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Various models and metrics that are based on cognitive theories and assumptions have been proposed in an effort to
Sormalise the concept of programming difficulty. The model and metric proposed here are, instead, based on a
problem-space formalisation and an information-theoretic measure (entropy) that provides the complexity of a program
specification; this metric can be applied before the specification’s implementation is complete. The problem space for a
program specification is the set of possible state descriptions that could arise from the execution of the program on that
input, as ascertainable from the specification. We show how to define the entropy metric based on the problem space
definition, and demonstrate the applicability of this metric to modularity problems.
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1. INTRODUCTION

Models of aspects of the computer programming process
have been proposed by many researchers. Some studies
deal primarily with the cognitive processes involved in
programming,’- 16, 18-20, 27-30 whjle others discuss metrics
that model the programming process.? 5 11.14,15,18, 21,34
The former studies probe the underlying processes of
program comprehension, such as the acquisition of
programming skills, and they often incorporate theories
from cognitive psychology that involve different levels of
human memory.!* 2232 The latter studies deal mostly
with similar topics but result in conclusions expressed as
mathematical functions instead of qualitative and
statistical appraisals. Still other researchers have explored
programming style in an effort to discover ways to
produce reliable and comprehensible programs. 12, 13,17, 35
That work requires the assumption that the mental
processing or ‘cognitive load *® involved in understanding
how a program should function is a predictor of how
difficult the program would be to implement.

Inconsistencies are apparent in many studies that
involve software metrics. The metrics proposed often do
not address the programming process in a unified fashion
from the initial problem space to its final representation.
In most cases the metrics apply only to completed
programs, so that little predictive value exists. Some of
these theories rely heavily on other theories from
cognitive psychology, which are constantly evolving and
may not be relevant in computer science because the
experimental conditions do not match the underlying
psychological assumptions.® Finally, the attempts to
estimate the cognitive load that can be handled in a single
module have been relatively crude. Most estimates of
that limit also refer to human memory models and are
difficult to evaluate in the light of ongoing psychological
research.

2. ANEW APPROACH

The approach we take in this paper is to analyse the
(presumably formalised?*) program specification, not the
programmer, using the elementary information theory
developed by Shannon,? reprinted in Ref. 26. Our
approach is also motivated by Bar-Hillel.® We will base
a metric on the amount of ‘information’ present in a
program specification, as formally represented in a
problem space. Shannon has given a measure of in-

formation that satisfies certain ‘reasonable’ postulates.
We will examine this idea and propose some guidelines
for applying it to the determination of the complexity of
various specifications.

Consider an experiment with a finite number n of
distinct possible outcomes, and assume the probabilities
associated with those outcomes are p,, p,, ..., p,. Before
the experiment is performed there is an ‘uncertainty’ as
to which one of the n possible outcomes will occur; this
can be interpreted as the amount of information that will
be obtained by performing the experiment and observing
the outcome. As part of an investigation of the coding
and transmission of information in the presence of noise,
Shannon demonstrated that there is a unique mathema-
tical function that satisfies certain postulates that
describe the abstract concept of ‘information’. He
showed that there is one and only one way to assign a
quantitative value to measure information, provided
only that the information measure satisfy the following
two (loosely stated) postulates: (i) if the outcomes are
equally likely (i.e. p;, = 1/n, for i = 1, 2, ..., n) then the
information measure is a strictly increasing function of
the number of possible outcomes (i.e. all things being
equal, the more possibilities an experiment admits, the
more information it provides); and (ii) the amount of
information provided by an ‘answer’ is independent of
the way in which the experiment found the answer.
(Shannon’s statement of these postulates is given on page
19 of Ref. 26. (i) is Shannon’s postulate (2); (ii) is
postulate (3). Shannon’s postulate (1) is merely technical,
a continuity requirement.)

Let H,(p,, ..., p,) denote the information measure.
Shannon proved that the only function that satisfies these
postulates is

n
Hn(pl"'-’pn)Z_K_leilogpi’ 1
i

where K is an arbitrary positive constant. (The
mathematical properties of Shannon’s information
measure are given in many works, such as Ref 2.) It is
most convenient to take the base of the logarithm as 2
and to take K as unity. Then the unit of H is called the
bit. As noted by Shannon, the function H is the same as
the well-known entropy function of statistical mechanics.
Shannon’s work is widely known and has been applied
in various disciplines. It has been mentioned that
Shannon’s information measure can be used to calculate
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the information content of problem statements and
resulting computer programs (Refs 23, 31 p. 182), but
this assertion has not been supported by detailed
argument or evidence. In this paper we will sharpen the
argument for applying Shannon’s measure to quantify
the abstract concept of information content of a program
specification.

A program can be viewed as a transformation that,
based on a specification, assigns or changes the values
of entities occupying memory locations. (Effectively, a
program is the end result of a sequence of refined
specifications.) We can take the view that a program
execution is an experiment that selects, from all possible
ways that a program specification allows, the entities to
occupy the memory locations (i.e. a problem space, PS),
the single correct configuration (point) for that execution.
In the case where all n points in the PS have the same
a priori probability (the least presumptive assumption),
the expression (1) for H reduces to

H = log n. ()

(In the description to follow, n will be the cardinality |S|
of a finite set S.) Thus, for example, if there are x distinct
memory locations and a program specification contains
as its only requirement that each location hold exactly
one of y distinct strings, there are n = y® distinct possible
configurations in memory that satisfy the program
specification. The purpose of executing the program is to
find the single configuration that is the ‘answer’. If we
assume that all of the y* possible outcomes are a priori
equally likely, then the information provided by
executing a program that chooses the correct configura-
tion is, according to (2), log y* = x log y bits of in-
formation.

More generally, we associate with a program specifica-
tion a finite set of memory locations X, a finite set of
location values Y, a problem space PS, and an
information measure H(PS). PS is the set of state de-
scriptions (SDs) permitted by the program specification,
where an SD is a binary predicate over X, Y. An SD
specifies, for each location x and value y, whether or not
x takes the value y. Consistent with equation (2), we
define H(PS) = log|PS|. That is, we take as our measure
of a specification’s complexity the amount of information
it provides when, through the execution of a resulting
program, it chooses the unique correct answer from
among the |PS| a priori equally likely answers allowed
by the program specification. Because |PS| < 21X!11Y1 jt
follows that H(PS) < |X]|Y]. We interpret H(PS) as
measuring the conceptual complexity (i.e. inherent
programming difficulty) of the underlying program
specification. In the next two sections, we elaborate on
this model and its application through a series of
examples.

3. SOME SAMPLE APPLICATIONS

When considering the following examples, note that the
SDs involve only the termination states of the output
variables. Considering only output variables in the SDs
seems to provide the most reasonable models for
specifications, but it is not an inherent restriction of our
model, as will be demonstrated by Program Specification
6. The cases that follow are relatively simple, but provide
guidance for analysing more complex problems.

Program Specification 1. The only information provided
by the program specification (and input) is the number
of locations |X] and number of values |Y]. We give two
different models of this a priori specification.

Model a. PS, ={all SDs over X and Y}. Hence
H(PS,) = X]|7].

Model b. PS,, = {SDs | each location in X is assigned
exactly one of the values in Y}. Thus PS, can be
interpreted as the set of all functions from X into Y,
and H(PSy) = log|Y|!X! = |X|log|Y|. PS, is obtained
from PS, by excluding ‘ambiguous’ SDs that do not
assign every location a value, or that assign some
locations more than one value. However, the first type of
ambiguity may be considered useful, because it can be
interpreted as specifying a solution in which some
locations take on undefined values. In any case, PS, rep-
resents a PS with a greater number of possible solutions
(hence more uncertainty), so that H(PS,) > H(PS,) is
consistent with the intended interpretation of H.

Program specification 2 (an abstract sort). y input
values are to be arranged, according to some given
criterion, in y memory locations.

Model. PS, represents the set of permutations of the
y values. Hence H(PS,) = log y!.

At first glance it may seem counter-intuitive that the
problem of sorting ten numbers should have a greater
conceptual complexity than the problem of sorting, say,
five numbers. This objection is equivalent to suggesting
that the complexity of Program Specification 2 be a fixed
value, instead of being a function of the dataset size.
However, the conceptual complexity of divide-and-
conquer algorithms (Ref. 1, pp. 306-307) provides strong
evidence that a problem’s dataset size can contribute
to the conceptual complexity of that problem. The
divide-and-conquer technique yields a solution by
reduction to instances of the original problem on smaller
datasets. Certainly, when such solutions are conceptually
simple the reduction must have been to simpler
problems, implying that the problem on smaller datasets
must be considered simpler than the same problem on
larger datasets. Program Specifications 6 and 7, below,
will illustrate this divide-and-conquer insight for the
problem of finding a maximum.

Program Specification 3. One out of y input values (say,
the maximum of the y values) is to be selected.

Model. PS, represents the y output values, and hence
H(PS;) =log y. Note that H(PS,) > H(PS,), again
consistent with our intuition that, for equal numbers of
input values, Specification 2 is more complex than
Specification 3.

Program Specification 4 (computation of an identity
function). Input a value and then output that same value.

Program Specification 5 (computation of a constant
function). Output a constant value regardless of the input
value.

Models. |PS,| =|PS;|=1. Thus H(PS,) = H(PS;)
=log 1 = 0. In both of these specifications, knowledge
of the output requires, at most, knowledge of only the
input (without further computation). Hence neither of
these problems contains any uncertainty, so that each of
them is measured as having complexity 0.

We conclude this section with two observations
concerning the application of our theory. In this paper
we mainly restrict our attention to the important class of
problems involving the rearrangement and selection of
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data values. The model can also be easily applied to other
types of specifications. Secondly, our model is not a very
high-level one, because it deals directly with variables
and values. However, the level of abstraction is under the
control of the person constructing the model. For
example, because of data typing, variables and values for
a program description intended for APL or SNOBOL
are likely to be of higher level than for a program
description intended for an assembly language. A related
point is that the purpose of subrange declarations in
specifications based on Pascal or Ada," as interpreted
within our model, is to reduce the associated a priori
problem space, and therefore reduce the complexity of
the specification.

4. IMPLICATIONS FOR MODULARITY

Program specifications are often given in terms of
conceptually simpler subspecifications or modules. A
benefit of this modularisation is that each module can be
considered separately, independently of the others, and
perhaps developed in parallel with the others. The
overhead in conceptual complexity due to increased
detail, in particular the overhead associated with
interfacing the modules, may be considered a cost of the
modularisation. In this section we show, through a series
of examples, how to use our metric to quantify these
notions of the cost and benefit of modularisation.

Consider the following specification for selecting the
maximum of y elements, which exploits the associativity
of the maximum operation, and is a modular refinement
of Program Specification 3.

Program Specification 6. (a) Find the maximum m of
the initial y — 1 elements of a list of y(y > 2) elements; and
then, (b) find the maximum of m and the yth element.

Model. Let X consist of two memory locations: the
location to hold m (which has y — 1 possible values), and
the location to hold the final answer (which, given m, has
two possible values). Then H(PS,) = log((y—1)-2)
=log(y—1)+1 = log y = H(PS,), with equality if and
only if y = 2.

Note that unlike the examples in the preceding section,
the detail of this problem specification forces us to
examine the ‘intermediate’ location that holds m, in
addition to the location that holds the final answer. It is
this additional detail that causes H(PS,) to be greater
than H(PS,) (i.e. it causes PS; to represent more
uncertainty, from the variables/values perspective, than
PS;). We can, however, consider Program Specification
6 to consist of a Program Specification Module 6a and
a Program Specification Module 6b. Then each module
can be modelled using only its output locations. Because
PS; can be viewed as the Cartesian product of PS,, and
PSy,,, we have H(PSg,)+ H(PSg,) = log(y—1)+1.

It seems reasonable to define the cost C, of the modular
decomposition of Program Specification 6 into Program
Specification 3 as the difference between the complexities
of the original specification PS, and PSj:

C(PSy;PS,)= H(PS,)— H(PS,) = log (y— 1)+ 1 —1log y.

Motivated by the potential for the independent
implementation and inspection of modules, we define the

* Ada is a trademark of the U.S. Department of Defense.

benefit B of a modularisation as the difference between
the complexity of the original specification and the com-
plexity of the most complex module:

B(PSy;PS,) = H(PS,)—max (H(PS,),H(PS,y,))
= log y—log(y— 1) = log (v/(y— 1)).

We emphasise that one expects Module 6a to be
conceptually less complex than Program Specification 3,
although they both involve finding the maximum
member of a list of elements; this is because decreasing
the size of the data set for a problem makes it easier to
find a solution for that problem. Also, this reduction in
conceptual complexity can be considered the basis for
converging on solutions having faster execution times, as
in divide-and-conquer algorithms.

We observe that the relative value RV of the module
can be defined as the ratio of the complexity of the
module to the complexity of the entire specification. For
example,

RV(PSsa;PSs) = H(PS,,)/ H(PS,).

Hence, RV(PSg,;PSs) > RV(PSg,;PS;). In our present
example, because PSg, contains the major percentage of
‘uncertainty’ in the problem, we would be willing to pay
more to obtain Module 6a than to obtain Module 6b.

Before examining some alternative specifications for
the maximum problem, we note that Program Specifica-
tion 6 illustrates how a specification involving an
intermediate variable can be functionally decomposed
into two modules that involve only output locations, so
as to obtain a positive conceptual benefit from
divide-and-conquer. Thus, Program Specification 6 very
simply illustrates one of the key concepts of the
functional programming philosophy.* One can argue
that program specifications, as well as programs, are best
expressed as a composition of functional modules,
thereby eliminating the need to consider intermediate
variables.

Program Specification 7 (maximum by balanced
divide-and-conquer). (a) Find the maximum m, of the
first y/2 elements in a list; and then (b) find the maximum
m, of the last y/2 elements; and then (c) find the
maximum of m, and m,.

Model. H(PS,) = H(PS,,)+(H(PS,,)+ H(PS,,.)

=2log(y/2)+1 =—1+2logy.

We next verify the soundness of our metric by showing
that it identifies an obviously poor decomposition.

Program Specification 8. Find the maximum of a list of
y elements by (a) sorting the y elements; and then (b) ex-
tracting the element placed last in the list by Module a.

Model. H(PSy) = H(PSg,)+ H(PS,) = log y! +log 1

=logy!.

Note that Program Specification 8 is inferior to
Program Specifications 6 and 7 with respect to both cost
and benefit. Because B(PS,;PS;) =1 and B(PS,;PS,)
=log(y/(y—1)), we see that Program Specification 7
is superior relative to benefit. However, the cost of
Program Specification 6 is less than the cost of Program
Specification 7. (Of course, there is no unique way to
measure cost versus benefit; these values must be appro-
priately weighted in each situation.)

Next, we give a program specification where the cost
is 0, but the benefit is positive. This implies that there is
no ‘overhead’ for the modularisation, but a benefit,
nevertheless.
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Program Specification 9 (insertion sort). Given y
variables, (a) sort the first y—1 variables; and then (b)
insert the yth value appropriately in the list (a variation
of Program Specification 2).

Model. H(PS,) = H(PS,,)+ H(PSy,)

=log(y—1!+logy

= logy!.
C(PS,;PS,) =logy!—logy! =0.
B(PS,;PS,) =logy!—log(y—1)! =logy.

Finally, we observe that our model provides insight
into a different kind of modular decomposition, namely
the decomposition of a join query in the relational data
manipulation language SQL. The conceptual simplicity
gained by such a decomposition is intuitively obvious
and has been verified empirically (Ref. 33, p. 642). Our
model accounts for the gained simplicity in the following
way. Let 4 and B be files with |4|=m, m > 2, and
|B| = n, n > 2. The complexity of a join having the form.

SELECT attributes FROM A, B WHERE condition

has complexity log 2™" = mn, because a join is defined
(and therefore appropriately conceptualised) as being a
subset of the Cartesian product of A and B. However, the
‘nested select’ form of this query

SELECT A-attributes FROM A WHERE A-attribute IN
(SELECT A-attribute FROM B WHERE condition)

has complexity log(2™-2") = m+n < mn, because this
SELECT is defined as first getting a subset of B and then
retrieving the records in A that appropriately match that
subset.

Incidentally, observe that we can consider the above
two selects as program specifications, say, for corre-
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