Implementation of a Prototype for PRECI*

S. M. DEEN,* R. R. AMIN aND M. C. TAYLOR*

Department of Computing Science, University of Aberdeen, King’s College, Old Aberdeen AB9 2UB

PRECT* provides a generalised architecture for a decentralised distributed database system capable of supporting a
heterogeneous collection of pre-existing nodes. It permits data replication, subject to nodal access controls, and a
number of user facilities, including both location-transparent and location-dependent queries in a relational language.

A subset of these features, dealing with distributed queries in a decentralised environment, has been implemented using
two homogeneous PRECI nodes within the same computer. This system is written in C under Unix, as described in this

paper.

Received February 1986

1. INTRODUCTION

PRECT* is a model for a generalised distributed database
management system supporting heterogeneous, pre-
existing databases as nodes with decentralised controls.13
Its features include the following.

(1) Both ‘inner nodes’ (of which an integrated,
location-transparent view is provided) and ‘ outer nodes’
(which are not integrated).

(2) A relational language (PAL) for database integra-
tion and data retrieval. Each node must support at least
a minimal subset of PAL commands.

(3) A subsidiary database is associated with each inner
node and optionally with outer nodes. This may provide
replicated data; meta data; additional PAL commands;
and processing of external data (i.e. data sent from
another node).

(4) It is capable of linking with other DDBs at peer
level.

(5 Each node of whatever data model must provide
a Participation Schema (PS), describing the data
contributed by that node to the DDB. The PSs of the
inner nodes are combined to form a Global Database
Schema (GDS). Users access the PSs of the outer nodes
directly, but access to the inner nodes can be made via
a Global External Schema, which is an integrated view
of the GDS. A version number is associated with each
schema for checking purposes.

In this paper we shall describe the implementation of
a subset of these features, as outlined in Section 2. The
subsequent sections provide the implementation details,
along with a Conclusion in Section 7 and an Appendix
later.

2. REDUCED ARCHITECTURE FOR
IMPLEMENTATION

Because of the limited time available for programming,
not all the features of the design have been included in
the implementation of a prototype. The prototype was
implemented on the PDP/11 using ‘C’, with two
PRECI/C databases as nodes.* These are both outer
nodes. To allow fast implementation of the query parser,
by recursive descent,® we restricted queries to a small
subset of PAL. Each query is a combination of joins,
unions and selections on single conditions of the form
x =y (where x and y are identifiers or constants). This

* Now at Department of Computer Science, University of Keele,
Keele, Staffs ST5 5BG.

—_User interface
L~ ~

Upper
module
Lower
module

Upper
module
[Lower
L_module

interface interface
]

v V

Global module
Global module

Node 1

Node 2
Fig. 1. Communications between modules

restriction also saved the need to build subsidiary
databases, the PRECI/C nodes being able to perform
join and union operations on external data. The link to
other DDBs has not been implemented, since no suitable
DDB was available.

To avoid the need to write schema compilers, we store
the schemas in compiled form. Schema version numbers
are not maintained. Instead we re-initialise the DDB and
re-compile queries, whenever a schema is changed.

Each node has an upper module and a lower module
which run continuously and independently. The node-
dependent part of the lower module is implemented
separately as a nodal interface. The communications
between modules are illustrated in Fig. 1.

Each module has a mail file for receiving messages
from other modules (see Fig. 2). Reading from,
and writing to, mail files is controlled by a locking
mechanism. If a module has nothing to do, it periodically
claims the lock and scans its mail file until a message is
received. If a message is found, it is dealt with fully and
any appropriate messages are sent to other modules
before the lock is released. This ensures that two pro-
cesses never write to the same mail file at the same time,

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 157

¥20Z I4dy 01 uo 1senb Aq 20€10b/.SL/Z/0g/21o1e/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

S. M. DEEN, R. R. AMIN AND M. C. TAYLOR

Message type

One)
block File name
for each

message J
not yet
dealt
with

One entry for each
file to be read

L End-of-message marker

Fig. 2. Mail file

User
inter-
face

/

Upper Upper
module module
Lower Lower
module module

Nodal Nodal
interface interface
NDBMS NDBMS

Fig. 3. Compile-time communications for a query involving two
subqueries

User
inter-
face

Upper Upper
module module
Lower Lower
module module

Nodal Nodal
module module
NDBMS NDBMS

Fig. 4. Execution-time communications for query of Fig. 3

and that a module never reads its mail file while it is
being written to. Each module handles only one message
at a time, dealing with it fully before looking for any
further messages.

A user interacts with the system via a user interface.
This is a program which prompts the user for
instructions, and translates these instructions into a form
which can be understood by the appropriate upper
module.

All queries are compiled and executed separately but,
since the PRECI/C nodal database systems interpret
queries directly, there is no compilation problem at the
nodal level. In the compilation phase, the upper module
performs the function of the GQP and the lower module
performs the function of the GSP.2 In place of the NQP,
the nodal interface returns a message to indicate that the
compilation was successful, without invoking the
NDBMS. During the subsequent execution of a query,
the upper and lower modules perform the function of the
GQE and GSE respectively. This time, however, the

158 THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987

¥20Z I4dy 01 uo 1senb Aq 20€10b/.SL/Z/0g/21o1e/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

IMPLEMENTATION OF A PROTOTYPE FOR PRECI*

Query number

Header Number of subqueries
The source of query is
Source of query there to distinguish
Exccution node queries submitted directly
by a user from those
One Subquery number coming from an external
such DDB
block PS version number
per
subquery Result node

Final or intermediate
result

Fig. 5. Query plan file

NDBMS is invoked by the nodal interface. Fig. 3 and 4
illustrate the communications involved for compilation
and execution.

Sections 3 and 4 describe the upper and lower modules
respectively. Section 5 presents the nodal interface which
includes the external interface to PRECI/C. The user
interface is described in Section 6 and the steps involved
in running queries are given in the Appendix.

3. UPPER MODULE

An upper module may receive messages of broadly five
types:

(1) to compile a query (from user interface);

(2) to execute a query (from user interface);

(3) to receive a subquery packet (from the other upper
module);

(4) to receive a result packet (from its lower module);

(5) to receive a result packet (from the other upper
module).
The packets received correspond to those described in
Ref. 6. The action taken on receipt of each of the five
types of message is described below.

3.1 To compile a query

The user interface passes to the upper module the name
of a file containing a query tree. This tree includes an
indication of the vertices at which it should be split into
subtrees (i.. the breakpoints of the query.” #) The upper
module reads the tree from the file, and decomposes it
into subtrees. Each subtree (subquery) is allocated to a
node in a straightforward way (there is no replication,
and all non-local subqueries are assigned to the result
node, hence the upper module has no optimisation to
do).

From each subquery, the upper module forms an
S-plan according to the format described in Ref. 6. The
major task in preparing S-plans lies in determining what
will be the format of the result of each subquery. This is
done by analysing the subquery tree, and looking up the
schema file (Fig. 12) for the formats of base relations.
The formats of intermediate results are stored in an
intermediate result file (Fig. 13) since they determine the
formats of the results of non-local subqueries. Each

S-plan is despatched to the appropriate module for
further processing. Queries for its own node are sent to
the lower module, whereas queries for the other node
must be sent to the upper module of that node, which
then passes them on to its lower module.

The overall query plan is stored in the query plan file
(see Fig. 5) for future reference. The reasons for this are
twofold. First, the upper module must store the number
of subqueries involved, so that it knows how many
compilation reports to expect back. Secondly, it must
store sufficient information to be able to send appropriate
instructions for the subsequent execution of the query, in
the event of the compilation being successful.

3.2 To execute a query

The upper module reads from a file the query number of
the query to be executed. (Each query is assigned a
unique number at compile time and this number is
returned to the user.) The query plan file is then read, in
order to find the query plan of the relevant query. From
this the upper module is able to form packets to be sent
to the appropriate modules as for compilation.

3.3 To receive a subquery packet

Whenever a packet is received, its header is analysed in
order to determine the packet type. If the packet is a
subquery (for either compilation or execution) it must
have been sent by the other upper module and is to be
passed on to the lower module at the receiving node. The
upper module therefore has only to send a message to the
lower module.

3.4 To receive a result packet from the lower module

The action to be taken on receiving a result packet from
the lower module will depend on the nature of the packet.
The first thing to do is to check the destination node. If
the packet is destined for the other node it is simply
passed to the upper module of that node. If it is destined
for the upper module’s own node, however, the packet
has to be analysed further. If it is found to be a
compilation result, the next action is to look up the query
plan file to find the number of compilation results
expected for that query (i.e. the number of subqueries).
The compilation result file (Fig. 6) is then checked, to find

r Query number
One

such
block

Subquery number

er
Ic)ompilation J Success or failure

result

Size of message

Message

Fig. 6. Compilation result file

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 159

¥20Z I4dy 01 uo 1senb Aq 20€10b/.SL/Z/0g/21o1e/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

S. M. DEEN, R. R. AMIN AND M. C. TAYLOR

how many results have already been received for that
query. If the newly arrived result is the last one expected,
a final compilation report is returned to the user.
Otherwise the result is written to the compilation result
file.

Execution results may be either final results or
intermediate results, and the packet header indicates
which type applies. An intermediate result which is
already at its destination node is just passed to the lower
module, since it will be required as input for another
subquery. A final result is written, in an appropriate
form, to the user.

3.5 To receive a result packet from the other upper
module

Result packets are dealt with in exactly the same way,
regardless of the sender. The only difference between this
case and 3.4 is that in this case the packet will never be
destined for another node. Nevertheless, the check has to
be made because the receiving node is unaware of the
sender of the message.

4. LOWER MODULE

The lower module receives query packets from the upper
module and results from the nodal interface. In each case
the procedure is different at compile time from execution
time. At execution time results may also be received from
the upper module, so five cases may be distinguished in
all.

One Query number
such

block Subquery number
per

subquery

Compile time packet
File name

Fig. 7. Subquery file

4.1 Query for compilation

The lower module reads the query packet and produces
a program file in the form required by the nodal interface
(in general this will be node-dependent). A subquery file
is used for storing information that will be required
during any subsequent execution of the query (see Fig.

7.

4.2 Query for execution

The packet is checked to see whether the query can be
executed immediately or whether it needs to wait for
external data to be sent. If it has to wait, the query is
written to the wait file (see Fig. 8), from where it can be
retrieved when the required data has all been received.

(Query number
One Subquery number
block
per Number of results to
non-local-{ wait for
subquery
Time to wait before
aborting
Execution packet filename
-

Fig. 8. Wait file

One Query number
block

per Subquery number
result

received

Execution result packet
filename

Fig. 9. Wait result file

4.3 Execution result from upper module

The upper module may pass on a result packet which it
has received from another node. This packet will contain
external data to be used in processing a subquery. The
lower module looks up the subquery file to see how many
such result packets are expected for that subquery and
then looks up the wait result file (see Fig. 9) to see if any
other result packets have already arrived. If there are still
more result packets to come, the newly received packet
is written to the wait result file. Otherwise the execution
of the subquery can go ahead, so an appropriate file is
prepared and a message is sent to the nodal interface.

4.4 Compilation result from nodal interface

From the compilation result and information stored
earlier, the lower module forms a result packet which it
sends to the upper module.

4.5 Execution result from nodal interface

From the execution result, the lower module forms a
packet which it passes to the upper module.

160 THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987

¥20Z I4dy 01 uo 1senb Aq 20€10b/.SL/Z/0g/21o1e/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

Number of permanent relations

Name of permanent relation

Number of external relations

Name of external relation

Number of attributes

Attribute name

IMPLEMENTATION OF A PROTOTYPE FOR PRECI*

One entry per permanent relation

One Attribute type One block per attribute
block - -

per Attribute size

external

relation

Number of tuples

Tuple One entry per tuple

Query text

Fig. 10. Input file for NDBMS

Success or error

Number of tuples
in result relation

Name of result relation

Tuple One entry per tuple

Fig. 11. Output file from NDBMS

5. INTERFACE TO NDBMS

The external interface to PRECI/C allows processing on
external data, taking an input file in the form of Fig. 10
and returning a result file in the form of Fig. 11.
Communications with the NDBMS are handled by the
nodal interface. As explained in Section 2, at compilation
time the nodal interface does not invoke the NDBMS but
simply returns a message to the lower module.

At execution time it first converts the request from the
lower module into the form required by the NDBMS.
The NDBMS is then invoked by forking so that, on
completion of the execution, control returns automatically
to the nodal interface. The NDBMS is instructed to
return the result to a specified file. This file is then passed
(by the nodal interface) to the lower module.

p
Relation name
Tuple size
Number of attributes
One Attribute name
block One block
per Attribute size per.
relation attribute
Attribute type
i
|
[}
1
I
\ |
i
I
|
i
]
!
Fig. 12. Schema file
r
Subquery number
Tuple size
Number of attributes
One R One
block Attribute name block
per . Attribute size per
intermediate < attribute
result

Attribute type

Fig. 13. Intermediate result file

6. USER INTERFACE

Requests are submitted to the DDBMS via a user
interface. This interface allows a user one of four
options:

(1) initialise ddb;

(2) display schema;

(3) compile query;

(4) execute query.

6.1 Initialise ddb

This option creates the necessary files so that the upper
modules can run. The only file that is assumed to exist
already is the schema file (Fig. 12).

6.2 Display schema

This lists the relations and their attributes available at the
two nodes of the system. The information is found from
the schema file (Fig. 12).

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 161

cp1 30

¥20Z I4dy 01 uo 1senb Aq 20€10b/.SL/Z/0g/21o1e/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

S. M. DEEN, R. R. AMIN AND M. C. TAYLOR

6.3 Compile query

The user is prompted to type in a query as PAL text, e.g.
(nodel. .r(al) * (al) node2. .s): b = ‘fred’

The query is parsed, and is then passed on to the upper
module in the form of a parse tree with the breakpoints
marked. After invoking a compilation, it is necessary to
exit from the interface and look up the results file for the
outcome.

6.4 Execute query

After successful compilation of a query, a message is
returned to the results file, giving the number which has
been assigned to the query. It is then possible to invoke
an execution of the query by specifying the query
number.

Again it is necessary to exit from the interface to look
up the results file for the outcome. If the execution was
successful the result is returned in a tabular form, giving
attribute names and a list of tuples.

REFERENCES

1. S. M. Deen, R.R. Amin, G. O. Ofori-Dwumfuo, M. C.
Taylor, D.A.Bell, J. Grimson and G. O’Brien, The
PRECI* project and its data communication links.
Proceedings of Euteco, Varese, Italy, 1983, (edited
T. Kalin). North-Holland, Amsterdam.

2. S. M. Deen, R. R. Amin, G. O. Ofori-Dwumfuo and M. C.
Taylor, The architecture of a generalised distributed
database system — PRECI*. The Computer Journal 28(3),
282-290 (1985).

3. S. M. Deen, R. R. Amin and M. C. Taylor, Data integra-
tion in distributed databases. IEEE Transactions on
Software Engineering (to be published).

4. S. M. Deen, R. Carrick and D. Kennedy, A flexible DBMS
for research and teaching (PRECI/C). Proceedings, 4th
British National Conference on Databases, Keele 1985.

APPENDIX: STEPS IN RUNNING
QUERIES

(1) Initialisation of Files
Log in at terminal 1 as ‘pstar’
Type inter (to call the user interface)
When prompted for node, type 1
When prompted for option, type 4 (initialise ddb)
When prompted for next option, type 0 (exit)

(2) Starting Modules Running

Log in at terminals 2 to 7 as ‘pstar’

Type the following (one command at each terminal):
(i) unodel

(ii) unode2

(iii) Inodel

(iv) Inode2

(v) nnodel

(vi) nnode2

162 THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987

7. CONCLUSION

The PRECI* project was fairly large and carried out
between 1982 and 1985. Its architecture is very general
and can be subsetted for specific implementation. A
modified version of this architecture has been successfully
applied for an international directory database system, as
specified by CCITT, in a joint project with British
Telecom.

In a large research project of this kind, it is not always
feasible or advisable to implement a prototype with all
aspects of the design, not only because of the shortage of
resources (manpower included) but also due to the
absence of any real end users, noting at the same time that
research prototypes are not commercial products. This is
the approach we adopted, and we found the implemen-
tation worthwhile. Finally, the authors would like to
thank the UK Science and Engineering Research Council
for supporting this work.

5. A.V. AhoandJ. D. Ullman, Principles of Compiler Design.
Reading, Mass.: Addison-Wesley (1977).

6. S. M. Deen, R.R.Amin and M. C. Taylor, Standard
Communication Packets for Distributed Databases. Aber-
deen University Internal Report (1984).

7. S. M. Deen, R.R. Amin and M. C. Taylor, Query de-
composition in PRECI*. Proceedings of the Third Inter-
national Seminar on Distributed Data Sharing Systems,
Parma, Italy, 1984, edited F. Schreiber and W. Litwin,
North-Holland, Amsterdam.

8. S. M. Deen, R. R. Amin and M. C. Taylor, A strategy for
decomposing complex queries in a heterogeneous DDB.
Proceedings of VLDB, Singapore 1984.

(3) To Compile a Query
At terminal 1, type inter (re-enter user interface)
When prompted for node, type 1
When prompted for option, type 2 (compile query)
When prompted for next option, type 0 (exit)
After query has compiled, type cat results and note
query number returned

(4) To Execute a Query

At terminal 1, type inter (re-enter user interface)

When prompted for node, type 1

When prompted for option, type 3 (execute query)

Then type in query number (returned with compila-
tion result) e.g. 0

When prompted for next option, type 0 (exit)

After query has executed, type cat results and note
name of result file (e.g. UIRO0)

Type cat U1RO (if that is name of result file)

¥20Z I4dy 01 uo 1senb Aq 20€10b/.SL/Z/0g/21o1e/|ulwoo/wod dnosolwspeoe//:sdpy wolj papeojumoq

