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Measures of the structured design of software systems are called system complexity metrics. Two particularly promising
system complexity metrics are described in this paper: Yin and Winchester’s metric, which is derived from a system’s
structured design charts; and Henry and Kafura’s metric, which is derived from a system’s information flow. The values
computed by both are available after the end of the design phase. Consequently, they are useful in the entire software
development life cycle, from the design phase on. The definition, utility, interpretation and advantages of each metric are
described. Validation studies and their results are also reported for each metric. It is noted that Yin and Winchester’s
metric is quite successfully used at Hughes Aircraft Company but that there is no published report of the use of an

information flow metric by any software organisation.
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1. INTRODUCTION

Research into the development of a metric for software
complexity has attracted much attention in the com-
puting community. Many software complexity metrics
which have been developed in the past 15 years or so can
be divided into two categories, those dealing with single
programs (program complexity metrics) and those
dealing with the structured designs of entire systems
(system complexity metrics).

There have been three novel approaches used in
developing program complexity metrics. The first, which
was developed by Halstead,? uses a series of software
science equations to measure the complexity of a program
based on the lexical counts of symbols used. The second
approach, due to McCabe,!! uses graph-theoretic
measures to define a cyclomatic complexity metric. In this
approach, the control structure of a program is mapped
into a structure of nodes and edges according to the
control flow, and the complexity of the resulting graph
is used to provide a measure for the complexity of the
program. The third approach is due to Albrecht,! who
hypothesised that the amount of function to be provided
by an application program can be estimated from an
itemisation of the major components of data to be used
or provided by it. Accordingly, his function-point metric
is based on the count of external user inputs, inquiries,
outputs and master files to be delivered by the develop-
ment project.

Halstead’s software science metrics have been exten-
sively studied, and two excellent reviews have been
written.> ¢ McCabe’s cyclomatic complexity has also
been the subject of popular research, and many
researchers have provided extensions to his metric.
Typical extensions are described in Refs 5, 12 and 15.
Albrecht’s function-point metric is a newer one, but is fast
gaining acceptance in the industry. The IBM Corporation
uses this metric in several divisions for the measurement
of software complexity, the prediction of the number of
source lines in a program, the prediction of expected
future errors and measurement of software productivity,
etc. A comparison of these three metrics in terms of their
ability to measure software productivity has led to the
conclusion that in the areas where it is applicable, the
function-point metric is the best of the three.!4

There have been two noteworthy efforts in the
development of system complexity metrics. The first, by
Yin and Winchester computes metrics based on a
system’s design structure charts.!® The other approach,
due to Henry and Kafura™$®, is based on system
information flow.

It should be noted that the values of Halstead’s metrics
become available only after the coding is done, and
therefore can be of use only during the testing and
maintenance phases. The value of McCabe’s metric is
available only after the detailed design is done. In
comparison with those two program complexity metrics,
system complexity metrics are determined during the
design phase, and thus their utility extends from the
design phase onwards in the software development life
cycle.

In this paper we shall describe the fundamentals
of system complexity metrics, the results of the few
experiments that have been performed to validate them
and some of the application areas where they can be of
use. The only other survey on system complexity metrics
which is currently available in the literature is a short
summary by Ince.!® Program complexity metrics have
been well reviewed, and thus it is not necessary to survey
them further here.

2. YIN AND WINCHESTER’S METRICS

B. H. Yin and J. W. Winchester, of Hughes Aircraft
Company, have developed system complexity metrics
based on analysis of a system’s design structure chart.!?
Metrics which depend on design structure charts can be
useful in identifying sections of a design that may cause
problems during coding, debugging, integration and
modification.

2.1 Metrics definitions

To understand the metrics, consider the design structure
chart given in Fig. 1.

The rectangular boxes represent processing modules,
the convex boxes represent database tables, and the
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arrows represent data and control transfers. The

notations used are as follows.

(@) L=0,1,2,3; levels of the system.

Fori=1,23

(b) N;; number of modules from level 0 to level i.

A;; number of module network arcs from level 0 to
level i.

T; = N;—1; number of module tree arcs from level 0
to level i.

N’;; number of modules and database references from
level O to level i.

A’;; number of module and database network arcs
from level 0 to level i.

T’;; number of module and database tree arcs from
level O to level i.

() AT, =T;—T;,

AA;=A;—A;_,
Ari = T/i_ T'i—l
A=A — A,

These values can be determined from a design structure

chart. Based on them, two types of primary metrics are
defined.
(a) Excluding database references:

Ci=A4,-T,
R, =1-T;/A; = C;/A;;
D;=1-AT;/A4;
(b) Including database references:
C,=4,-T,
R;=1- /A" = C/i/A/z‘
D=1 — AT/ A4,
Additionally, two secondary metrics are also defined.

(@) Fan-in of a given module or database A, the
number of modules that call or directly reference A.

LO

O\

(b) Fan-out of a given module A, the number of
modules that are directly called by A.

For the example design chart of Fig. 1, the values of
the primary metrics are as shown below.

Nl=3; Al=3; Tl=2;
N2=6; A2=8; T2=25:;
N3=8; A3=10; T3=7;
NI'=3; AI'=3; TI'=2;
N2 =7, A2 =10; T2 =6;
N3¥ =11; A¥ =15; T3 =10;

ATl =T1-0=2;
AT2=T2-TI1 = 3;
AT3=T3-T2-2;
Cl=41-T1=1;

A Al = A1—0 = 3;

A A2=A2—A1 =5,
AA3 = A3—A2 =2,
Rl =Cl1 /Al = 1/3;
C2=A2-T2=3; R2=C2/A2 =3/8;
C3=A3-T3=3; R3=C3/43 =3/10;
Dl = 1—ATI/AAl = 1-2/3 =1/3;
D2=1-AT2/AA2=1-3/5 =2/5;
D3=1-AT3/AA3=1-2/2=0;

2.2 Properties and interpretation of the metrics

Metrics like Yin and Winchester’s which assess the form,
structure and complexity of the design, code or
documentation of a system in order to predict future
events involving that system are called predictive metrics.
In the case of Yin and Winchester’s metrics, the metrics
are available from the design phase onwards and hence
can be used to predict such values as the number of errors
the system is likely to have, the time that will be required
to test the system, the time that will be required to correct
errors, and the like.

Ll

AN

L2

C
— T

L3

L4

Figure 1. A sample design structure chart. Taken from Ref. 18, copyright © 1980 - IEEE.
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These metrics are based on two identifiable attributes
of any structured design, namely coupling and simplicity.
Schneidewind!® has defined coupling between modules of
an operating system as the number of arcs in the system.
McCabe!! has stated that program complexity is in-
dependent of the program’s physical size but depends
only on the decision structure of a program.

The C-metric is a measure of the intermodule coupling.
C; is a monotonically non-decreasing function which
indicates the fluctuation of the increment of T; against
A;. This difference of network arcs and tree arcs in the
design from level 0 to level i effectively measures the
network complexity. Its value should be kept as low as
possible. A sharp increase of C; from one level to the next
signals an extreme complexity increase and may suggest
a place for design changes.

The R-metric is a ratio of module coupling to system
size. R; and D; measure the tree impurity at level i. The
distinction between them is that R; measures the tree
impurity of level i against level 0 whereas D; measures
that of level i against level i-1. Values of R; and D; lie
between 0 and 1, with both being 0 for a tree structure
and increasing as the system moves away from a tree
structure.

The definition of level 0 depends on the designer and
metric evaluator in the sense that the top level of a
subsystem of a major system is as good a candidate for
level 0 as the top level of the system itself. When
examining a particular section of a design, if C is high
but R is not, this may indicate that the section being ex-
amined is too large and should be broken into smaller
components. After 5 or 6 levels, R should become more
insensitive to the system. It is desirable to get R to flatten
out at a low value since a low value of R represents a low
C value. D is not sensitive to L. It is better to have only
mild fluctuations in D.

Comparison of primed and unprimed metrics indicates
database activity and dependency. The secondary metrics
can provide an indication of the use of a particular model
or database table in the entire design. High fan-in
suggests low cohesiveness while high fan-out suggests
scope of effect/control problems. They also provide an
indication of the use of a particular module or database
table in the entire design. Modules having high fan-in
should be checked to ensure that they do not perform
more than one function and are not too tightly coupled.

Yin!® has described a software design and testability
analysis system developed at Hughes which is configured
for the AMDAHL/470 and accessible via a HP2648A
graphics terminal. The first part of this system is a
structure chart graphics system which allows designers to
draw and modify structure charts and have the design
stored in the database. The second part, called the design
quality metrics system (DQM), accesses this database
and Fig. 2 shows typical DQM output.

In the example of Fig. 2, the C-curve suggests a
complexity increase between levels 2 and 4 as well as high
connectivity among modules at those levels. The R-curve
suggests high fan-in or high connectivity between
modules at levels 2 and 4. The oscillations in the D-curve
indicate the addition of a number of new modules at
about every other level. The D-value is high at level 7, but
the fact that R flattens out after level 5 indicates that
compared to the size of the system, very few non-tree arcs
have been added after level S. This shows that level 7 is

1.0000 T T T T T T
0.9000
0.8000
0.7000
0.6000
0.5000 -
0.4000
0.3000
0.2000
0.1000 |
0.0000 1 1

L L
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
Structure level

Figure 2. Example graphics output from DQM. Taken from Ref.
18, copyright © 1980 — IEEE.

not really a problem. All three metrics point to the same
place, namely between level 2 and level 4, as a potential
problem area for more intensive inspection.

2.3 Validation of the metrics

These metrics have been in use at Hughes Aircraft
Company for some years now, and all reports indicate
their success in pinpointing error-prone areas in the
design which could cause problem in subsequent life-cycle
phases. One of the first validations of the metrics was
done on two projects completed at Hughes in the late
seventies. The first was a large software project
containing over 1,000 modules, while the second was
considerably smaller. Twenty-seven primary metric
calculation charts representing 159 of the design were
produced for project 1 and three charts representing the
complete design were produced for project 2. Validation
was done by performing trend and correlation analyses
between the program error data and metric calculations
under the assumption that a good design should yield
low-error software.

In attempting to validate the metrics, the first step was
determination of the correlation between R and number
of errors, and between C and number of errors. For all
27 charts of project 1, a consistently high correlation was
found between R; and number of errors from level 0 to
level i (NE;), and C; and NE; (all except one with
correlation coefficient greater than 0.6 and most with
correlation coefficient greater than 0.9). Correlations
between C; and NE; were generally higher than those
between R; and NE; because both C; and NE; are
monotonically increasing functions. Although R; is not
monotonically increasing, it attains an asymptotic value,
and the probability of reaching this value increases with
the number of levels. For those subsystems with over 10
levels, the correlations were close to 0.97. Thus there was
clearly an association between C and number of errors,
and between R and number of errors.

Computing correlations between the final C value and
the total number of errors in the system gave correlation
coefficients of 0.98 for the 27 subsystems of project 1 and
0.99 for 3 subsystems of project 2. This confirms a design
guideline that C should be kept as low as possible to
reduce the total number of errors in the system.
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Another validation test performed was the trend
analysis between D; and F;, which is the number of errors
in level i divided by the number of modules in level i.
Recall that D; measures the tree impurity between levels
iand i-1. A statistical test was performed to determine if
D, and F; have the same trend from one level to the next.
It was found that for subsystems with a reasonably large
number of levels the association between D; and F; was
mildly significant. The trend analysis also showed that
the general trend of number of errors in modules at level
i can be predicted from D;.

The design and testability analysis system developed at
Hughes also contains a testability analysis system. It
isolates design areas that can be independently tested,
singles out the modules that destroy the independence
between areas, produces a hierarchy of independent tests
based on this analysis and produces a measure of
difficulty of the test based on the complexity of
interactions between modules. Thus the complete system
identifies the error-prone areas in the design, identifies
the difficult-to-test areas by measuring testability and
provides a measurement of software quality in terms of
reliability, maintainability and testability.

3. HENRY AND KAFURA’S METRICS

Whereas Yin and Winchester’s work focused on the
interface between the major levels in a large hierarchically
structured system, Henry and Kafura’s work? ® uses the
information flow approach. Their approach is much
more detailed because it observes all information flow
rather than just flow across level boundaries. It has
another major advantage in that this information flow
method can be completely automated. This is unlike
other information-theoretic concepts like Channon’s,?
where each assumption of each procedure must be
explicitly determined.

It has been argued by the authors of this technique that
it is an appropriate and practical basis for measuring
large-scale systems. The major elements in the informa-
tion flow analysis can be directly determined at design
time, thereby allowing any corrections in the system
structure with the minimum cost. Also, by observing the
patterns of communication among system components,
it is possible to define measurements for complexity,
module coupling, level interactions and stress points in
the design. These critical system qualities cannot be
derived from simple lexical measures. Furthermore, this
technique reveals more of the system connections than
other ordering relations such as ‘calls’, ‘uses’ and
‘dependency’.

3.1 Metrics definition

The following definitions” are required to understand
and describe the ideas of information flow precisely.

Definition 1. There is a global flow of information from
procedure 4 to procedure B through a global data
structure D if A deposits information into D and B
retrieves information from D.

Definition 2. There is a local flow of information from
procedure 4 to procedure B if one or more of the
following conditions hold:

* Taken from Ref. 8, copyright © 1981-1EEE.

——————

e —_——

Figure 3. A sample flow diagram. Taken from Ref. 8, copyright
© 1981 - IEEE.

(1) if A calls B,

(2) If B calls A and A returns a value to B, which B
subsequently utilises, or

(3) if C calls both 4 and B, passing an output value
from A to B.

Definition 3. There is a direct local flow of information
from procedure 4 to procedure B if condition (1) of
definition 2 holds for a local flow.

Definition 4. There is an indirect flow of information
from procedure A to procedure B if condition (2) or
condition (3) of definition 2 holds for a local flow.

In order to understand the metrics, consider the flow
diagram of Fig. 3 taken from Ref. 8.

Fig. 3 shows six modules, 4 to F, a data structure DS,
and the connections among them. Module A4 retrieves
information from DS and then calls B, which then
updates DS. C calls D, which calls E and E returns a value
to D which D utilises and passes to F. F updates DS.

Informally, the direct local flows of information
generated here are

A—B

C-D
D—-E
D—->F
These flows are simply the ones observed in the calling
sequence. The indirect local flows of information are
E->D
E->F

E — D results when E returns a value used by D and
E — F results when D passes information received from
Eto F. This is the information flow where no control flow
exists. There also exists a flow of information through the
global data structure DS again without a control flow.
These global flows are

and

B—- A

F— A.

Note that these flows are not affected by the syntax of the
source language being used. Also, no distinction is made
between a flow of information established by a passed
parameter and one established by a shared global data
structure. Computation of all information paths is easy
once the flow of information is available for each
procedure in a source-target type of relationship. If
sufficiently precise design language is used these relations
can be generated from the design code and the infor-
mation flow analysis can be done at design time.
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Based on these information flows, Henry and Kafura
defined a metric to determine the complexity of a
procedure. This complexity depends on two factors: the
complexity of the procedure code and the complexity of
the procedure’s connections to its environment. A simple
length measure (the number of lines of text in the source
code of the procedure) was used as an index of the
procedure code complexity. (It is pointed out, however,
that Halstead’s length measure or McCabe’s cyclomatic
complexity may be substituted for it and they may
improve upon the accuracy.) The procedure’s connec-
tions with the environment can be expressed as some
measure of fan-in and fan-out of the procedure.

The complexity metric of a procedure is then defined as

length*(fan-in*fan-out)2.

The product fan-in*fan-out represents the total possible
number of combinations of an input source to an output
destination. The weighing of this component is based on
the belief that the complexity is more than linear in terms
of the connections which a procedure has to its
environment. After the detailed design is done, the value
of fan-in*fan-out is known. The code length is only a
weak factor in the complexity measure and hence may be
substituted by an intelligent estimation.

The procedure complexities are used to establish
module complexities. A module with respect to a data
structure D consists of those procedures which either
directly update D or directly retrieve information from
D. The complexity of a module is defined to be the sum
of the complexities of procedures within the module.
Another interesting measurement easily calculated for a
given module is the number of paths of information
possible among its procedures through the module’s data
structure. The formula used to calculate the number of
global flows is

(writexread) + (writexread _write) + (read _writexread)
+ (read _writex(read _write — 1))

where ‘read’, ‘write’ and ‘read _write’ are the number of
read-only, write-only and read _write procedures of the
module respectively.

3.2 Utility of the metrics

The procedure and module complexities which are
available after the design phase can be utilised to improve
the design and reduce the complexity of software
development tasks in subsequent phases of the life cycle.
The procedure complexities can reveal three potential
problem areas in a given procedure.

(1) Lack of functionality. A high fan-in and fan-out
reveals a large number of connections of a procedure to
its environment, indicating that it may perform more
than one function.

(2) Stress point in a system. A high complexity shows
a stress point in a system. That is, it indicates a high
information flow through that procedure. At such a stress
point it is difficult to implement changes to the procedure
because of the large number of potential effects on its
environment and on other procedures.

(3) Inadequate refinement. A high fan-in or fan-out
may indicate a missing level of abstraction in the design
process. Perhaps the procedure should be divided into
two or more procedures.

The global flows and the module complexities can
show four areas of potential design or implementation
difficulties for the module.

(1) Poorly refined (i.e. overloaded) data structure.
Overloading may be avoided by redesigning the data
structure to segment it into several pieces.

(2) Improper modularisation. It is desirable that a
procedure be in one and only one module. Violations of
this property can be found when computing the module
complexities.

(3) Poor internal module construction. High global
flows and a low module complexity indicate poor internal
module construction. This indicates that many pro-
cedures access the data structure directly but there is
little communication among them.

(4) Poor functional decomposition. A low global flow
and high module complexity indicate a poor functional
decomposition within the module or a complicated
interface with other modules.

3.3 Validation of the metrics

Henry and Kafura validated their metric by evaluating
version 6 of the UNIX operating system. When doing the
complexity calculations, procedures written in assembly
language and certain ‘memoryless’ procedures which do
not communicate information across successive invoca-
tions and thus terminate an information flow path were
not considered. Only the non-trivial modules of UNIx
were examined. The hypothesis used for validation was
that the complexity metric is highly correlated with the
occurrence of system changes.

It was found that one data structure U of UNIX was
heavily overloaded with 3,303 global flows. The module
corresponding to U contained 84 procedures. The
primary reason for this is that a function of this structure
is to pass error codes across levels in the system. It was
discovered that for all but one module, at least 859, of
the module complexity was attributable to the three
largest procedures.

Improper modularisation was clearly visible in this
experiment. One goal of modularisation is to ensure that
a procedure belongs to only one module. If a procedure
violates this principle, it is more error-prone due to its
connections with more than one module. It was found
that 38 out of 53 (729,) procedures belonging to more
than one module were included in the list of procedures
in which changes occurred. On the other hand only 42
out of 112 (389 ) procedures that belonged to only one
module went through changes.

The authors considered four factors: length,
(length*%2), (fan-in*fan-out) and (fan-inxfan-out)**2,
and wanted to determine which of them contributes most
to the complexity correlations. They found that
(fan-in*fan-out)**2 is an extremely good indicator of
complexity, having a correlation coefficient of 0.98 with
changes incurred.

It should be noted that a wide range of measurements
can be derived from information flow. One example refers
to a design goal to minimise connections among modules.
The information flow metrics can recognise ‘content’
coupling and ‘common’ coupling®? fairly easily. Content
coupling which addresses direct references between
modules is equivalent to the direct local flows. Common
coupling refers to the sharing of global data structures
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and is equivalent to the global flow. A high coupling
between two modules indicates that a substantial change
in one module will quite likely force changes in the other
also. Thus coupling provides a measure of modifiability.

Information flow metrics which include procedure,
module and interface measurements help in locating
potential design and implementation weaknesses. Al-
though not many large systems are evaluated, it seems
that this is a good technique for measurement of software
quality for large systems.

4. CONCLUSIONS

The study of system complexity metrics has not received
as much attention as the area of program complexity
metrics. Whereas program complexity metrics have been
subjected to a considerable number of experimental
studies for their validation, the same is not true of system
complexity metrics.
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