System Design for the Remote Execution of Library Routines

B. TEUFEL

Department of Computer Science, Swiss Federal Institute of Technology (ETH-Ziirich), CH-8092 Ziirich, Switzerland

In general the users of personal computers are unable to call library routines — as available on mainframes — from their
application programs. Therefore it is necessary to integrate the personal computers into a heterogeneous network with
mainframes and to make communication software available to the users of personal computers. This software has to
provide a transparent interface, thus allowing conveniently the remote execution of library routines. The subject of this

paper is how to design such software for a distributed system.

Received September 1985

1. INTRODUCTION

The successful use of personal computers in a scientific
environment depends very much on the available
software and the peripheral interfaces of the system. For
most of the personal computers on the market today
there are application programs available which allow
communication with peripheral devices or which support
memory and file management. In addition many
comfortable program packages, e.g. document editors,
are provided.

Unfortunately no possibility exists for the users of
personal computers to access subroutines from program
libraries like IMSL! or Linpack? libraries which are well
tested and highly reliable. There are of course PC
versions of the most popular libraries available. But these
PC versions are always reduced versions providing only
a part of the breadth of function. The described PC
environment is not sufficient — even though it is com-
fortable in some areas — for those users, who exploit the
functionality of program libraries on mainframes. These
users should be able to use on the one hand the comfort
of a modern PC and on the other hand the customary
possibilities of the mainframe. This requires:

- the integration of the PC into a heterogenous
computer network;

— the disposal of network software.

In particular, every user whose PC is integrated into a
heterogeneous network must have the possibility of
accessing program libraries residing on other computers
of the network, thus being able to work in a real
distributed environment, i.e. to execute a program on
different computers and so in different address spaces.
This presumes a highly transparent interface, which must
offer the same calling syntax for a remote library
subroutine as for a local procedure call. This means that
most of all the communication and transfer problems
must be hidden from the user.

2. MOTIVATION AND BASIC
REQUIREMENTS

What possibilities has the user for the subsequent treat-
ment of data calculated on his PC? There are three:

— if the user has a reduced version of a program library
available on his computer, he will probably find the right
program;

— if he has no such library or if he cannot find the
desired program, perhaps he will program the function
needed;

254 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

— if the user has access to a file transfer program
connecting his PC to a mainframe on which the desired
program library is available, he can transfer the data for
processing on the mainframe.

The last of the three possibilities is not as easy as it
seems, because the user has not only to transfer the data
from the PC to the mainframe; in general he has to
convert the format of his data; then he must have a
program for the subsequent treatment of the data on the
mainframe; finally he must reconvert the results before
transferring back to the PC. Obviously this is not a trivial
task.

Therefore the user should be able to call from his
application programs on the PC library routines which
exist and will be executed on a mainframe. It is necessary
for him to perform such a call in a transparent way. This
means that the call must be based on a task, doing the
data conversion, the data transfer, and most of all the
control of communication with the mainframe.

A system allowing the remote execution of library
routines has to fulfil two general requirements:

— first, it must be general in the concepts used, so
allowing easy change of system environment;

— secondly, it must be special in the given system

environment.
Of course these two requirements seem to be contra-
dictory. The designer of such a system has to find a way
to combine these two opposed statements, as will be
described later.

For the following description it is assumed that the
user of the PC can connect his PC to a computer
network, for example in the simplest way via an RS 232
interface. Hence it is further assumed that he can
communicate with the network and the mainframe by
using ASCI character sequences. Then a system which
allows the remote calls of library routines may be seen as
an application program, belonging to the seventh
layer — the application layer — of the ISO Reference
Model for Open Systems Interconnection (OSI).3:4

3. STRUCTURES OF THE
COMMUNICATION SERVERS

By calling a procedure associated with another computer,
it is always necessary to open a session between the two
computers involved using a communication medium.
Then the parameters must be transferred. After doing
this the called computer and then the server running on it
are able to call and execute the desired procedure. The

¥20¢ I4dy 0z uo 1senb Aq 09/19¢/752/€/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

SYSTEM DESIGN FOR THE REMOTE EXECUTION OF LIBRARY ROUTINES

called computer informs the one calling when the
execution of the procedure has finished in order to prepare
the transfer of the results.> On the local machine, i.e. on
the calling PC, the program execution then has to be
continued in the same way as it will be continued after
a single-machine procedure call.® This principle will be
found on all procedure calls, involving more than one
computer. It shows that the remote call and execution of
library routines is a synchronous program-driven
transfer of control between programs working in
different address spaces.

Users
Application
Program

Called
Subroutine

Local
Communication
Server

Remote
Communication
Server

Network

Fig. 1. Communication and data flow paths for the remote

execution of procedures. —, Communication path; —, data
flow path.
Application Library
Server Server
program modules
(LCS) (RCS)
7 %
Operating Netw9rk
system communication| Operating system
system
Personal computer 4 7) Mainframe

Fig. 2. System structure of ICARUS.

As discussed by B.J. Nelson, there are five crucial
issues in the mechanisms of remote procedure calls:
uniform call semantics, binding and configuration,
strong typechecking, parameter functionality, and con-
currency and exception control.” These issues are
elaborated and a set of properties for remote procedure
call mechanisms are defined. Although this was performed
for mechanisms which are fully and uniformly integrated
into a programming language for a homogeneous
distributed system, Nelson’s remarks are useful for the
design of our system (a system which is not integrated
into a programming language and which has to work in
a heterogeneous environment).

It is not trivial to structure distributed programs and
there have been many proposals to do this.® In Fig. 1 the
basic communication and data flow paths are shown,
which were used for the remote execution of library
routines in a distributed computer system. The user only
knows the communication path between his application
program and the called library subroutine. Parameters
which he wants to transfer to a library routine go

‘physically’ at first to a so-called Local Communication
Server. This Local Communication Server (LCS) trans-
fers the parameters via the network to the Remote
Communication Server (RCS). Finally this server calls
the subroutine and transfers the parameters to the called
subroutine. The embedding of these servers into a real
system is shown in Fig. 2 describing the system structure
of the prototype system ICARUS.

PBuilder

HPProcs

[VAX
- HP9000

onversion

Coder

[g |
| siandier|
sandter|

Network-

Handler HPCall

Login-

Handler HPLogin

rror-
Handler

HPError

Line- l

Handler | Monitor I

Fig. 3. Local Communication Server.

Both communication servers must have a modular
design. This is specially indispensable for the LCS, for
being able to expand the system to new hosts. Fig. 3
shows that the Line-Handler of the LCS can be designed
independently. But the Coder, the Network-, Login-, and
Error-Handler have to import host-specific procedures.
The modularisation of the RCS in a UNIX environment
is shown in Fig. 4. Both concepts are realised with
ICARUS running on the Lilith personal computer® and
the Hewlett-Packard HP 9000 as the mainframe. A
detailed description of ICARUS has been reported in
Ref 10. As mentioned above, the syntax of a call to
a procedure with the object code residing on another
computer should be the same as for local procedure calls.
This could either be done by integrating the communi-
cation process into a programming language or by
reducing the problem of the remote execution of
arbitrary routines to the remote execution of a
well-known set of library routines. If additionally a
programming language is used which allows good
modularisation, e.g. by providing import and export
structures asavailablein MODULA-2,!1it will be possible
to offer a calling syntax which does not differ from local
procedure calls.

The necessary data transfer must be controlled by a
protocol. Because general concepts are to be used it must
be recognised that the data transfer occurs physically
over lines to terminals. This means that the terminal as
well as the underlying operating system interprets some
control sequences. Therefore we can transfer binary data
only when it is coded into printable ASCII characters.

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 255

¥20¢ I4dy 0z uo 1senb Aq 09/19¢/752/€/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

B. TEUFEL

Shellscript Terminal configuration

Main module of the

|
I I 1

Data- Storage Error-
Call-Handler Handler management Handler
Procedure Receiving Dynamical Transfer and
Call Sending storage execution errors
Decoding management
Coding of the

parameter data

Interrupt- l User-]
Handler _procedures
Line control Library or

user-defined subroutines

Fig. 4. Remote Communication Server.

Now the transfer protocol is responsible for building
data packets and for calculating a checksum. Moreover,
there must be a handshake mechanism for the correct
communication.

4. PROCESS SYNCHRONIZATION

The establishment of a session between the involved
computers should be done with simple communication
mechanism. Such mechanisms can be divided into
synchronous and asynchronous ones.!2 For the definition
of a system allowing remote subroutine execution it will
be advantageous to use synchronous communication
mechanisms. This gives the system designer better
possibilities for error detection, especially in the case
when one of the involved computers is shut down during
an open session.

To establish a session between two computers three
steps have to be executed:

- configuration of the network interface;

— addressing the host through the network address;

- logging in at the host.

For the configuration of the network interface one has to
analyse and if necessary store the present status of the
interface module. Analysing the interface means setting
the parameters of the network in a useful way. All this,
as well as the addressing of the host, can be done with
special network commands that should be provided by
the network. In addition the network should send error
messages in the case of incorrect situations. But the
designer of such a distributed system should know that
situations may occur where the network does not
respond to any action. These situations can only be
detected using timeout variables. Obviously the setting
of these timeout variables depends on the system
environment.

More complex and dependent on the host is the third
step: the login. Unfortunately there is no standardisation
for the login procedures of different computers even
when run on the same operating system, e.g. UNIX or
VMS. Therefore the system designer has to analyse the
login structure of each computer he wants to integrate

256 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

Remote Communication Server

into his distributed system. Additional to this there exist
numerous exceptional situations.!> Some of these
exceptional situations can again be detected only by
using timeout variables. The system designer should
know that the more he is forced to use timeout variables,
the greater the probability that the system performance
will be reduced.

When all the basic operations have been performed the
essential communication with the host can be started.
After the successful login we have to set the configuration
of the terminal. Here one of the arguments for the second
basic requirement postulated in Section 2 appears. From
the viewpoint of the program system on the PC each
integrated host is unique. All hosts must have only a
common interface to the PC program system. But this
interface can be realised on each host in a very
system-dependent way. Especially when the host runs for
example under a UNIX operating system, there will be
many tools available which allow a convenient definition
of the interface.

After the configuration of the terminal we have to start
the RCS, providing a controlled communication base.
Depending on the workload of the host, the terminal

Q

=
o
o]
Q
®
Q
=8
o

3
>

configuration and the start of the RCS take different time =

intervals at different moments. Therefore the RCS sends
a synchronising signal to the waiting LCS. A waiting
LCS does not imply that the PC must wait until the

synchronisation is done. One can assume that it is also =

possible that other calculations can be done in parallel.

2]
=
o
oY)
(o}
]

6.
o
C

But this depends highly on the operating system >

(multi-tasking) and the hardware interface (the question
whether the physical interface generates interrupts or

o)
3

=
o
o

not). Obviously it is not only the time interval till%

synchronisation that can be used on the PC for further
calculations, but also the time interval when the host is
executing the desired library routine. This will lead to
real distributed and parallel computing.

Receiving the synchronising signal, the LCS knows
that the RCS is ready to receive the parameter data.
Therefore the local server starts the transfer and both

packet. This allows a very quick detection of system
failures.

5. ERRORS

As mentioned above, there are many situations produc-
ing errors. Thus the user must be able to have access to
status variables where he can detect whether an action is
correct or not. But in the case of an error at first the
system has to try to cancel the error. This can be done
for example if a checksum error occurred by the data
transfer. Only if there is no success for the system in
cancelling the error, a status variable must be set. The
user of the system has then to decide what should be
done.

There can arise numerous exceptional situations while
transferring the data or while the host is executing the
library subroutine. Hard errors, i.e. errors by which the
two communication servers can no longer synchronise,
must lead to a break of the session between the
computers involved. In such a situation it is absolutely
necessary for both computers and the line between them
to be left in a defined way, thus allowing a new session
to start. Because it is possible that both computers could

=
o
=
o

o)
o

€/¥S2/E/0E

(o]
SN

dy 0z uo 1senb Aq

=
N
o

N
N

SYSTEM DESIGN FOR THE REMOTE EXECUTION OF LIBRARY ROUTINES

be shut down during an open session, it is indispensable
that both computers control each other and are able to
close the session. Here it is still the same situation as
described above: most of the exceptional situations can
only be detected by using timeout variables.

6. DATA TRANSFER

What kind of data must be transferred between the two
servers? On the one hand it is the name of the desired
library subroutine and on the other it is the parameter
data. Because we already know the names of all
executable library routines, we can use a simple coding
for the names.

Now to the parameter data. The main axiom for the
data transfer in such an environment is that the control
and coding overhead has to be reduced. In general the
data must be converted from the PC data format to the
host data format and vice versa, because we are working
in a heterogeneous environment. Thus the designer of
such a distributed system must have an excellent
knowledge of the data representation on the involved
computers. After converting the data we must be sure
that we only transfer printable characters, as explained
above. How to do this? One can either convert the binary
data into hexadecimal presentation, or one can use a
three-to-four coding algorithm as described in Ref. 10.

The protocol of the transfer session can be defined as

REFERENCES

1. IMSL, International Mathematical and Statistical Library,
Reference Manual. IMSL, Houston (1982).

2. J.J. Dongarra, C, B.Moler, J.R.Bunch and G.W.
Stewart, Linpack — Users’ Guide. SIAM, Philadelphia
(1979).

3. ISO/TC97/SC16, Open Systems Interconnection, Basic
Reference Model, Draft Proposal, 1SO/DP 7498
(1980).

4. ISO/TC97/SC16, International Organization for Standard-
ization, Draft Transport Service Specification, 1ISO/TC97/
SC16 N563 (1980).

5. S. K. Shrivastava and F. Panzieri, Reliability Aspects
of Remote Procedure Calls. Tutorial paper, Uni-
versity of Newcastle upon Tyne Computing Laboratory
(1984).

6. A. D. Birrell and B.J. Nelson, Implementing remote
procedure calls. Transactions on Computer Systems, ACM,
2, (1), (1984).

7. B.J. Nelson, Remote Procedure Call. Department of

follows: at first a so-called procedure header is
transferred. The contents of this header can be the name
of the subroutine which should be called, and for
example the dimension of variable arrays. This header is
followed by data packets of a size of 64 bytes for
example. This is a packet size found by experiment with
our prototype system. Each packet which is transferred
is acknowledged by the host. Finally the result
parameters were transferred in the same way. The
difference is only that the procedure header can then
contain an error message.

7. CONCLUSION

For the professional usage of personal computers in a
scientific environment it is necessary to have access to
libraries residing on mainframes. Otherwise the personal
computers will not be a powerful aid in the field of
scientific computation — they will be degraded to a kind
of typewriter. Therefore this paper is to be considered as
a base for a system designer, showing how to structure
a simple distributed system for the remote use of library
subroutines. The modularising concepts which were
shown for the two communication servers demonstrate
that it is possible to divide problems of distributed
computing into clearly defined functional units. That
these concepts are working well has been proved with the
prototype ICARUS.1°

Computer Science, Carnegie-Mellon University, CMU-
CS-81-119, Pittsburgh, (1981).

8 B. Liskov, Programming Languages: Issues in Process and
Communication Structure for Distributed Programs. Brown,
Boveri & Co. 1985 Symposium on Computer Systems for
Control Processes, Baden, Switzerland.

9. N. Wirth, The Personal Computer Lilith. ETH-
Ziirich, Institut fir Informatik, Report No. 40, Ziirich
(1981).

10. B. Teufel, ICARUS —ein System zur nicht-lokalen Pro-
zedurausfithrung. Angewandte Informatik 27 (7) (1985).

11. N. Wirth, Programming in MODULA-2. Springer-Verlag,
Berlin, (1983).

12. S. M. Shatz, Communications mechanisms for program-
ming distributed systems. IEEE Computer 17, (6) 21-28,
(1984).

13. P. Beck et al., Ubertragung von Dateien in einer heterogenen
Rechnerumgebung — Entwurf der Arbeitsgruppe fiir File-
transfer. ETH-Ziirich, Ziirich (1982).

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 257

cp1 30

¥20¢ I4dy 0z uo 1senb Aq 09/19¢/752/€/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

