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1. INTRODUCTION

The increasing use of calligraphic output peripherals,
raster scan devices and incremental plotters, has
accelerated the search for efficient algorithms to produce
‘best-fit’ straight lines. On either a plotter or a raster scan
device, each straight line must be approximated by a
quantised sequence of diagonal (D) and/or square (S)
movements, and the ‘best-fit’ is obtained by applying the
constraint that after each incremental step, the pixel
whose centre is nearest to the ‘real’ line is the one selected
for illumination. The sequence of such moves, which
constitute the ‘best-fit” grid-based approximation to any
particular line, is called chain coding.1:7.11.15

There are three common error metrics which quantify
the concept of ‘nearest to the real line’. They involve
minimising (1) the normal (i.e. perpendicular) distance to
the true line, (2) the axial distance to the true line, or (3)
the function residue. Bresenham? has analysed these
cases, and the error metric of his algorithm3? is to
minimise the normal distance. However, it is easy to
show that in the case of a straight line, all three metrics
are equivalent. The normal distance error metric will be
used throughout this paper, and it is formally stated in
Section S.

Using the above criterion, it is possible to select the
appropriate pixel with either a floating-point differential
analyser, or a form of Bresenham’s integer-based
algorithm.'”>3 Sproull'® has shown that Bresenham’s
algorithm can be derived from the differential analyser,
thus establishing that both generate identical output
strings.

A significant property of both of these algorithms is
that, in general, they both require one add or subtract
operation per output move.

2. ANALYSIS OF THE ENCODING OF
GRID-BASED LINES

Even a cursory glance at the output of a ‘best-fit’
algorithm reveals a profound palindromic symmetry
which is at first sight most surprising. If, for example, a
line is drawn from (0, 0) to any pair of mutually prime
coordinates (u, v) with u > v > 0, the output displays
palindromic symmetry about a central element which is
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S or D if u is odd, but which becomes a doubleton when
u is even. E.g. from (0, 0) to (23, 7) produces:

SDSSDSSSDSSDSSDSSSDSSD S
(Spaces added to improve readability)

If u and v are not themselves prime, but can be expressed
as a prime multiple of a common factor, it is only
necessary to construct the ‘best-fit’ output up to the
point where the ‘real’ line passes through a pixel centre;
thereafter the same pattern will be regenerated, and the
regenerated pattern will itself show reflected symmetry.
More generally, following the removal of any common
factor, if the remaining numbers are not themselves
prime, reflection may be about a double element.

The line from (0, 0) to (28, 6), for example, produces:

SS D SSS D SSSS D SSSS D SSS D SSSS D SS
This can be rewritten as:

SS D SSS (DS) SSS D SS | SS D SSS (DS) SSS D SS

I
A B C

B is the place where the ‘real’ line passes through point
(14, 3); A and C are the double elements about which the
substrings are symmetrical due to the line passing
through positions (7, 1.5) and (21, 4.5).

The importance of any common factor to the form of
the output has been noted by Earnshaw.® In 1982
Pitteway and Green'* presented an algorithm which
employed Euclid’s algorithm to trap the common
factors. These were then used to drive appropriate move
concatenation techniques which improved the operational
speed of Bresenham’s algorithm, while still retaining its
basic structure.

In this paper we show that the subtractive version of
Euclid’s algorithm, attributed to Nicomachus!? 2 can be
used to control the appropriate output sequence for an
integer-based ‘best-fit’ generator.

3. CONTROLLING THE PRODUCTION
RULES WITH EUCLID’S ALGORITHM

In his analysis of the grammar for a ‘best-fit” algorithm,
Brons® showed that the Freeman chain encoding of a
straight line could be generated by the production rules
of a context-sensitive grammar. However, the palindromic
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Fig. 1. The algorithm for generating ‘best-fit’ output, with
Euclid’s algorithm acting as a discriminator between two
production rules

nature of the sentential form of the language intuitively
suggested to us that any move concatenation technique
controlled by Euclid’s algorithm would require produc-
tion rules of the form:

R:=T.R,

where T'. R represents string T concatenated with string
R, and R represents string R reversed; e.g. if R:= SSSD,
then R*:= DSSS.

Fig. 1 shows the Castle-Pitteway algorithm,® which
employs Euclid’s algorithm as a discriminator between
two symmetric productionrules. Movel .(Move2)" denotes
the concatenation of Movel with the reverse of string
Move2; S is a square output move and D is a diagonal
move. It is assumed that ¥ > v > 0, the output in other
octants being produced by symmetry. (The cases of
v = 0, requiring u square moves, and v = u, requiring u
diagonal moves, are trivial.) If a ‘best-fit’ line were to be

drawn from (0, 0) to (u, v), with u > v > 0, the initial
selection for a and b would be:

b:=v (the number of diagonal moves to be made)
a:=u—v (the number of square moves)

Movel has an initial value of S; Move2 has an initial
value D.

In the example shown in table 1, the complete 51-move
‘best-fit” output stream was determined in just nine tests.
If the selected values of u and v share a common factor,
then the algorithm will generate the ‘best-fit’ output up
to the point where the ‘real’ line passes through a pixel
centre. This pattern is then to be repeated the highest
common factor number of times.

The efficiency with which the algorithm computes the
output for a line drawn to coordinates sharing a
common factor is illustrated by the following example:

constructing the line from (0, 0) to (42, 28)

a b Movel Move2
14 28 S D
14 14 DS D

OUTPUT (Move2).(Movel)" repeated 14 times, giving:

DSD DSD DSD DSD DSD DSD DSD
DSD DSD DSD DSD DSD DSD DSD

4. SHOWING THE CORRECTNESS OF THE
ALGORITHM

In order to understand the way in which the algorithm
functions, it is revealing to have it produce output after
each cycle. This involves including the ancillary instruc-
tion OUTPUT (Move2).(Movel)", regardless of the
result of the comparison between a and b.

Hence the algorithm not only computes the chain code
for the line from (0, 0) to (51, 11), but also shows the
other lines that are ‘tacitly’ constructed in the process.
The output lines that have been produced all have
gradients which are terms in the Farey Series F(51).13 The
Farey series of order N is defined as the ascending series
of irreducible fractions between 0 and 1 whose de-
nominators do not exceed N. For example:

F(6) is {0/1, 1/6, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4,
4/5,5/6, 1/1}.

Clearly, such a sequence is monotonically increasing.

Table 1. The output of the algorithm in constructing the line from (0, 0) to (51, 11)

a b Movel Move2

40 11 S D

29 11 S SD

18 11 S SDS
7 11 S SSDS
7 4 SSDSS SSDS
3 4 SSDSS SSDSSSDSS
3 1 SSDSSSDSSSSDSS SSDSSSDSS
2 1 SSDSSSDSSSSDSS SSDSSSDSSSSDSSSSDSSSDSS
1

1 SSDSSSDSSSSDSS
OUTPUT (Move2).(Movel)" just once (since a = 1), giving:

SSDSSSDSSSSDSSSSDSSSDSSSSDSSSSDSSSDSS

SS D SSS D SSSS D SSSS D SSS D SSSS D SSSS D SSS D SSSS D SSSS D SSS D SS
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Table 2. The intermediate lines tacitly’ constructed by the
algorithm

‘Tacit’ line
output

@, 1)
G, 1)
4, 1)
(1)
(9, 2)
(14, 3)
(23,5)
(37, 8)
(51, 11)

40 11
29 11

7 11

—— —

Thus, for three successive terms T(a), T(b) and T(c) in
F(N), T(a) < T(b) < T(c),and there can be no intervening
term with denominator < N.

The ancillary lines that have been ‘tacitly’ created by
the algorithm have gradients which are all terms in the
continued fraction expansion of v/u. However, they do
not all correspond to ‘proper’ convergents, as specified
by the following important relationships between con-
tinued fraction expansion and the Farey series.

If g(k) is the denominator of the kth convergent C(k)
of the simple continued fraction {a(0); a(l), ..., a(n)},
then g(k—1) < g(k) for 1 < k < n, with strict inequality
when k > 1. The convergents with even subscripts form
a strictly increasing sequence; that is: C(0) < C(2) <
C(4)... The convergents with odd subscripts form a
strictly decreasing sequence; that is: C(1) > C(3) >
c(d)...

Every convergent with an odd subscript is greater than
every convergent with an even subscript.

S. LINE CONSTRUCTION LEMMAS AND
BRESENHAM’S EQUAL ERROR ANOMALY

The error metric used by the Castle-Pitteway algorithm
is that inherent in Bresenham’s. It has been formally
stated by Bresenham? as: ‘.. .For lines with a first octant
orientation relative to an origin at the line segment’s
integer start point:

line:y = (v/u) x

raster segment: from (0, 0) to (u, v) with u and v integer
u>v>0 by selecting unit axial (S:square) and unit
diagonal (D:diagonal) steps connecting integer grid
mesh points given as:

X;,=IFORI=0,...,u

Y, =floor: y;, = ((v/u) I)+0.5’

The equal error anomaly arises whenever the ‘real’ line
is equidistant from two consecutive vertical grid mesh
points. This happens whenever u is even and v is odd. On
these occasions the error metric will, by convention,
select the upper point. Thus the chain code for the line
from (0, 0) to (2, 1) is DS, although SD would be as
visually acceptable.

In their work on establishing a ‘recogniser’ for the
chain code associated with approximations to straight
lines, Dorst and Duin® specified the conditions whereby
lines drawn to different coordinates may share the same
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Fig. 2. q/p is the smallest upper bound on v/u in F(u)
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Fig. 3. The shaded triangle does not contain point (i, j +1)

chain code. However, their work was developed for the
case of ‘Object Bound Quantisation’, as opposed to
*Grid Bound Quantisation’, and takes no account of the
equal error anomaly inherent in Bresenham’s error
metric. The following lemmas are a generalised extension
of Dorst and Duin’s work to grid-bound quantisation,
and do account for the equal error anomaly.

Lemma 1

If the chain code for the p elements of the line
y=1(q/p)x is L(p, q), and gq/p is the smallest upper
bound to v/u in F(u), then the first p elements of the chain
code for the line y = (v/u) x will be L(p, q)" (Assuming
q/p and v/u are in reduced form, and that ¢ < p < u).

Proof

Because (¢/p) is the smallest upper bound on v/u in F(u),
there can be no pixel centre lying within the shaded
triangle of Fig. 2 (otherwise any such pixel centre would
itself be the smallest upper bound in F(u)).

The shaded triangle in Fig. 2 cannot contain any point
that lies midway between two pixel centres each with the
same x coordinate. If such a point existed it would have
coordinates (i, j+1/2) where i and j are integers with
0<i<p, and v/u <j/i < q/p. This would imply the
existence of a pixel centre with coordinates (2i, 2j+ 1) as
shown in Fig. 3. Since (2j+ 1)/2i is in reduced form, then
2i > u, otherwise (2j+ 1)/2i would itself be the smallest
upper bound, and this a contradiction. Now, since v/u
and g/p are consecutive terms in F(u), the only term that
can lie between them in F(u+p) is (v+q)/(u+p). This
term is not (2j+41)/2i since (u+p) > 2i. Thus (i, j+1/2)
does not lie in the shaded triangle.
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Thus if p is odd, all the square moves that were
appropriate to the sequence for L(p, q) will be at least as
appropriate to the first p moves of L(u, v). (This is
because the error in the square moves is reduced by the
downward displacement of the lower line.) Since, by
the above proof, there are no equidistant points in the
shaded triangle, all the diagonal moves will also be
equally appropriate.

However, if p is even, the line y = (¢/p) x must pass

y = (@/u)x

y= (S/r)XE

sh———_——————

r
Fig. 4. s/r is the greatest lower bound on v/u in F(u)
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Fig. 5. L(u, v) = L(p, q)". L(r, s)°

equally between two pixel centres. In this particular case,
that of the equal error anomaly, Bresenham’s algorithm
will select the upper pixel. Nevertheless, any downward
displacement from the line y = (¢/p) x, however small,
must result in the new line passing below this equidistant
position. Thus the selection of the diagonal move in
L(p, q)is not the ‘best-fit’ selection for L(u, v). To correct
this anomalous error, all that needs to be done is to
reverse the chain code. Due to the palindromic symmetry
of the ‘ best-fit’ chain code, this reversal still generates the
appropriate move sequence even if the equal error
anomaly has not occurred.
Thus the first p element of L(u, v) is L(p, q)".

Lemma 2

If the chain code for the r elements of the line y = (s/r) x
is L(r, s), and s/r is the greatest lower bound to v/u in
F(u), then the first r element of the chain code for the line
y = (v/u)x will be L(r, s).

(assuming s < r < u and that s/r and v/u are in their
reduced form)

Proof

This situation is in many ways the mirror image of lemma
1. As before, there is no pixel centre in the shaded triangle
in Fig. 4 since s/r is the greatest lower bound to v/u in
F(u).

The upward displacement of y = (v/u)x from
y = (s/r) x implies that the diagonal moves for L(r, s) are
still the ‘best-fit’ for the first r moves of L(u, v). A similar
argument as before obtains to the positioning of the
square moves, since no point with coordinates (i, j+ 1/2)
can exist in the shaded triangle. The equal error anomaly
does not occur in this case, because the upward
displacement of y = (v/u) x now makes the equal error
diagonal move in y = (s/r) x the correct move.

Thus the first r element of L(u, v) is L(r, )

Table 3. The move sequences generated in constructing lines to Fibonacci co-ordinates

‘Tacit’ line
Branch Movel Move2 drawn
(@)
D 2,10
Right DS D 3,2
Left DS DSD 5, 3)
R DSDSD DSD @, 95
L DSDSD DSDSDDSD (13, 8)
R DSDSDDSDDSDSD DSDSDDSD (21, 13)
L DSDSDDSDDSDSD DSDSDDSDDSDSDDSDDSDSD (34, 21)
DSDSDDSDDSDSDDSDDSDSDDSDSDDSDDSDSD DSDSDDSDDSDSDDSDDSDSD (55, 34)
()]
S D 2,1
Left S SD 3,1
Right SDS SD 65,2
L SDS SDSDS 8, 3)
R SDSDSSDS SDSDS (13, 5)
L SDSDSSDS SDSDSSDSSDSDS (21, 8)
R SDSDSSDSSDSDSSDSSDSDS SDSDSSDSSDSDS (34, 13)
L SDSDSSDSSDSDSSDSSDSDS SDSDSSDSSDSDSSDSSDSDSSDSDSSDSSDSDS (55, 21)
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Lemma 3

If g¢/p and s/r are the least upper and greatest lower
bounds on »/u in F(u), then the chain code to construct
the line L(u, v) is given by:

L(u, v) = L(p, q)". L(r, s)°
Proof

Since q/p and s/r are consecutive terms in either F( p) or
H(r), it follows that (g+s)/(p+7) is their median term in
F(p+r). Therefore, the parallelogram OPUR in Fig. 5
does not contain any pixel centre position. Thus the
required chain code is (L(O to A).L(A to U)). Now
L(Oto A) = L(p, q)° (from Lemma 1), and L(A to U)" is
L(U to A)". Since L(U to A) is L(O to B), then by
Lemma 2, this gives the required result:

ie. L(p+r,q+s) = L(p, q). L(r, sy

Furthermore, it is clearly the case that the necessary
relationship between g/p, s/r and v/u is exactly that of
consecutive terms in a Farey series, with the expected
property that v/u = (g+5)/(p+r).

6. THE SPECIFIC CASE OF LINES DRAWN
TO FIBONACCI COORDINATES

The behaviour of the algorithm is easiest to understand
when lines are drawn to coordinates which are
themselves adjacent, or semi-adjacent terms in a
Fibonacci sequence. This is because control passes
alternately down the left and right branch of the
algorithm, so the effect of Euclid’s test can be excluded
from consideration of the algorithm’s operation.

There are two possible move sequences to be
considered. The sequence selected depends upon the line
coordinates being adjacent or semi-adjacent terms in the
Fibonacci sequence. If they are adjacent terms, control
passes first to the right branch of the algorithm and D
moves predominate. If they are semi-adjacent, control
passes first to the left branch and S moves predominate.
Typical examples of each case are: (a) (0, 0) to (55, 34)
and (b) (0, 0) to (55, 21) as shown in Table 3.

Applying the Castle-Pitteway algorithm to any of the
‘tacit’ lines shown in Table 3 demonstrates a revealing
recursive relationship. For the line (0, 0) to (34, 21), for
example, the algorithm gives:

L(34, 21) = M2(34, 21). M1(34, 21)

where M1(34, 21) and M2(34, 21) represents the strings
Movel and Move2, and the constructed string, L(34, 21),
represents the chain code for the line (0, 0) to (34, 21).

However, it follows from the algorithm, and is shown
in Table 3, that M1(34, 21) = M1(21, 13). Thus applying
the algorithm to the way in which M1(21, 13) was
produced:

M1(21, 13) = M2(13, 8). M1(13, 8)°

ie. M1(21,13) = L(13, 8)
similarly
M2(34, 21) = M1(21, 13).M2(21, .13y
ie. M?2(34, 21) = L(21, 13)
Thus  L(34,21) = L(21, 13)". L(13, 8)
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Applying this analysis to other Fibonacci lines shows
that:

If nis even then L(n+1) = L(n—1)". L(n)y
If nis odd then L(n+1) = L(n)". L(n—1)"

The different cases for odd and even » are produced by
virtue of the previous observation that convergents with
odd subscripts are greater than convergents with even
ones. However, due to the relationship between Fibonacci
numbers and any Farey sequence containing them, this
recursion is always equivalent to the statement:

L(next Fibonacci coordinate) =
L(least upper bound)”. L(greatest lower bound)”,

since the next Fibonacci coordinate = least upper+
greatest lower. (This is apparent from any example.)

For example, in F(55)
8/21 21/55 and 13/34 are consecutive terms
21/34 34/55 and 13/21 are consecutive terms.

Thus the algorithm is equivalent to Lemma 3 and can
always be guaranteed to produce the correct chain code
for lines whose coordinates are adjacent or semi-adjacent
terms in a Fibonacci sequence.

7. CONSTRUCTING CHAIN CODE FOR
LINES DRAWN TO GENERAL
COORDINATES (x4, v)

The initial conditions in the Castle-Pitteway algorithm
include the instructions ‘set Movel to S’ and ‘set Move2
to D’. Movel and Move2 always contain the two vectors
which constitute the greatest and lowest bounds so far
located. They are, at this stage, the lines L(1,0) and
L(1, 1). All lines constructed by the algorithm lie between
these gradients.

In the general case of the line from (0, 0) to (u, v), with
u > v > 0, it is necessary to consider the control sequence
that is imposed upon the operation of the algorithm by
the Euclid test. The process of finding the highest
common factor, using the subtractive version of Euclid’s
algorithm, is intimately connected with the continued
fraction expansion of the two integers.

The simple continued fraction expansion of 11/51, for
example, gives:

11/51={0;4,1,1,1, 3}

The continued fraction expansion not only expresses
increasing approximation to the original fraction, but
also relates directly to the number of times control must
circulate around any one branch of the algorithm before
being transferred to the other. This becomes apparent
when considering the continued fraction expansion of the
Fibonacci golden ratio:

o={1;1,1,1,1,1,1,1,1,1,..)

When the values of (u, v) are consecutive terms in a
Fibonacci sequence, control transfers alternately between
the two branches. This effect is determined by the series
of 1s in the expansion.

Thus, in the case of (51, 11), the expansion is
[0;4,1,1,1, 3}, which in its turn gives rise to the
fractions:

1/4,1/5,2/9, 5/23 and 11/51
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These are the ‘ proper’ continued fraction convergents, in
that within the appropriate Farey series they fulfil the
criterion of being alternately best upper and lower
bounds to 11/51. However, other convergents can be
obtained from the series and these are:

1/1,1/2,1/3,1/4,1/5,2/9, 3/14, 5/23, 8/37
and 11/51

Expressing the sequence in its decimal representation (to
3 places) gives:

1.000, 0.500, 0.333, 0.250, 0.200, 0.222, 0.214, 0.217,
0.216, 0.215

The Castle-Pitteway algorithm creates legitimate lines
by invoking Lemma 3. This requires locating best upper
and lower bounds. Now examination of the sequence of
continued fractions shows that the first five numbers are
all in descending order. Now the algorithm must use the
best lower bound found so far in the line construction
process. This is preserved in Movel as S, and represents
the line L(1,0). Thus, when the algorithm is cycling
around the same loop, the initial state of one of the
moves is preserved. The contents of this move is the
chaincode for the best bound located so far. Hence,
during the first few cycles of the algorithm, Lemma 3 is
tacitly invoked to construct:

L2, 1) = L(1, 1Y".L(1, 0y (D.S)
L3, 1)=L(2, 1Y.L(1, 0y (SD.S)
L(4,1)=L(3, 1y.L(1, 0y (SDS.S)
L(5, 1) = L(4, 1Y.L(1, 0 (SSDS.S)

In each case, by Lemma 3 this corresponds to the reversal
of the chaincode for the least upper bound line
concatenated with the reversal of that for the greatest
lower bound line.

At this point the continued fraction expansion dictates
a transfer to the other branch. This manifests itself
directly by the variable @ now being less than b, but it
corresponds to reaching the end of the effect determined
by the 4 in the continued fraction expansion.

Having located a greatest and lowest bound, the
algorithm next transfers control to the other branch, and
by Lemma 3 the line (9, 2) is correctly constructed
({1+1}/{4+5} = 2/9). Control is transferred again, and
by Lemma 3 the line (14, 3) is constructed (1/5 < 3/14
whereas 2/9 > 3/14). This process continues, with
control reversing, as in the Fibonacci case, until the effect
of the 3 in the continued fraction expansion is felt. This
occurs in the creation of the last few lines. When L(14, 3)
has been constructed, variable a is 3 and b is 1. Thus
Movel preserves its value, which is the chaincode for
L(14, 3), and L(23, 5) is constructed. At this point b is
still less than a, so Movel still contains L(14, 3) and
L(37, 8) is constructed, then a and b are equal and so
L(51, 11) is constructed from L(37, 8) and the contents
of Movel, which is L(14, 3). Hence L(23, 5) is effectively
by-passed.

Examination of the gradients shows that 3/14 is the
greatest lower bound to 11/51, but since 8/37 < 5/23,
8/37 is the smallest upper bound to 11/51, hence by
Lemma 3, the algorithm has constructed the correct
chaincode for L(51, 11).

We have shown that the algorithm operates by
invoking the proven procedure of Lemma 3 to construct
lines. The application of this lemma is determined by a

control process governed by Euclid’s algorithm. When
the algorithm is cycling around the b < a branch, Movel
holds the chaincode for the line of greatest lower bound
so far located. When the algorithm cycles around the
other branch, Move2 holds the chaincode for the smallest
upper bound line so far located. The particular branch
selected at any step is determined by the values of a and
b, and these two variables are direct counterparts of the
continued fraction expansion. Thus the algorithm is
guaranteed to produce identical output to Bresenham’s
algorithm or any other version of the Digital Differential
Analyser.

It is worth noting that the Castle-Pitteway algorithm
can be reformulated in several different ways. It is, for
example, possible to avoid the process of reversing
strings by employing two extra variables. These are used
to replicate the contents of Movel and Move2. Another
useful reformulation can be obtained by replacing
Nicomachus’ subtractive version of Euclid’s algorithm
by Euclid’s original division version. This can lead to
considerable saving where efficient implementation of
MOD and DIV operations is available.

8. DEVELOPMENTS IN THE ANALYSIS
OF EUCLID’S ALGORITHM

Euclid’s algorithm is the oldest-known documented
algorithm. In its original version,'® it appears as a
technique for determining the highest common factor (or
greatest common divisor), of two positive integers. The
following program is a Pascal version of the algorithm:

program euclid (input, output);
var a, b: integer;
begin
readln (q, b);
while b (> a do begin
ifb<athena:=a—belse b:=b—a
end;
writeln (‘hef is °, a);
end.

Comparison with Fig. 1 shows the control structure that
Euclid’s algorithm imposed upon the line constructor
mechanism.

It is apparent that the Castle-Pitteway algorithm, in
comparison with Bresenham’s technique, will require less
subtractions to generate the chain code for a given
straight line. Therefore, the subtractive operation is in
itself worthy of more detailed analysis. The following
section presents interesting conjectures which arose from
empirical observations of lengthy computer runs.

In generating the move sequence for a line of u
increments drawn from some starting point (0, 0) to the
point (u, v) with 0 < v < u, Bresenham’s algorithm will
require a total of u subtractions. (The cases of v = 0 or
v = u, requiring either all square or all diagonal moves,
are trivial.) For the new algorithm, specific cases are first
considered. Then the average behaviour for a given value
of u, with v uniformly distributed in the range 1 < v < u
is considered and then finally the double average over all
values of u and v less than some given n.

First, for a given value of u, the worst case occurs at
v=1orv=u—1, when it takes a total of u— 1 subtract
operations before v and u are equal. In this case there is
no saving over Bresenham’s algorithm. On the other

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 173

¥20Z I4dy 01 uo 1senb Aq gLE01/891/2/0¢/2101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq



C. M. A. CASTLE AND M. L. V. PITTEWAY

hand, the best case for ¥ and v mutually prime occurs
when u and v are adjacent or semi-adjacent terms in a
Fibonacci sequence. The number of subtract operations
involved is then about 2.078 In w.

In computing the number of subtract operations, the
numerical work indicated that it was necessary to include
the case v = u (which requires no subtracts), even though
the algorithm as presented in Fig. 1 would fail. Thus the
total sum over the range 1 < v < u—1 was formed, but
was divided by u rather than u—1 to obtain the required
‘average’. This was found to be a more convenient fit to
data for small values of u. Note, too, that there is a useful
symmetry about the midpoint u#/2: the number of
subtracts required for given u and v is the same for « and
u—v. (Care must be taken to handle the case of u even.)

The worst case now occurs when u is prime, for there
will be no common factor for any value of v, and the
algorithm must always run down until v =u=1.
Computer analysis, including a run with u = 129434759,
leads to the conjecture that the average number of
subtracts required for prime u behaves as:

S ((nwy+2.5887 Inu—2.5075)
7[2

The leading coefficient, 6/72, has been established
analytically by Yao and Knuth,'® though they also
suggest the possibility of subsequent terms of order
(In w) *In (Inu). The conjecture presented here involves
no subsequent term stronger than Inu, and also
postulates an exact value in place of the empirically
determined 2.5887 coefficient. Moreover, we suggest that
for composite u, the coefficient in In (), which is 2.5887
for u prime, should be reduced by two times a sum
involving ‘Von Mangoldt’ functions, as described by
Knuth in the analysis of the ‘divide with remainder’
version of Euclid’s algorithm.!? Thus when u is a prime
multiple of 2, the coefficient 2.5887 multiplying the term
in In u is to be reduced by In 2; when u is a prime multiple
of 3, it is to be reduced by 2 (In 3)/3, and, in general, it
is to be reduced by:

23 Ad)/d.
d\u

For example, if u is a prime multiple of 100, then the
coefficient of In u is reduced from 2.5887 to

2.5887—2{In(2)/2+1n(2)/4+1n(5)/5+1In (5)/25}.

(Our numerical studies indicate, surprisingly, that the
last term, involving the prime itself, thus ...(In (prime))/
prime, should not be included). Some further examples
are listed in Table 4.

Our conjecture is that if u is an integer multiple of a
prime number, then the average number of subtract
operators is given by:

%{(ln u)?+(2.5887-2 ¥ A(d)/d) lnu+constant}+0<ln7u
d\u

The constant coefficient also requires some adjustment in

each case, with examples again given in Table 4, but we

offer no conjecture concerning these.

The conjecture upon the introduction of the Von
Mangoldt terms into the coefficients of Inu, for
composite u, has been checked for all values of u to
70,000, for u = 599,946 and 1,373,766 (both prime
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Table 4. Typical values associated with data fitting the
conjectured formula

Prime Inu
multiple term Constant
2 1.8956 —2.68
3 1.8563 —2.25
4 1.5490 -2.29
5 1.9449 —1.79
6 1.1632 -2.17
7 2.0327 —1.60
8 1.3757 —1.85
9 1.6122 —1.63
10 1.2518 —1.74
20 0.9052 —1.24
30 0.5194 —0.99
40 0.7319 —0.74
50 1.1230 —1.13
60 0.1728 —0.36
120 —0.0005 +0.20

multiples of 6), and for u = 6,291,429 (a prime multiple
of 3).

The formula for the average number of operations
required by thedivide form of Euclid’salgorithm, is quoted
by Knuth!? to be:

%an{lnu— T A(d)/d}+1.47

d\u
Apparently the 1.47 should really be 1.4670780794...,
which is given as:

6 24
= 1n2{3 1n2+4y-Fc(2)—2}—%

Thus the analysis of the divide version of Euclid’s
algorithm can be written as:

l—f an{ln u— Y A(d)/d+1.51n 2+2y——l—fC’(2)— 1}—%
T d\u /4

Comparing this with the empirical analysis of the
subtract algorithm in a completed square form (in order
to avoid the 2 multiplying the Von Mangoldt sum),
suggests making the comparison between our 2.5887 and

7[2
12In2

If the terms ‘31In2’, and ‘n%?/121In2’ are dropped, a
likely match is obtained, so we conjecture that the 2.5887
coeflicient should really be:

24
3 1n2+4y—FC'(2)—2—

24
4y—;2—C’(2)—2 = 2.588706632...

For the record, the ‘best’ empirically determined value
was in fact 2.588 67, but the conjectured value lies within
the range of experimental error.

It is also worth noting that the empirical fit is a good
one. The residue for prime u, for example, changes sign
at u = 47, and there are 33 changes of residual sign as u
increases to 373.

Finally, both Knuth!? and Yao and Knuth!® have
suggested an average analysis of the subtract version of
Euclid’s algorithm for all u, v less than some given n. As
Knuth observes, the scatter is large. However, computer
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analysis with runs up to u = 78000, accumulating the
total number of subtracts required for all u < n, then
dividing by in(n+ 1), suggests an average behaviour like:
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