Correspondence

Termination Indicators in Programming

Dear Sir,

M. C. Er’s bubble sort algorithm! can be
further improved by using the termination
indicator to hold the index of the last swap on
any pass. Elements above this in the array are
already in order and need not be scanned
again.

t:=N-—1;
while ¢ > 0 do begin
it=1;j:=0;
t:=0;

while j < > i do begin
if a[j] > a[j+ 1] then begin
swap (alj], alj+1]);
t:=j
end;
Ji=j+1
end
end

In this form the algorithm is directly
comparable with Er’s. However, ¢ is now more
than a termination indicator; it holds the
number of comparisons to be made on the
current iteration. Therefore the algorithm is
more elegantly written as follows, where s, like
J» is local to the current scan and simply holds
the index of the latest swap.

t:=N-—1;
while ¢ > 0 do begin
Ji=0;
§s:=0;
while j < ¢ do begin
if a[j] > a[j+ 1] then begin
swap (al]), alj+1);
si=j
end;
Ji=j+1
end;
t=s
end

A similar version is given by Gonnet.2

In view of the simplicity of this algorithm it
is rather remarkable that other books on
advanced programming and data structures
are still using boolean flags in their bubble
sorts. 3 4.5

Of course it could be argued that the bubble
sort is so inefficient that it should not be
included in such a text. My experience is that
a naive student asked to write a sort without
any leads from the tutor will invariably
produce a bubble. It is then helpful to discuss
ways in which this could be improved before
pointing out that better sort algorithms exist.

Yours faithfully

ANN V. BOWKER (Mrs)
Department of Computing,
Trent Polytechnic,
Nottingham

References

1. M. C. Er, The Use of Termination Indi-
cators in Computer Programming. The
Computer Journal 29 (5), 430 (1986).

2. G. H. Gonnet, Handbook of Algorithms
and Data Structures. Addison-Wesley,
London (1984).

3. Y. Langsam et al., Data Structures for
Personal Computers. Englewood Cliffs,
N.J., Prentice-Hall (1985).

4. T. L. Naps and B. Singh, Introduction to
Data Structures with Pascal. West (1986).

5. J. F. Korsh, Data Structures, Algorithms,
and Program Style, PWS (1986).

An implementation of parallel processing

Dear Sir,

Considering the current interest in lan-
guages and implementations for parallel pro-
cessing it might be of interest to readers to
draw attention to some little-known work
carried out by Dr A. G. Hill and myself in the
1970s.1 3

Our parallel implementation was fairly
coarse-grained and was based, like CSP/80,
on a number of separately compiled processes.
These however were linked dynamically by the
operating system. Co-operating processes
were structured as a tree, with each process
having at most one ‘owner’ but each able to
have zero, one or more ‘slaves’.

Synchronisation was dependent on an
escapement mechanism implemented by the
OS.

(1) The ‘owner’ issues PUT
(Cslave)).

(ii) The ‘slave’ process issues GETM, and
is held up if necessary until the
corresponding PUT has been issued.

(iii) The ‘slave’ process issues PUTM

process

when it has completed some
processing
(iv) The owner process issues GET

(¢slave)), and is held up if necessary
until the corresponding PUTM has
been issued.

If processes are written in a structured
language (we used a modified CORAL) the
synchronisation requests can be validated very
simply at a syntactic level by the compiler, and
it is easy to show that deadlock conditions
cannot occur. PUT and GET calls to different
slaves may be interleaved in any desired
manner so long as they alternate properly in
execution.

For communicating data between processes
the very simple convention was adopted that
the data structures of a ‘slave’ (procedures
can of course be considered as data structures)
are accessible to the ‘owner’, but only before
GETM-PUT({s)) or after PUTM-GET({s)).
These constraints also can easily be checked at
compile time.

In general therefore a running process will

(i) Obtain a ‘slave’ from the Operating
System, for example REQUEST
(‘SORT’).

(i) Copy parameters — perhaps an array
or pointer - to the ‘slave’ workspace.

(iii) Issue PUT('SORT’); and perhaps
continue computation in parallel with
‘slave’ operation
(iv) Issue GET(‘SORT’); and perhaps be
held up for a while until the sorting
operation is complete.
(v) Copy the results if necessary.
(vi) Signal to the Operating System
DISCARD(‘SORT").
A variety of other schemes are possible,
including the degenerate cases where
(a) ‘slave’is set up and DETACHed to run
autonomously. In a multi-user system a user
may be given a shell, or in a real-time system
an autonomous controller with appropriate
priority may be set up; or
(b) The ‘slave’ may contain no code and
never ‘run’ but simply provide data structures
for use by the owner. This mechanism provides
a convenient way of allowing for dynamic
store allocation like the PASCAL ‘heap’.
Finally non-determinism was accommo-
dated by an explicit PEEK({slave)) or
PEEKM which determined if a process could
issue a GET (or GETM) without being held
up, thus:
if PEEK (procl)
then
begin
GET(procl);

end
elseif PEEK (procl)
then

in
GET(procl);

end
else-
The system may have been rather naive, but
it does have a certain simplicity and might
perhaps still be useful in practice.

Yours sincerely

H. R. A. TOWNSEND
The National Hospitals for
Nervous Diseases

Queen Square

London WC1
References
I. A.G.Hill and H.R. A. Townsend,
Deadlock-free parallel processing.

Advance paper, 4th International Joint
Conference on Artificial Intelligence,
Tbilisi, pp. 534-537 (1975).

2. H. R. A. Townsend, In the Footsteps of
the Amoeba, or multiprocessing without
tears. Machine Intelligence Research
Unit Report, University of Edinburgh
(MIP-R-97) (1972).

3. H.R. A. Townsend, A real-time pro-
gramming system. International Journal
of Bio-Medical Computing, 10, 129-143
(1979).

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 191

202 I4dy 60 U0 1senb Aq 09¢101/161/2/0¢/2101e/|ulwoo/wod dno-olwspeoe//:sdpy wolj papeojumoq



