i) (30)

The property (10), stating that the lift does not miss
floors with appropriate requests, becomes as follows.

f] [ to j
/i\/]\[](romz 0j=>

(G<j=- \/ (left i with up request k
Ni<k <))

A(i > j=>—\/ (left i with down request k

N>k > ) (31
Notice that it has been necessary to allow the lift to pass
a floor when travelling up (respectively, down) which has
an unserviced down (respectively, up) request. Also,
notice that internal requests cannot be missed.

Property (11), characterising allowed changes of
direction, must be restated using the latest definition of
leaving a floor with an outstanding request.

/\/\/\D(fromiviajtok:
ik

(G<j>j= —-\/ (left j with request /
Ni<j<l))

ANi>j<k= —|\/ (left j with request /

Ni>j> 1)) (32)

S. THE MULTIPLE-LIFT SYSTEM

Building upon the specifications given in the previous
two sections, it is relatively easy to produce the
specification of the multiple-lift system, as originally
proposed in the problem description (Section 2). The
major modification is to extend the one-dimensional
vector for the lift doors into two dimensions and thus
cover several lifts. Remember, however, that a multiple-
lift system is not just a replication of single lifts; there is
only one pair of lift request buttons per floor. The first
section below (5.1) presents a straightforward extension,
without considering the emergency situation. The second
section (5.2) considers the difficult problem of how to
capture that servicing is in some sense optimal. Then in
Section 5.3, emergencies and alarms are added (to the
confusion). Finally, a review is made in Section 5.4.
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5.1 Single to multiple lifts
5.1.1 Interface

D : array(l. . n)of array(1. . m)of DoorState
S, LS, J : array(l. .n)of array(l. . m)of Boolean
CU, CD, LU, LD : array(1. .m)of Boolean

Now the state of the doors is contained in the
two-dimensional vector D. The first index determines
the particular lift shaft, the second index determines the
floor. Similarly, the send buttons, their lights, and the
jamming signal must be two-dimensional. The other
buttons and their lights remain one-dimensional, as there
is only one pair per floor.

5.1.2 Button and light behaviour

The previous property (28) is extended by the extra lift
index. Additionally, the notions of up and down service
have been slightly changed, and a lift can now provide
an up service in the following situation. A lift arrives at
a floor from above to service, say, an internal request.
Although there may be external requests to floors below,
provided there is no outstanding internal request that lift
may service an up request at that floor; this is because
when there are multiple lifts in service some other lift may
service that lower-floor request. It will, of course, be
necessary to place extra servicing constraints to ensure
that the multiple-lift system behaves like the previous
single-lift system when there is only one lift.

/\ O (/\ ((CU;= (LU; # up service at i))
lel..n  j£m

A (up service at i = (-LU; #'+ CU,)))

A /\ ((CD; = (LD; #" down service at i))
{1

A (down service at i = (-LD; #'* CD,)))
A /1\ ((Sy; = (LS;; W service at i by /))
A (service at i by /= (-LS,, w'* S;,)))) (33)

where

service at i by 1=

D,; = OPENING Vv D,;, = OPEN
. .def
service at | =

\/ (service at i by /)

lel..n

up service at i by 1=

service at i by / A

up required at i by / A

(at i from above by / =
(—(servicing down at i by /) A

- \/ (/ has request k)))

k<i
R .def
up service at | =

(up service at i by /)
lel..n

down service at i by ldéf

service at i by / A

down required at i by / A

(—(at i from above by /) =
(—(servicing up at i by /) A

~\/ (7 has request k)))

k>i

R . def
down service at | =

(down service at i by /)
lel..n
def
up required at i by / =
D;e OpenDoors & (D,; = CLOSED A LU, v CU,)

down required at i by / «
D,;e OpenDoors & (D;; = CLOSED A LD; Vv CD,)

required at i by 1<
D,;e OpenDoors & (D,; = CLOSED A LS,;;)

.o . . def
servicing up at i by / =
Dy, e OpenDoors & (LU, A O-LU;v CU; A-LU,)

servicing down at i by 1<
D,;e OpenDoors & (LD; A O-~LD;v CD; A -LD,)

at i from above by 1<

\[(atifromjbyl)
i¥i

at i from j by / o
(D,; € OpenDoors &+
( /k\ (Dy. = CLOSED) & D,;€ OpenDoors))

[ has request k < LS & Si)
5.1.3 Door behaviour

Similar to the above section, the previous door control
behaviour is extended by the extra lift index.

/,\ /i\ (W¢,, &) .{Dy; = CLOSED W'+¢,,
D,; = OPENING %+

(Dn' = OPEN U+
(Dy; = CLOSING U* (£, VED)
(34)
/z\ O (& D;;€ OpenDoors) < 1 (35)

/l\/l\D(Jli:(Dli = CLOSING %+ D,; = OQPENING)
(36)
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UP AND DOWN THE TEMPORAL WAY

5.1.4 Servicing behaviour

Because of the additional lift index, internal requests
must be serviced by their particular lift, unlike external
calls.

A\ /\OCU;vCDy)=
v & (service at i v /\ (I service blocked))
!

A S;; = O (service at i by /v I service blocked))
(37
where

I service blocked = \/ O (D,; € OpenDoors)
1

/l\/z\ [ (service at i by /=
(up service at i by /v
down service at i by /v
required at i by /)) (38)
/l\ [ (service at i =
(up service at i vV
down service at i v

many required at i) A (39

up service at / = one up service at i A

down service at i = one down service at i)

where

. .def
one up service at i =
\/ (up service at i by / A /\ (—up service at i by /')
l £l
. .def
one down service at i =

\/ (down service at i by / A
l

/\ (—~down service at i by /"))
£

many required at i B4 \/ (required at i by /)
!
This latter property, (39), is necessary to avoid several
lifts servicing the same request. Notice that when there
is only one lift in the multiple system, the formula states

no more than (38). Note that (38), however, is still
required for the multiple system.

/A /\/\ O(fromitojby /=
IAREARY
—1\/(i<k<j/\
k
(! left with request k v
(! left i with up request k A

-/ from i to j with up request k)))) (40)

ANi>j=
ﬂ\/ i>k>jA
k
(I left with request k v

(! left i with down request & A
-/ from i to j with down request k))))))

where

def
fromitojby /=
D,;e OpenDoors U*
(/k\ (Dy. = CLOSED) % D,j€ OpenDoors)

[ left i with request £ =
D€ OpenDoors U* (Dy;; = CLOSED A (LS & Si))

[ left i with up request k «
D,;€ OpenDoors U* (D,; = CLOSED A (LU, & CU,))

[ left i with down request k «
D, e OpenDoors U+ (D,; = CLOSED A(LD,, & CD,))

[ from i to j with up request k <
(Dy;€ OpenDoors A LU,) U*
((/d\ (D;y = CLOSED)ALU,) %
(D,;€ OpenDoors A LUy))

[ from i to j with down request k «

(D,;€OpenDoors A LD,) U+
((/d\ (Dyg = CLOSED) A LD,) %
(D,j€ OpenDoors A LDy))

This property has been modified to allow a lift to skip
servicing a floor provided that some other lift will have
serviced the outstanding request before the first lift stops
at another floor. Again, note that when there is only one
lift in the system, the behaviour characterised is as
before.

/\/\/\ /\ O (from i via j to k by /=
IAFALFAYS”
(i<j>k=>
~\@<j<ra
(I left j with request r v
(I left j with up request r A
—I from j to k with up request ?))))
(41)
ANi>j<k=
S\ @>j>rA
" (/ left j with request r Vv
(I left j with down request r A

-/ from j to k with down

request r))))))
where

def
fromiviajtok byl =

at j from i by / A from j to k by /
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In the above reformulation, extensions similar to those
in (40) have been made. A lift is allowed to ignore a
request whose service would cause the lift to continue
travelling in the direction provided some other lift has
that outstanding request serviced before the first lift stops
again.

5.1.5 Initial conditions

It is now required to ensure that the extra variables are
initialised.

/l\ /\ (Dl’L = CLQ&EQ A ﬁ‘S'li A ﬂI‘S'li A ﬁ‘Ili
1
A=CU;A=LU;A-CD; A-LD;) (42)

5.2 Optimal servicing?

Here questions of optimality are considered. A number
of questions about the above lift system come to mind.
In particular the following two seem rather relevant.

o What forces all the lifts to be active?

o If all the lifts are stationary at, say, different floors,

does the nearest lift service a call?

The immediate answer to the first question is
‘nothing’. To the second comes the reply ‘not necessarily’.
Of course it would be good to enforce these kinds of
optimality.

As a first attempt at enforcing activity a sort of fairness
constraint could be applied. For example,

/\ /\(E]()CUi = (JO(LU; A ~QLU; A service at i by /)
l T

AOOCCD; = OO(LD; A~QLD; A service at i by /))

So if there are infinitely many requests to go up there
will be infinitely many services by any particular lift.
Similarly for calls to go downwards. However, this is
rather weak in that a lift may be particularly ideal and
refuse to work for a very long time. Can a stronger
statement be formulated?

The question of getting the nearest lift to service a
request is a rather difficult problem. The major difficulty
is that the position of a lift is only known when it is
servicing a request. If the lift is between floors, then that
is all that is known. To confound the issue, because the
doors of a lift must be closed when it is stationary (i.e.
not required) its actual position must also be unknown.
All that is known is where it appeared last!

As a first attempt at getting some degree of optimality
consider the following. If a lift arrives at a floor to service
an up or down request, it ought not to be the case that
there is another lift which is both nearer and has
remained stationary since the time when the first lift left
its previous floor.

/z\ /\ /\ O ((at i from j by / A —i requested by /) =
t J
~\ /Ui—kl < lj=il A

a#l k
(a stationary at k &
service at i by /))
VU <Ili—iA
a stationary at ground)))
where

i requested by / B D,;e OpenDoors & LS,;

The problem that remains now is how to characterise
‘stationary’. One possible way has a lift stationary at a
floor when it is seen at that floor and then never seen
again. However, this is rather a weak notion. Perhaps a
better approach has a lift stati 1ary at a floor when it is
last seen at that floor and has no outstanding internal
requests to be serviced. Thus,

[ stationary at k = /\ (Dy; = CLOSED A -LS);)
i
& D, € OpenDoors

def
[ stationary at ground < /\ (D,; = CLOSED A -~LS})
i
& beg

Is the above the best that can be obtained ? There is still
a considerable flaw. The above is all right if the lift is
covering large distances in single hops, but the lift which
is making small journeys will usually appear to be doing
the right thing. A better, but much more complicated
solution can be obtained by summing the total distance
travelled by a lift from the instance of a call to its
servicing of that call (remember there may be several
floors visited). It then ought not to be the case that there
is a stationary (since the call) lift nearer than the total
distance covered by the servicing lift. First, a predicate to
determine whether the lift has covered a shorter distance.

s to d by [ less than r = (v&. 4(&)) (s, d, )
where

xd;f /\ (at d from i by /=
i#s at d from i with &(s, i, r—|d—i]) by /)
A(at d from s by [ =r > |d—s))

and
. . def
at i from j with ¢ by / =

Dy € OpenDoors #+ (/\ (Dy. = CLOSED)
Yoy (D,;€ OpenDoors A ¢)

This predicate recursively retraces the route taken by
the lift to travel from floor s to floor d subtracting the
intermediate distances from the supplied bound r. If the
final bound is greater than the last hop then the route was
indeed shorter!

Such a predicate can then be incorporated into the
property (33) given above. Its inclusion is sketched
below.

D/\(CUi=>

(LU; %" \/ (up service at i by / A
!

/\ /\ /\ (((a stationary at k v

axl' k
a stationary at ground

ANk=1)
& (LU, Al next atj)) =

Jj to i by /less than |k —i]))))
where

[ next at jdg \/ (D€ OpenDoors) U+

1
« /\ D,; = CLOSED) % D,;€ OpenDoors)
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So, if a lift arrives at floor i to service an up request
then it had better be the case that the journey taken was
shorter than a journey by any other stationary lift. Of
course this does not enforce nearest servicing if all lifts
are active; however, it does help in keeping lifts active!

5.3 Emergencies and all that

To add the emergency button to each of the lifts requires
just minor changes to the above properties essentially as
before. Some care, however, is required to fit it all
together. First, the emergency buttons, lights and alarms
must be given.

Em, LEm, Al : array(l . . n)of Boolean

As in Section 4.2, an ‘in service’ and ‘out of service’
behaviour is described, but one for each lift. Overall
service is given by the following.

/\ (v¢ .(INSERVICE, ¢ OUTOFSERVICE, ¥ &))

lel..n

with
OUTOFSERVICE, S (Al, A LEm)) %+
(LEm; W~ (init; A fin))

So, the alarm rings unless it gets switched off and
anything happens (to lift / only) unless lift / is initialised.
During the whole of the out-of-service period, the
emergency button light is on!

Rather than give the modification for all the in-service
properties, only a couple of changes are given explicitly,
together with general comments about the required
changes. First note that all properties given in Section 5.2
above were, essentially, quantified over the lifts. It has
been necessary to remove this quantification to an outer
level, i.e. to the overall service (as immediately above).
Then, as in Section 4.2, the promises about future
behaviour must be carefully guarded in case an
emergency button gets depressed. Consider the property
(33) covering the call buttons, lights and services.
Because of the way up service at / has been written, i.e.
as a disjunction over the possible lifts, it is necessary to
stipulate that only ‘in service’ lifts should be considered.
Thus ~LEm,, of course indicating that the emergency
button has not been pushed, is added to the definitions
of up (and down) service.

up service at i by ldif
-~LEm; A
service at i by / A
up required at i by / A
(at i from above by /=
(—(servicing down at i by /) A
—-k\</i (/ has request k)))

A similar change is made to the blocked service
predicate used in the property (37) describing eventual
service of a call.

I service blocked = (\/ [1 (Dy; € OpenDoors)) v Em,

Other obvious and related changes are made to the
previous descriptions, and the following in-service
behaviour description results. Notation for naming the
properties has been abused, for example (33), refers to
the (33) property without quantification over lifts.

def

INSERVICE, =
@2), A (18); A (19);, A (14) A
(23), A (24)) A
(33), A
(34), A (35), A (36), A
(37, A (38), A (39), A
(40), A (41),

initialisation, etc.
alarms, etc.

call up, down lights
door control

servicing constraints

5.4 Has the desired system been specified?

Here a comparison between informal requirements and
formal specification is made in an attempt to determine
whether the formally specified multiple-lift system is the
right one. The requirements as written down in Section
2 are considered in turn.

(1, 2) Yes. Each lift has the appropriate set of buttons.
They illuminate in the manner required (property 33
specifies that behaviour). In particular, only one of the
call up / down buttons is cancelled by a lift service. This
is because a call up is only cancelled by a lift providing
an up service and, of course, up and down services are
mutually exclusive (see Section 4.3).

(3) Yes. The door control behaviour (34) is such that
the doors will always eventually close unless prevented by
some obstruction. The doors must then remain closed
until there is some request (37, 38, 39).

(4) Yes. The first servicing behaviour property (37)
guarantees eventual service. All floors must be serviced
eventually, and the servicing is such that lifts are
essentially not allowed to pass by requests to stop (40,
41). In that sense all floors have equal priority.

(5) Yes. Internal requests are serviced sequentially (40,
41) as far as possible. The proviso is simply because the
position of a lift at the time a request is made may not
be known, i.e. it may be between floors.

(6) Yes. Emergency buttons are provided and behave
in the desired manner.

So it appears the system described informally has been
specified; each of the informal requirements has been
enshrined by some formal statement. However, it may
well be the case that the informal requirements included
some subtle contradiction, and therefore such a contra-
diction would be present in the formal specification. In the
temporal framework, an inconsistency or contradiction
in the specification means that there is no model which
satisfies the specification; in other words there can be no
implementation which fits the specification. If such an
inconsistency were not found at this initial stage of
specification there would clearly be much wasted effort
in attempting to develop an impossible solution.

Theimportant questionis therefore ‘ can inconsistencies
in the formal specification be easily detected?’. If the
specification has been written using a decidable temporal
language, such as the propositional temporal logic used
in this paper, consistency can be mechanically checked,
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albeit rather slowly. Ref. 12 provides examples of
decision procedures for some temporal languages. For
undecidable languages, for example first-order temporal
logics, inconsistencies can only be determined, in general,
by deducing false from the formal specification in a
proof-theoretic sense (more or less by hand).

6. COMMENTS

The temporal specification of the multiple-lift system
presented in the previous sections has been developed by
a process of extension to a rather naive and basic
single-lift system. This, I claim, is a natural approach to
the development of specifications of complex systems. In
the lift example, the given informal requirements were
studied and then abstracted to a much simpler set which
could then be formalised without too many iterations.
The abstract interface (single buttons, associated lights
and two-state doors) was then gradually extended to
include more observable aspects of the real system; for
example, two-state doors got extended to four-state
doors to allow for interruption (feet in the way when
closing). This extension process is not a refinement of the
interface; new observable parts were added to the
interface which were not previously present in some
abstract form, and hence the normal refinement proof
obligations (containment of behaviours) do not apply.
However, some consistency checks are possible. Consider
the first extension made, i.e. two-state doors to four-state
doors together with the door jam signal. The behaviour
of the extended system when run in an environment
which never jams the door should be exactly that of the
original naive system. Such a consistency check is
straightforward in our temporal framework here. Letting
LIFTSPEC and LIFTSPEC’ denote the original and
extended specifications respectively, one must show that

LIFTSPEC’ AQ) /\ ~J; = LIFTSPEC.

Naturally, this is left as an exercise to the interested
reader! However, not all the extensions made have such
simple consistency checks; the change of interface from
one call button per floor to two buttons per floor is such
a case.

In general, documenting the formalisation of a set of
informal requirements, as above, is both worthwhile and
necessary. But perhaps it would be more useful to ensure
that the many fruitless avenues explored are also
documented. Such a task is extremely difficult to follow
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APPENDIXA. THETEMPORALLANGUAGE
A.1 Basic alphabet

The basic symbols of the temporal language are divided
into two groups:

(1) local symbols, i.e. symbols whose values are
state- or transition-dependent

PeP
yeY
leL

(2) global symbols, i.e. symbols whose values are fixed
for the complete sequence

state propositions
state variables
transition variables, for example E and IT;

xeX global variables
feF function symbols
q€Q predicate symbols.

Terms are constructed in the usual way from state,
transition and global variables, or by the application of
appropriate function symbols to terms. Atomic formulae
can then be built from state propositions or by the
application of predicates to terms.

The logical constants are the standard truth constants,

TRUE, FALSE
the standard first-order logical operators,
A, A, V,=, eV, 3
the unary future temporal operators,

O (weak next time),
O (always)

the binary future temporal operators,

#  (weak until),
W+ (strict unless),
%* (iterated combine)

@ (strong next time),
< (eventually),

% (strong until),
U+ (strict until),
% (combine),

the unary past-time temporal operators,

@ (strong previous), ® (weak previous),
& (some time previously), [] (always previously)

the binary past-time temporal operators,

Z (weak since),
Z+ (strict weak since)

& (strong since),
S+ (strict since),

the maximal and minimal fixed-point constructors v
and u.

Temporal formulae are then constructed from atomic
formulae, temporal variables, or by appropriate applica-
tion of logical operators or fixed-point constructors. A
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well-formed temporal formula has no free temporal
variables, i.e. it must be closed somewhere by a v or u
form.

A.2 Models and interpretations

Assuming a fixed domain, D, and fixed interpretations for
the function and predicate symbols, a model .# over
which a temporal formula is interpreted is a 5-tuple,

M={,o,n,1,J),
where
o assigns D-values to the global variables,
o is a non-empty finite or infinite sequence of states
and transitions

def t0 tl t! tﬂ
0= Sg—5,; > Sy

n is the index into ¢ which gives the current state,

I is a state interpretation assigning D-values to each

state variable and truth values tt, ff to state

propositions,

J is a transition interpretation assigning D-values to

each transition variable.

Given a model A = (a, 0,n,1,J) it is possible to
define, inductively, the interpretation of temporal
formulae over .#. In general, this interpretation only
involves change to the sequence o and the index » and,
therefore, in the following ¢|? (¢|#) abbreviates the value
of the formula ¢ (term ¢) over the model .#.

The sequence operator o (fusion) will be required in the
definition of the € and €*, and is defined below.

def

g,00,= if g, =5,—>5—...85, and
Oy =Sg = Spy1 = -
then s,— 8, = ...8, =S — ...
otherwise a,.
Terms

x|® B4 a(x) global variables

def )
3 = I(s,,y) state variables

def

7 = J(t,,1) transition variables

def . . .
Sy, -, )12 = FA4|7, ., t|?) function applications
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Atomic formulae

| = I(sn, P) state propositions

q(t,, -, t,,)l,, Qq(tll,,,. t;|*) predicate applications

Now assuming the standard interpretation for the
standard logical symbols (i.e. for TRUE, FALSE, -,
A, V,=,<>,3,V), formulae ¢ constructed using the
temporal operators are interpreted over ¢ = s, —» 5, —
as follows.

O¢|a =tt
D9l = tt

Note that if # is the length of o then O¢|? is tt and
hence the formula Q FALSE is true only at the end of the
sequence . Similarly, ~@TRUE will be tt only at the end

of a sequence. Similarly interpretation holds for the
previous operators.

Odr=ttiff g2 *=ttorn=0
Ot =ttiff g|2t=ttand n >0

iff 2t =tt or
iff gl3+ = tt

n = length(o)
and n < length(o)

Again note that the weak previous operator © will
always give tt at the beginning of a sequence, i.e. n = 0,
and that the strong version @ gives ff.

Ot =tt iff there is some i>0 such that

plrtt=ttand n+i < length(a)
for every i = 0, |2+ =

there is some i > 0 such that (a)
ylrti=ttand n+i < length(a) and
(b) for all j, j < i, ¢|"+f

(62 w)vOz =
AU W)7 =tt
@AO@# vz =tt
The past-time duals of the above are similar.
Ol =tt iff

Ol = tt iff
¢U yly =ttt iff

bW =t iff
¢%+ ply = tt iff
¢W ylp =t iff

there is some i<n such that
plri =t

for every i <

n, ¢’n ’I/_

iff there is some i < n such that (a)
y|?t=tt and (b) for all j, j <i,
o =t

Clglz =t iff
¢Syl =1tt iff

pZyli=tt iff (6L W)V =tt
¢S ylp=tt iff BAO@SL W)z =tt
¢Zt ylp=tt iff (YAO@Z )z =tt
The binary (future) chop operators.

¢ € yln=tt iff there are o', ¢” with length(a’) = n

and ¢’o0¢” = ¢ such that if ¢’ is
infinite then ¢|? = tt otherwise both
#lz. = ttand ylg =

¢ €*y|r =tt iff either there are o,,0,,...,0
Or+1» With length(c’) 2 n and
0=0,00,...0,00,,, such that
g =tt, ¢|5, = ttforie{2. .k} and
wlS,.,, =tt or there are
01, 05 -..y 0 = 0,00,0 such

that @|? =tt and for all i> 2,
PS5, = tt or there are
Gy, Ogy «eey Opy 0 = 0,00,0...00
such that o is infinite and ¢| = tt
and for ie{l. .k}, 4|3, = tt

Finally, the fixed-point operators.

v (&I =tt iff for all k>0, }*(TRUE)|? =tt
where y*(TRUE) is the temporal
formula

)(()((...)((LR_UE)..E
k-times

Assume the temporal formula x(£) contains only
positive occurrences of the temporal variable ¢, ie. &
occurs only under an even number of negations. The
temporal formula vé.yx(&), in fact, then denotes the
maximal fixed-point solution, with respect to implication
ordering, of the implication &= x(£). The obvious
extension of v to vectors is also used.

The interpretation of the minimal fixed-point construc-
tion is given in an analogous way.

ué . x(@|2 =tt iff there is some k >0, y*(FALSE)
where y(FALSE) is the temporal

formula
g(x(...x(FALSE) ...)
k-t;rmes
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