Evaluating Measures of Program Quality

K.A.REDISH anD W.F.SMYTH

Department of Computer Science and Systems, McMaster University, Hamilton, Ontario, Canada L8S 4KI

A number of approaches to the measurement of program quality or ‘style’ have recently been described in the
computing literature. This article discusses criteria which may be considered for the evaluation of these and other

approaches, and for the development of new ones.

Received February 1986

1. INTRODUCTION

Over the past few years an increasing number of articles
have discussed the measurement of the quality (perhaps
especially the complexity) of computer programs or,
more generally, computer software. Much of this work
relates either to Knuth’s 1971 paper! on the syntactical
characteristics of FORTRAN programs or to Halstead’s
1977 proposals for complexity measures.? Recently two
reports have appeared that in quite different ways
provide outlines of a framework within which quality or
complexity measures could be evaluated: Weyuker?
proposes seven formal ‘properties’ which complexity
measures should possess, while in a wider context Hocker
et al* provide structured descriptions of 50 software
quality measures whose domains of application range
from ‘correctness’ to ‘maintainability” and ‘portability’.
A related study by Berghel and Sellach® compares two
different measures of program ‘similarity’.

Program complexity can of course be conceived as a
reflection of the ‘complexity’ of the underlying problem,
and so as a topic quite separate from program quality.
In this paper, however, we treat the complexity of a
computer program as just one of the aspects of its
‘quality’: we propose criteria, for the most part less
formal than those of Weyuker and somewhat narrower
that those implied by Hocker, which could be used to
evaluate computer systems designed to measure program
quality. Since it seems likely that such systems will
become more common in both academic and software
engineering environments, our primary objective is to
stimulate discussion of some important ideas and
assumptions which arise naturally during their design
and development.

As indicated above, one main line of development for
program quality measures goes back at least to Knuth’s
early attempt to characterize¢ FORTRAN programs in
terms of the frequency with which various language
constructs (statement types) are used.! More recently, the
work of Rees® has stimulated a number of researchers to
design measures and develop corresponding software
related to programming ‘style’ or quality.?"!° In order to
lay the groundwork for later discussion, we describe here
briefly the latest of these software systems, called
AUTOMARK; further details can be found in Refs 10
and 11.

Like Rees’ system, AUTOMARK is designed to mark
student programs and based on a given ‘model’ program
P. An AUTOMARK mark is in fact based on both a
‘dynamic’ analysis (correctness of program output) and

a ‘static’ analysis (program quality or style), but except

for criterion C4 (below) we concern ourselves here

primarily with the latter. As discussed in Ref. 10, the
measures of program style to be used for static analysis

are selected by the instructor from a set of about 250

‘factors’ generated as a byproduct of the syntax-checking

phase of program compilation. Suppose that n factors

have been chosen and numbered 1,...,n. Then

AUTOMARK marking is based on the following six

vectors of length n:

F: the non-negative values of the factors computed for
model program P; for example, if the first factor is
number of gotos, and P contains three gotos, then
F[1]=3.

T: non-negative relative tolerances for the factor values
F; continuing the above example, if T[1] = 0.34,
then another program Q whose count of gotos fell
in the range

(FO=TFQ), FI1+T)+F[1]] = [2, 4]

would receive full marks for factor 1.

X: the maximum marks (> 1) available for each of the
factors (P receives a mark of 1 for each factor; the
minimum possible mark for each factor is zero).

W' the non-negative weights assigned to the marks for
each factor; the mark achieved by P is then

n
X W
t=1
L, G: indicators taking one of the three values —1, 0, + 1
according as a factor value less (greater) than the
tolerance range for the model program is regarded

as —worse (—1);

— the same (0);
— better (+1).

The student’s mark for a particular factor, say the ith
one, is determined using these vectors as indicated in Fig.
1a; the mark is just the m-intercept on one of the dotted
lines determined by the vertical line f = F[i], where F[i]
is the value of the ith factor for program Q.

In the example i = 1 described above, values of the
vector elements might reasonably be

F[1] = 3 (P contains 3 gotos)

T[1]1=0.34

X[1]=2 (a program containing no gotes would
receive maximum mark 2)

W([l]=w (an appropriate weight reflecting the
importance of this measure)

228 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

¥20¢ I4dy 60 U0 1senb Aq G0.19¢/822/€/0¢/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

EVALUATING MEASURES OF PROGRAM QUALITY

X[i] k L7
) \/?7\ .\//’f}’,
x, &
L[i]=0" " Glil=0
m-axis 1 ___[_1_]‘__\‘__;)(________________________ x\-‘"_c:"‘[_tj _____
P A
.7 s
W N
Fli]- Fli] Flil+ 2*F[i]
T[i]*Fli] T(i]1*Fi]
f-axis

Fig. 1a. Calculation of student mark for factor i (AUTO-
MARK).

m-axis | |- P S X - X

X
w X
H

N ¢

[f-axis

Fig. 1b. Calculation of student mark for number of GOTOs
(AUTOMARK).

L[1] = +1 (fewer gotos is ‘better’)
G[1] = —1 (more gotos is ‘worse’)

Then the mark for factor 1 would be determined as
shown in Fig. 15.

The overall mark for the student’s program Q is then
given by the scalar product m = W.M’, where M’ is the
vector of marks achieved by Q for individual factors.

A second main line of development of software
evaluation measures goes back at least to McCabe!? and
Halstead,? and concerns itself primarily with measures of
complexity. Two interesting measures have recently been
proposed by Oviedo:!? a control flow (CF) measure and
adata flow (DF) measure. Both of these measures depend
upon breaking down the program into maximal atoms
called blocks, and then constructing the flow graph of the
program treating the blocks as vertices. The CF measure
is then just the number of vertices in the flow graph
(usually slightly adjusted to take account of function/
procedure calls). The DF measure is however rather more

Ignore
Variable naming, logical errors, missing data checks,
pretty-printing, indentation, lack of comments.
Consider
(1) the number and type of variables used;
(2) the use of variables;
(3) the number and kind of control structures used;
(4) the use of control structures;
(5) the degree of difficulty in determining the conditions
which cause a section of code to be executed;
(6) the degree of difficulty in following sequences of
statements in program paths;
(7) program modularity.
Finally
Can the program be written in a simpler way?

Fig. 2. Criteria for grading.!*

complicated: it depends also upon an analysis of
references to, and assignments of, program variables.
Roughly speaking, DF computes for each block the
number of relevant previous assignments of those
variables which are assigned within the block, and then
sums over all blocks; it may be thought of as representing
the overall uncertainty about the values of the program
variables.

Adopting the view that, in relation to a fixed problem,
program quality is the ‘inverse’ of program complexity,
Van Verth!* uses extensions of Oviedo’s measures,
together with certain modularity measures, to mark
student programs, and reports reasonably good statistical
agreement with expert human marking. The main
concerns of her marking software are perhaps best
conveyed by the criteria for grading provided to the
human markers (Fig. 2).

Van Verth’s final mark is just the sum

m = CF+DF+LP+SP

where LP is a penalty assessed for having modules which
are too large, and SP is a penalty for too many small
modules. Note that a smaller value of m indicates a better
program.

In the remainder of this article, making reference to
AUTOMARK and the Van Verth system, we discuss
general criteria for the evaluation of measures of
program quality. In Section 2 we discuss criteria related
to the basis for the evaluation, and in Section 3 we discuss
other, more specific criteria, and their relation to criteria
suggested by Weyuker in a somewhat different context.?

2. THE BASIS FOR EVALUATING
PROGRAM QUALITY

We propose a first criterion.

Cl The basis upon which programs are to be
evaluated should be as much as possible subject to
specification by one of the users (usually a course
instructor or project manager).

Of course there will be limits on the generality of C1: no
software package will encompass all possible ways of
evaluating program quality. On the other hand, it should
be recognised by the designers of such software that users
are likely to disagree on the relative importance of
various measures, and that, furthermore, there may be
good reason for such disagreement. In the academic
environment instructors may, depending on the particular
course being given, or the nature of the audience for the
course, or the relationship of the course to the overall
programme of instruction, place more or less emphasis
on one measure or another, or adopt various approaches
to the assignment of values to these measures. In a
software engineering environment there may be good
reasons for preferring measures of clarity to measures of
simplicity, or for encouraging small program modules, or
for insisting on careful program commenting, and these
reasons can arise naturally out of a diversity of situation.
In AUTOMARK, a program’s mark is determined by
its vector, say F', of factor values, together with the six
vectors F, T, X, W, L and G, which are all essentially
specified by the user. Although apparently at the time of
writing Ref. 14 Van Verth’s software simply computed

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 229

¥20¢ I4dy 60 U0 1senb Aq G0.19¢/822/€/0¢/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

K. A.REDISH AND W.F.SMYTH

the sum m, there would be no difficulty in introducing the
same six vectors into her system by identifying n = 4
factors (CF, DF, LP, SP), numbering them 1 to 4, and
then assigning appropriate values to four elements of
each vector.

In this context, it should be noted that there is an
important distinction between F and the other vectors:
F represents an analysis of a ‘model’ program, whereas
the other vectors are simple assignments of values, based
on judgement and experience, by a user. The question
arises whether this dependence on a model program is
desirable. Van Verth, discussing this point, states (Ref.
14, p. 1.4): ‘We acknowledge that the need for relative
comparisons is a limitation.” We argue however that it is
not a limitation, at least if there is a requirement for the
apparent precision of a single mark.

C2 Whenever possible, the user should specify a

model program which correctly solves the problem.

The model program is the primary mechanism by which
the user (instructor or supervisor) expresses his sense of
how the problem should be solved. It seems to us that
there is no way this information can be made available
other than by actually writing the program: in doing so,
the user implicitly evaluates a large number of trade-offs
and, based presumably on experienced judgement, makes
implementation decisions which strike a balance, from
his point of view a presumably optimal balance, among
various alternative approaches. It is this balance which is
critical to the evaluation of the quality of the other
programs written to solve the same problem: without it,
without the model program, there is no objective basis
for evaluating trade-offs such as may (or, depending on
the problem, may not) exist among certain factors; for
example,

number of gotos

depth of nesting

number of executable statements

etc.

It follows then almost as a corollary of C2 that the
individual factors on which evaluation is based may, and
indeed in many cases should, conflict with each other, in
the sense that an improvement in one may be associated
with deterioration in one or more others. This feature of
a software evaluation package will exist, at least in some
measure, if the following criterion is satisfied.

C3 The factors (measures) on which evaluation is
based should be selected to represent a number of
diverse program ‘qualities’.

The qualities proposed or considered by three authors
are shown in Fig. 3; depending on circumstances, the
relative irﬁportance of various qualities would vary, and
this variation would be reflected in the basis of evaluation
selected by the user.

In a software engineering environment, it will un-
fortunately not as a rule be possible to specify a model
program. In such cases, measures of program quality will

Author
Hocker et al.4

Qualities
analysability, complexity, reliability,
modifiability, modularity, system inde-
pendence, testability, comprehensibility
AUTOMARK?!® economy, modularity, simplicity,
structure, documentation, layout

Van Verth!4 complexity, modularity

Fig. 3. Program ‘qualities’ used for evaluation.

230 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

therefore be less exact, less specifically related to the
computing problem being solved. One way to deal with
this difficulty is to prepare model solutions for relatively
small sample problems, and use these to evaluate
programs written as tests by candidate programmers.
This approach effectively simulates the student environ-
ment and indirectly uses a program evaluation system to
evaluate programmers.

Another approach has been used with some success as
a by-product of AUTOMARK an ASSESS package
analyses individual modules of programs (functions or
procedures) and displays various measures ranked on a
low-to-high (bad-to-good) scale; for example,

comments in the initial block

ratio:comments to statements

simplicity : operand measure
While such measures can provide some indication of
overall program quality, especially in directing attention
to particular program features, they are not sufficiently
problem-sensitive to be meaningful without further
detailed investigation and interpretation.

Even when a model program is used, difficult questions
of interpretation arise, primarily related to the fact that
the model program cannot be expected to dominate
every other program with respect to every factor.
Suppose factor vectors F; have been determined for
programs P;, i =1, 2, Then denote by

Mij = Ml(FUF'p T, X, La G)

the mark vector obtained by P; when marked using F;,
Jj=12,...,and T, X, L, G. Corresponding marks would
then be represented by the scalar products

mi] = W. MU'
At first it might appear to be desirable that the marks
should be ‘consistent’; for example, that
mlj > mzj > mlk > m2k;

in other words, that if P, achieves a higher mark than P,
using one model program, it should also achieve a higher
mark using another. That this consistency condition is
not necessarily satisfied, however, is easily seen from
simple examples such as the one shown in Fig. 4.

Suppose

W=(,1), T=(0,0, X=(,2, L=(-1,-1),
G=(+1,+1);F,=(1,1),F,=(2/3,3/2).
Then

])NI“ = (l’ 1)’ M21 = (2/39 3/2)’ M12 = (3/2, 2/3), Mzz =
(1, 1).
Hence

m;;, =2<216=m,,.1; m, =2.16 > 2 = my,,.

Fig. 4. ‘Inconsistency’ of marks with respect to model program.

Indeed, further reflection convinces us that there is no
reason why the marks should be consistent in this sense:
the basis F; of marks m,; represents an opinion as to an
optimum balance among partially conflicting measures;
it is to be expected that the marks m,, with respect to a
different opinion (represented by F;. # F;), will be ranked
quite differently. Only in the case (unrealistic, as we have
seen) that (for given 7, X, L and G) F; ‘dominates’ (is
‘better’ than) another mark vector F; in every position
can we assert that m;; > my; and m;;, > my,; and even in
this case it is not necessarily true that for every pair i, i’

My > My < My > Mg,

¥20¢ I4dy 60 U0 1senb Aq G0.19¢/822/€/0¢/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

EVALUATING MEASURES OF PROGRAM QUALITY

In cases where the user is uncertain that the model
solution does in fact represent an optimum balance, the
possibility of course exists of using multiple model
programs and averaging the resulting marks in some
way. As a rule, even when the user is dogmatic about his
model program, considerable experimentation will be
necessary to arrive at ‘reasonable’ assignments of the
vectors T, X, L, G and W.

To conclude this section, we remark that the qualities
displayed in Fig. 4 do not include correctness and
run-time efficiency, both or which are certainly highly
relevant to the evaluation of software. In particular,
when a model program is used, the correctness criterion
can be used to determine whether or not two programs
are comparable; that is, whether or not they do in fact
solve the same problem. To lend emphasis to this point,
we state

C4 The program qualities mentioned in C3 should

include correctness and (time and space) efficiency.
Descriptions of two very different approaches to the
evaluation of correctness may be found in Refs 11 and
15.

3. FORMAL PROPERTIES OF QUALITY
MEASURES

Given any syntactically correct programs 4, B and C, we
may define a distance function d as follows:

(1) d(4, A) = 0;

(2) d(A4, B) = 0;

(3) d(4, B) < k, a fixed constant;

(4) d(A, B) = d(B, A);

(5) d(4, C) < d(4, B)+d(B, O).

If A and B are the same program, we write 4 = B. We
introduce also a null program Z which has the property
that

(6) d4,Z2) >0 and d(B,Z)>0-d(A, B)
<d(A, Z)+d(B, Z).

We call d(A4, Z) the mark of A and state
C5 A measure d of program quality should satisfy
properties (1)—(6).

In terms of the AUTOMARK marking scheme
described in Section 1, we may think of the marks vector
M , for a given program A as representing the coordinates
of 4 in an n-dimensional Euclidean space whose axes are
scaled according to the weight vector W. Then, given a
fixed model program P (so that the factor vector Fis well
defined), and given fixed vectors T, X, L and G, the
AUTOMARK distance function is given simply by

d(4, B) = W.|(M,—Mp)|.

It is not difficult to verify that, choosing M, = (0, .. .,0),
this function does in fact satisfy C5. Another possible
choice, which also satisfies C5, is

a4, B)={ £ W0~ MfD],

the normal Euclidean distance. Observe that it may well
not be possible, under the given marking scheme, to
specify a program Z whose mark vector is zero; this need
not however prevent us from making use of the point
(0, ...,0) in our n-dimensional space! See C8.

Weyuker proposes other criteria,® some of which can
be modified and translated into the present context with
interesting results. The first of these essentially requires

that the measure used have a certain minimum
sensitivity:

C6 For every non-trivial program A, there exists a
program A’ formed by permutation of the lines
(statements) of A4, such that d(4,4") > 0.

Here we have supposed that a suitable language-
dependent definition of ‘non-trivial’ can be formulated.

We suppose now that a program A is separated into
blocks, where a block may be thought of roughly as a
maximal sequence of program lines whose permutation
in any way does not affect syntactic correctness; (for
more precise and detailed definitions, see Refs 3 and 14).
We say A’ is similar to A (written A" ~ A) if A’ can be
constructed from A4 by the following operations:

(a) permute lines within blocks of 4;

(b) replace relational operators by other relational

operators;

(c) replace logical
operators;

(d) replace constants by other constants of the same
type;

(e) replace identifiers by other identifiers of the same
length.

Observing that the similarity relation is both reflexive
and transitive, we state

C?1 A~ B—dA,B)=0.

Measures satisfying C7 will presumably be such as to
facilitate detection of ‘clone’ programs 4 and B. The
operations specified in the definition of similarity are
certainly included in the operations normally performed
by students (or software pirates) who want to clandes-
tinely transform A into a hopefully unrecognisable clone
program B. In order to detect such activity, some
searching of program clusters-in n-dimensional space will
nevertheless still be required, but C7 ensures at least that
the measure used is not too sensitive to trivial program
changes. In the context of the AUTOMARK scheme, we
observe that clone detection may be facilitated by
re-marking the programs in each cluster on the basis of
a model program selected as ‘typical’ of the cluster
together with a small tolerance vector 7. Some problems
of clone detection are discussed in Ref. 5.

Weyuker includes a requirement that the number of
programs with a given mark should be bounded. For our
purposes, however, since by property (3) the mark itself
is bounded, this requirement does not seem to be
necessary. On the other hand, it is of interest to be able
somehow to characterize the distribution of program
marks in the range [0, k]. Presumably collecting statistics
about programs actually marked will provide some
information about the distribution of actual programs
over this range; but it is far from clear what this
distribution ought to be, and how the distribution of
actual programs is related to the distribution of all
possible programs which solve a particular problem. As
a start, we propose

C8 Corresponding to a given problem, there exist
fixed values a and b such that, for any correct
program A,

operators by other logical

O<a<dAd,Z2)<b<k.

In conclusion, we observe that our experience to date
with the development and use of program quality
measures has been generally positive. One often-

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 231

¥20¢ I4dy 60 U0 1senb Aq G0.19¢/822/€/0¢/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

K.A.REDISH AND W.F.SMYTH

mentioned difficulty with the use of such measures is the
assignment of appropriately low marks to programs
which are merely ‘cosmetic’ and do not try to solve the
given problem at all. We believe that this difficulty can
be dealt with quite effectively by systems which include
program correctness in the evaluation of program quality
(see C4). To our way of thinking, a much more serious

REFERENCES

1. D. E. Knuth, An empirical study of FORTRAN programs.
Softw. Pract. Exper. 1 (2), 105-133 (1971).

2. M. H. Halstead. Elements of Software Science, Elsevier
North-Holland (1977).

3. Elaine J. Weyuker, Evaluating Software Complexity
Measures, Courant Institute of Mathematical Sciences
Department of Computer Science Technical Report No.
149 (1985).

4. Hanns Hocker, Wolf D. Itzfeldt, Monika Schmidt and
Michael Timm, Comparative Descriptions of Software
Quality Measures. Gesellschaft fiir Mathematik und
Datenverarbeitung MBH, Bonn (1984).

5. H. L. Bergheland D. L. Sallach, Measurements of program
similarity in identical task environments. SIGPLAN
Notices 19 (8), 65-72 (1984).

6. Michael J. Rees, Automatic assessment aids for Pascal
programs. SIGPLAN Notices 17 (10), 3342 (1982).

7. D. P. Hodgson, Automatic Assessment of Pascal Program
Style. Western Australia Institute of Technology School of
Mathematics and Computing Report No. 1 (1983).

232 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

drawback of such quality-measurement systems is that
they have no reliable capability to reward and encourage
those who in their solutions go beyond the original
statement of the problem, or who find a unique and
original way to approach it. There seems to be no way
round this latter drawback until the day of real (not
artificial) machine intelligence finally dawns.

8. B. A. E. Meekings, Style analysis of Pascal programs.
SIGPLAN Notices 18 (9), 45-54 (1983).

9. R. E. Berry and B. A. E. Meekings, A style analysis of C
programs. Comm. ACM 28 (1), 80-88 (1985).

10. K. A. Redish and W. F. Smyth, Program style analysis: a
natural by-product of program compilation. Comm. ACM
29 (2), 126-133 (1986).

11. K. A. Redish, W. F. Smyth and P. G. Sutherland, AUTO-
MARK: an experimental system for marking student
programs. Proc. Ann. Conf. Can. Inf. Proc. Soc., 43-46
(1984).

12. T. J. McCabe, A complexity measure. IEEE Trans. Softw.
Eng. 2 (4), 308-320 (1976).

13. E.I. Oviedo, Control flow, data flow, and program
complexity. Proc. IEEE COMPSAC, 146-152 (1980).

14. Patricia B. Van Verth, 4 System for Automatically Grading
Program Quality, SUNY (Buffalo) Technical Report No.
85-05 (1985).

15. W. Lewis Johnson and Eliot Soloway, PROUST. Byte 10
(4), 179-190 (1985).

¥20¢ I4dy 60 U0 1senb Aq G0.19¢/822/€/0¢/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

