ALOGRITHM SUPPLEMENT

Algorithm 123

SINGLE TRANSFERABLE VOTE BY MEEK'S METHOD

L. D. HILL!, B. A. WICHMANN2 and D. R. WOODALLS3

! Clinical Research Centre, Harrow, Middlesex, HAl 3UJ
% 5 Ellis Farm Close, Woking, GU22 9QN

® Department of Mathematics, University of Nottingham, Nottingham NG7 2RD

Received 17 October 1985, in final form 13 May 1986

1. INTRODUCTION

The single transferable vote (STV) method of conducting an
election exists in a number of different formulations in different
countries. Most of the methods are designed to be practicable
when counting is by hand, and this necessarily enforces
simplicity even at the expense of not always getting the best
possible answer.

Meek!2 considered the question of the best possible method,
within the STV framework, when a computer is available to do
the counting, and it is his method that we present here. The
method was rediscovered, in a different formulation, by
Woodall.* However, neither Meek nor Woodall dealt with
certain detailed points, such as how to resolve a ‘tie’, so we have
had to extend the system to be complete. The algorithm as given
here has been adopted by the Royal Statistical Society for its
Council elections.

The basis of any STV system consists of the following. (1)
Voting by order of preference of candidates, the first choice
being marked 1, the second 2, and so on, on the ballot papers.
(Meek also considered an alternative formulation in which
voters would be allowed to indicate equal preference for some
candidates instead of a strict ordering; we have not
implemented this alternative.) (2) A quota for election,
calculated from the number of votes and the number of seats
to be filled. (3) A first counting by first preferences only, and
the election of any candidate who equals or exceeds the quota
(except in the special case of a multi-way tie). (4) Redistribution
of surplus votes (above the quota) for any candidate, in
accordance with the voters’ further preferences, and election of
any who now reach the quota. (5) When no further
redistribution of surpluses is possible, the exclusion of the
candidate who then has the fewest votes, and redistribution of
those papers. (6) Further counting, election, redistribution of
surpluses and exclusion as necessary, until all seats are filled.

In the Meek formulation the rule for redistributing surpluses
is that, at every stage, if a candidate has votes totalling k times
the quota, then he (or she) keeps 1/k of each of those votes and
passes (k—1)/k on to the next candidate on the voter’s list. This
same fraction applies also to portions of votes received as parts
of other surpluses. This requires the iterative solution of
non-linear equations. It is proved in Section 4 below that a
solution always exists and is unique.

It should be emphasised that the results will not always be
the same as by manual counting methods. The algorithm
deliberately uses the power of the computer to get better results
than are easily achievable by hand.

2. THE SPECIFICATION

2.1. At each stage, each candidate is in one of three states,
designated as ‘elected’, ‘excluded’ and ‘hopeful . At the start
every candidate is in the hopeful state.

2.2. At each stage the votes are scanned, and the one vote
allowed to each voter may be split into parts that are assigned
to the various candidates according to the voter’s choices. At
the first stage the whole of the vote goes to the first choice — this
follows automatically from the operation of rules 2.1 and 2.3.

2.3. Each candidate, x, has an associated weight, w,, and
keeps a proportion w, of each vote or part of a vote received,

while passing on to another candidate (as specified by the
voter’s choices) a proportion 1—w,. Every hopeful candidate
has weight 1, and therefore keeps everything received and passes
nothing on. Every excluded candidate has weight 0, and
therefore keeps nothing and passes everything on. Elected
candidates have weights between 0 and 1, to be calculated by
rule 2.5.

2.4. Thusif someone has voted for candidate a as first choice,
b as second, ¢ as third, and no more:

a receives from that voter w, of a vote
b receives from that voter (1—w,)w, of a vote
¢ receives from that voter (1 —w,)(1 —w,)w, of a vote

A fraction (1—w,)(1—w,)(1—w,) remains and this goes to
‘excess’. (Note that if a hopeful candidate appears in the list,
all the fractions beyond that point automatically become 0).

2.5. The quota is defined as (total votes - total excess)/
(number of seats + 1), and the weights for elected candidates are
found such that the total vote remaining with each of them
equals the quota. This is done by the convergent iterative
scheme specified in rule 2.9.

2.6. The weights having been found, the resulting total votes
for each hopeful candidate are examined, and any candidate
whose total votes equal or exceed the quota changes state from
hopeful to elected (except in the special case where all the
hopeful candidates either have zero votes or exactly equal the
quota. In this case all those with zero votes are excluded, one
other is excluded by a pseudo-random choice and the others are
elected).

2.7. If no candidate were elected under rule 2.6, then the
hopeful candidate with the fewest votes changes state from
hopeful to excluded. Any tie is resolved by a pseudo-random
choice.

2.8. If the total number of elected candidates is equal to the
number of seats, the election is complete. Otherwise the process
is repeated from rule 2.2.

2.9. The convergent iterative scheme is as follows: set w;
equal to 0 for excluded candidates, 1 for hopeful candidates,
and their last calculated values w for elected candidates.
(Immediately after election of any candidate the last calculated
value is | initially.) Applying rule 2.3, using these weights, let
v; be the total value of votes received by candidate j and let e
be the total excess. Using this value for e, calculate the new
quota g using rule 2.5. Finally update the weights for elected
candidates to values w} = w?q/v;,. Repeat the process of
successively updating v;, e, ¢ and w; until every fraction ¢/v;,
for elected candidates, lies within the limits 0.99999 and 1.00001
(inclusive).

3. THE PROGRAM (by I. D. HILL and

B. A. WICHMANN)

We have allowed for up to 40 candidates, but the necessary
change to allow a larger number is trivial.

3.1. The data

The data file should be held on disc, or other device that allows
quick ‘rewinding’, because it has to be read many times during
program execution.

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 277

¥20Z I4dy 60 U0 1senb Aq 21819¢///2/€/0¢/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

ALOGRITHM SUPPLEMENT

Its form should be as follows:

4 2
-2

WNN A ——
SO —wWww
W N A
SO O

S =N —= N hWw
N W
—
(=}

“Adam”
*“Basil
“Charlotte™
“Donald”
“Title”

The first line means that there are 4 candidates for 2 seats.
The second line means that candidate number 2 withdrew before
the count. As many candidates as necessary may be included
in this line, each preceded by a minus sign. If no candidate
withdrew, the line should be omitted entirely. The third line
means that 3 voters put candidate 1 first, candidate 3 second,
candidate 4 third, and no more. Each such list must end with
a zero. The final zero ends the votes. The subsequent lines name
the candidates, in the order of candidate numbers as used in the
votes, and finally give a title for the election. If any of these
names, or the title, is longer than 20 characters, only the first
20 will be used.

For elections on any substantial scale, further programs are
desirable to get the data into this required form. Machine-
readable ballot papers would obviously be a great help if a
suitable system can be devised.

3.2. Ties

The only ties that can occur in this system are as follows. (1)
If n+ 1 candidates all exactly equal the quota, where only n seats
are available. One of these candidates must then be excluded
(together with all other candidates, who necessarily have zero
votes) and the other n elected. (2) If the candidate with fewest
votes must be excluded and two or more have equal fewest. In
both these cases a pseudo-random procedure is used, on the
grounds that ‘if they are equal, they are equal’ and any
procedure to choose one must be arbitrary. Alternatives are
sometimes recommended, such as excluding the one who had
fewer votes the first time they were different, or the last time they
were different, or whatever, but such rules add much
complication for no real advantage, so simplicity is preferable.

The pseudo-random generator is derived, with permission,
from Applied Statistics algorithm AS 183.% This needs three
seeds to initialise it, and these are formed from data items for
the particular election. This leaves it sufficiently nearly random
that nobody can manipulate it to favour a particular candidate,
yet has the advantage that, for a given election, there is always
a unique result. Running it on a different day, or using a
different computer, will make no change — in the unlikely event
that a random choice is needed, the same thing will always
happen for any given data set. If a tie does occur and a random
choice has to be made, a warning message is printed.

It should be emphasised that a tie that actually influences the
result is a very rare event.

3.3. Partial abstentions

There is no compulsion on voters to give a complete listing of
candidates. They may stop short if desired. If they do so and
the use of their vote ‘runs off the end’ we allow it to do so, but
adjust the quota to allow for the fact that there are now fewer
remaining usable votes. This treats the partial abstention in
such a way as to be fair to all remaining candidates.

This usage is different from that adopted in most manual
counting systems where, under such circumstances, votes are

278 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

divided into *transferable’ and ‘non-transferable’ and no quota
adjustment is made. We are convinced that, within Meek’s
system, our approach is right, but it has to be made clear that
we are in dispute over this with the council of the Electoral
Reform Society. We have held up publication of the algorithm
in the hope of resolving the difficulty, but now feel that we can
wait no longer. Unfortunately, it is therefore necessary to warn
potential users that they may be told by others that our method
is undesirable in this particular.

3.4. Language

The algorithm is presented in standard Pascal. On some
machines small, non-standard, changes may be required in the
method of accessing the data file. We have used upper-case
letters for Pascal word-symbols, lower-case or mixed-case for
identifiers.

4. PROOF OF EXISTENCE AND UNIQUENESS (by
D.R. WOODALL)

We prove in this section that the equations that need to be
solved at each stage of Meek’s method have a unique solution.

At each stage, each candidate is in one of three states, called
‘elected’, ‘excluded’ and ‘hopeful’. It is explained in Section 2
how a candidate arrives in one of these states; but for the
purposes of the formal proof it is irrelevant: we may suppose
that each candidate is assigned to one of these states at random,
subject to the condition that the number m of ‘elected’
candidates is non-zero and does not exceed the number s of seats
to be filled: 1<m<s. We also require the following
non-triviality condition: there is at least one ballot paper that
contains the name of a ‘hopeful’ candidate in its list of
preferences. These conditions would certainly be fulfilled in a
real election (in which no equation needs to be solved until some
candidate is declared ‘elected’).

Let the ‘elected’ candidates be C,, ..., C,,. Let the weight
assigned to candidate X (as in Section 2.3) be w,, (0 < w x < D).
Since each ‘excluded’ candidate always receives weight 0 and
each ‘hopeful’ candidate receives weight 1, the assigned weights
are specified uniquely by the m-vectorw = (w,, ..., w,,), in which
w; is the weight assigned to C; for each j(j =1, ..., m).

In the situation described by the m-vector w, let V(w) denote
the vote for candidate X (that is, the sum of the part-votes that
X receives from all the electors); for convenience, write Ve, (w)
as V; (w). Let E(w) denote the total excess vote, and define the
quota Q(w) to be (V—E(w))/(s+1), where V is the total
number of votes (ballot papers). The effect of the non-
triviality condition mentioned above is to ensure that
O(w) = 1/(s+1) > 0 for all w, since if a ballot paper contains
the name of a ‘hopeful’ candidate among its preferences then
no part of that vote can be lost to the excess vote, and so
V—Ew) > 1.

We shall make extensive use of the following facts, which are
obvious from the above definitions and from Section 2.4, and
in which we use the terms ‘increases’ and ‘decreases’ in the
weak sense (that is, both terms correctly describe a number that
does not change): if one component w; of w is decreased whilst
all the other components are unchanged, then:

(1) Vj(w) decreases, in exact proportion to the decrease in Wy

(2) each V,(w)(k #)) increases;

(3) the sum of the votes for all the ‘elected’ candidates
decreases by an amount v > 0 (since the contribution from each
ballot paper decreases);

(4) the excess vote increases, by at most v;

(5) the quota decreases, by at most v/(s+1).

Let an m-vector w be called feasible if 0 < w; <1 and
Vi(w) = Q(w) for each j, and be called a solution vector if
0<w;<1 and V(w) = Q(w) for each j (j=1, ..., m). The
purpose of this section is to prove that if there is a feasible vector,
then there is a unique solution vector. We note in passing that,

¥20Z I4dy 60 U0 1senb Aq 21819¢///2/€/0¢/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

ALOGRITHM SUPPLEMENT

PROGRAM stvpas(datafile, output);

{This program counts the votes in a Single Transferable Vote election,
using Meek's method, and reports the results)

{If there are more than 40 candidates, an increase in the size of
MaxCandidates is the only change needed}

CONST MaxCandidates = 40;
NameLength = 20;

TYPE Candidates = 1 .. MaxCandidates;

CandRange = 0 .. MaxCandidates;

name = PACKED ARRAY [1 .. NameLength] OF char;
VAR NumCandidates, NumSeats: Candidates;

NumElected, NumExcluded,
1gnored CandRange,

candidate,
multiplier,

Droop, excess, quota, total: real

faulty, SomeoneElected, RandomUsed Boolean;
FracDigits: 1 .. 4;

table, seedl, seed2, seed3: integer;
datafile: text;

title: name;

votes, weight: ARRAY [Candidates] OF real;

status: ARRAY [Candidates] OF (Hopeful, Elected, NewlyElected,
Almost, Excluded, ToBeExcluded, NotUsed, Used);
names: ARRAY [Candidates] OF name;

FUNCTION InInteger: integer;

{Reads the next integer from datafile and returns its value)

VAR i:
BEGIN
read(datafile, i);
InInteger := i
END; {InInteger}

integer;

PROCEDURE PrintOut;
{Updates the table number and prints out the current results}

VAR arg: real;
cand: Candidates;
BEGIN

table := table + 1;
writeln;
writeln(' ': 20,
writeln;
write('Table: ', table: 1);
writeln("' Quota: ', quota: 1:
writeln;

title);

FracDigits);

{The numbers of blanks following Candidate, Retain and

Transfer are 12, 3 and 3 respectively!}

writeln('Candidate Retain Transfer Votes') ;
writeln;
FOR cand := 1 TO NumCandidates DO

BEGIN

write(names(cand]) ;
IF status(cand] = ToBeExcluded THEN
arg := 100.0 ELSE arg := 100.0 * weight{cand];
write(arg: 6: 1, '$');
write(100.0 - arg: 8: 1, '%');
{If it is valid to do so, print quota instead of votes|cand
because the latter might have a small rounding error that
would confuse unsophisticated users)

IF status[cand] = Elected THEN arg := votes[cand] / quota
ELSE arg :

IF (arg >= 0. 99999) AND (arg <= 1.00001) THEN arg := quota
ELSE arg := votes[cand];

write(arg: 10: Fracngxts, ')i

IF status[cand] = Excluded THEN write('Excluded')

ELSE IF status[cand) = Elected THEN write('Elected')

ELSE IF status[cand] NewlyElected THEN write('Newly Elected')
ELSE IF status{cand) = ToBeExcluded THEN

BEGIN
write('To be Excluded');
status[cand] := Excluded
END;
writeln;
IF (NumCandidates > 9) AND (cand MOD 5 = 0) AND
(cand <> NumCandidates) THEN writeln
END;
writeln;
writeln('Excess',6 excess: 40: FracDigits);
writeln;
writeln('Total ', total: 40: FracDigits);
writeln;
writeln
END; {PrintOut)
PROCEDURE elect(cand: Candidates);
BEGIN
status[cand] := NewlyElected;
NumElected := NumElected + 1
END; (elect}
PROCEDURE exclude(cand: Candidates);
BEGIN
status(cand] := ToBeExcluded;
weight[cand) 0.0;
NumExcluded := NumExcluded + 1;
IF RandomUsed THEN
writeln;
writeln;
writeln('Random choice used to exclude ', names[cand])
END
END; {exclude)

FUNCTION LowestCandidate: CandRange;

{Returns the candidate number of the candidate who currently has the
lowest number of votes. If two or more are equal lowest, then a
pseudo-random choice is made between them)

VAR cand: Candidates;
LowCand: CandRange;

FUNCTION random: real;

{Returns a pseudo-random number, rectangularly distributed
between 0 and 1. Based on Wichmann and Hill, Algorithm

AS 183, Appl. Statist. (1982) 31, 188 - 190}
VAR rndm: real;
BEGIN

{If seeds have not been set, then set them)

IF seedl = O THEN
BEGIN

seedl NumCandidates;

seed2 NumSeats + 10000;

rndm := total + 20000.0;

WHILE rndm > 30322.5 DO rndm := rndm - 30322.0;

seed3 := round(rndm)

END;
seedl := 171 * (seedl MOD 177) - 2 * (seedl DIV 177);
seed2 172 * (seed2 MOD 176) - 35 * (seed2 DIV 176);
seed3 170 * (seed3 MOD 178) - 63 * (seed3 DIV 178);

IF seedl < O THEN seedl := seedl + 30269;
IF seed2 < O THEN seed2 seed2 + 30307;
IF seed3 < O THEN seed3 := seed3 + 30323;

rndm : seedl / 30269.0 + seed2 / 30307. 0 + seed3 / 30323.0;
random ndm - trunc(rndm)
END; (random)

FUNCTION lower(cand, lowest: CandRange): Boolean;

{Finds whether cand has fewer votes than lowest, and also
reports whether a random choice had to be made}

VAR lowly: Boolean;

BEGIN

IF lowest = O THEN
BEGIN
RandomUsed := false;
lower := true

END
ELSE IF votes|cand] = votes[lowest] THEN
BEGIN

RandomUsed := true;
{Multiplier is used to make all equally-lowest candidates

equally likely to be chosen, even though they are
considered serially and not simultaneously)

lower := (multiplier * random < 1.0)
ELSE

BEGIN

lowly (votes(cand] < votes[lowest]);

owly;
IF lowly THEN RandomUsed := false
END;
IF RandomUsed THEN multlpller 1=

ELSE multiplier :=

multiplier + 1

END; {lower}
BEGIN
LowCand := 0;
FOR cand := 1 TO NumCandidates DO

IF (status[cand] = Hopeful) OR (status[cand] = Almost) THEN
IF lower(cand, LowCand) THEN LowCand := cand;
LowestCandidate := LowCand
END; {LowestCandidate}

PROCEDURE compute;

{This is the heart of the program, which counts the votes, taking
the current weights into account, and adjusts the weights and
the quota iteratively to attain the required solution}

{(MaxIterations is the maximum number of iterations allowed in
calculating the weights. It is unlikely that so many will
ever be used, but its value may be increased if desired)

CONST MaxIterations = 500;

VAR temp, value: real;
count, iteration: integer;
cand: CandRange;
converged, ended: Boolean;

PROCEDURE Rewind;

{Returns to the beginning of datafile, and ignores the first two
numbers on it. These are the number of candidates and the
number of seats, whose values are not needed again. Numbers
indicating withdrawn candidates are also ignored]

VAR 1ig,
BEGIN
reset(datafile);

FOR ig := -1 TO ignored DO ignore :=
END; {Rewind}

ignore: integer;

InInteger

BEGIN
iteration := 1;

REPEAT
Rewind;
excess
FOR cand
count :=

0;
1'T0 NumCandidates DO votes[cand] := 0.0;

InInteger;

WHILE count > 0 DO
BEGIN
value
cand :
ended

count;
InInteger;
:= false;

WHILE cand>0 DO
BEGIN

IF NOT ended AND (weight([cand] > 0.0) THEN
BEGIN

ended := (status{cand] = Hopeful);

IF ended THEN
BEGIN
votes[cand]

:= votes[cand] + value;
value := 0.0

votes|cand] := votes[cand] + value * weight[cand];
value := value * (1.0 - weight[cand])
END

END;
cand :=
END;

InInteger

excess + value;
InInteger

excess
count
END;

quota := (total - excess) * Droop;

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

279

¥20Z I4dy 60 U0 1senb Aq 21819¢///2/€/0¢/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

ALOGRITHM SUPPLEMENT

{The next statement is unlikely ever to be used, but is a
safeguard against certain pathological test data}

IF quota < 0.0001 THEN quota := 0.0001;
converged := true;

FOR cand := 1 TO NumCandidates DO
IF status[cand] = Elected THEN
BEGIN
temp := quota / votes[cand];
IF (temp > 1.00001) OR (temp < 0.99999) THEN
converged := false;
temp := weight[cand] * temp;
weight{cand] := temp;

{The next statement is unlikely ever to be used, but is
a safeguard against certain pathological test datal

IF temp > 1.0 THEN weight({cand] := 1.0
ND;

iteration := iteration +

UNTIL (iteration = MaxIterations) OR converged;

IF NOT converged THEN
BEGIN

{The "Failure to converge" message is unlikely ever to appear.
f it does, increasing MaxIterations will probably cure it}

writeln;
writeln;
writeln('Failure to converge');
writeln

FOR cand := 1 TO NumCandidates DO
IF (status[cand] = Hopeful) AND (votes[cand] >= quota) THEN
BEGIN
status{cand] := Almost;
count := count + 1
END;

{Allow for the special case where there is a multi-way tie and
too many candidates reach the quota simultaneously}

WHILE NumElected + count > NumSeats DO

BEGIN

PrintOut;

RandomUsed := false;

FOR cand 1 TO NumCandidates DO

IF stétus[cand] = Hopeful THEN exclude(cand);
exclude(LowestCandidate) ;

count := count - 1
END;
SomeoneElected := false;
FOR cand := 1 TO NumCandidates DO
IF status[cand) = Almost THEN
BEGIN
elect(cand);
SomeoneElected := true
END;

IF SomeoneElected THEN PrintOut;
FOR cand := 1 TO NumCandidates DO
IF status[cand] = NewlyElected THEN

IF NumElected < NumSeats THEN
weight(cand] := quota / votes[cand];
status[cand] := Elected
END
END; {compute}
PROCEDURE complete;

{UUsed to elect all remaining candidates if the number
remaining equals the number of seats remaining}

VAR cand: Candidates;
BEGIN
FOR cand 1 TO NumCandidates DO

IF stétus[cand] = Hopeful THEN elect(cand)
END; {complete}

PROCEDURE Preliminaries;
{Checks datafile for errors and sets initial values of variables}
VAR cand, count, LineNo: integer;

PROCEDURE error(cand: integer; TooBig: Boolean);
BEGIN

writeln;
write('On line ', LineNo: 1, ', Candidate ', cand: 1);
IF TooBig THEN write (' exceeds maximum')
ELSE write (' is repeated');
writeln;
faulty := true

END; {error}
PROCEDURE ReadName (VAR n: name)

{Reads the name of a candidate, or reads a title, and stores
it for later use. If the name has more than NameLength
characters the excess ones will be disregarded. If it
has fewer than NameLength characters blanks will be used
to extend it}

VAR i: integer;

ch: char;
BEGIN
REPEAT
read(datafxle, ch)
UNTIL ch = H
i:=0;
read(datafxle, ch);
WHILE ch <> DO
BEGIN

IF i < NameLength THEN
BEGIN

i+ 1;
= ch

END;
read(datafile, ch)

D;

WHILE i < NameLength DO
BEGIN
i

END
END; {ReadName}

280 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

.0
table := 0;
NumElected
NumExcluded
ignored
FOR cand l TO NumCandidates DO weight{cand] := 1.0;
count := Inlnteger;

{Deal with withdrawals, if any])
WHILE count < 0 DO
BEGIN

weight[-count] := 0.0;
count := InInteger

END;
WHILE count > O DO
BEGIN

LineNo := LineNo + 1;

total := total + count;

FOR cand := 1 TO NumCandidates DO status(cand] := NotUsed;
cand := Inlnteger;

WHILE cand > 0 DO
BEGIN

IF cand > NumCandidates THEN error(cand, true)
ELSE IF status[cand] = Used THEN error(cand, false)
ELSE status[cand) := Used;
cand := Inlnteger

count := InInteger

FOR cand := 1 TO NumCandidates DO

BEGIN

ReadName (names(cand]) ;

status[cand] := Hopeful;

IF weight{cand] < 0.5 THEN
BEGII
status[cand] := Excluded;
NumExcluded := NumExcluded + 1;
ignored := ignored + 1

END;
ReadName(title);
IF NOT faulty THEN

{FracDigits controls the number of digits beyond the decimal
point that will be printed in the output tables}

FracDigits :=

IF total > 999 5 THEN FracDigits := FracDigits - 1;
IF total > 99.5 THEN FracDigits FracDigits - 1;
IF total > 9.5 THEN FracDigits := FracDigits - 1

END
END; {Preliminaries}

{Start of main program}

BEGIN

reset(datafile);

NumCandidates := InInteger;

NumSeats := Inlnteger;

writeln;

writeln;

writeln('Number of Candidates = ', NumCandidates: 1);

writeln('Number of Seats = ', NumSeats: 1);

IF NumCandidates <= NumSeats THEN writeln('All candidates elected') ELSE
BEGIN
faulty := false;

Preliminaries;

IF NumCandidates <= NumSeats + NumExcluded THEN
writeln('All non-withdrawn candidates elected') ELSE
BEGIN

{The Preliminaries procedure will have reset faulty to true if
the data contain errors}

IF NOT faulty THEN
BEGIN
REPEAT

{Count votes and elect candidates, transferring
surpluses until no more can be done or all
seats are filled}

REPEAT
compute
UNTIL NOT SomeoneElected OR (NumElected >= NumSeats);

{Unless the election is finished, someone must
now be excluded}

IF NumElected < NumSeats THEN
BEGIN
PrintOut;
exclude(LowestCandidate) ;
IF NumCandidates - NumExcluded = NumSeats
THEN complete ELSE PrintOut

END
UNTIL NumElected = NumSeats;

{Now that all seats are filled, exclude any candidates not
already elected, and print out the final table)

RandomUsed := false;
FOR candidate := 1 TO NumCandidates DO
IF status(candidate] = Hopeful THEN exclude(candidate);
PrintOut
END
END
END
END.

¥20Z I4dy 60 U0 1senb Aq 21819¢///2/€/0¢/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

ALOGRITHM SUPPLEMENT

in a real election, the existence of a feasible vector is assured,
since the solution vector at each stage of the counting yields a
feasible vector for the next stage.

We shall use the following algorithm which, starting with a
feasible vector, will construct a solution vector. (This is the
algorithm described in Section 2.9.)

Algorithm: Let w® = (w9, ..., w?) be a feasible vector. Given w',
define wi*! by the rule
Wit = wiQ(w)/ V(') (6)

foreachj(j=1,..., m).
Theorem 1. This Algorithm constructs a sequence of feasible
vectors that converges to a solution vector.
Proof. Suppose that w is a feasible vector, so that Viw) = Q
(w) > 0 and so wi > 0 for each j. Then to convert w’ into wi*!
we must (weakly) decrease each of its components. Fix j, and
let w” be the vector obtained from w' by replacing the one
component w} by wi*1. By (2), (1), (6) and (5),

Viw™h) = Vi(w') = Vi(w)wi* /wi = Q(w') > Q(wi*h). (7)
This holds for each j, and so wi*! is a feasible vector. Since w°
is feasible by hypothesis, it follows by induction that wi is

feasible for all i.
It follows from this that, for each fixed j, the sequence

w}?, w}, w2 ...

is a monotonic decreasing sequence that is bounded below (by
0), and so converges. Thus there is a limit vector w* = (wZ, ...,
wy). We must prove that w* is a solution vector. By the
feasibility of wi and (7),

0 < Vj(w')— Q(wi) = V(wh)— V(w),
< V.(W;:_w]l:+l)
since decreasing w; by d cannot decrease ¥;(w) by more than V6
(V being the total number of ballot papers). But, as i - oo,
wi—wi*1 50, and since Viw) and Q(w) are continuous
functions of w it follows that ¥j(w*) = Q(w*). This holds for
each j, and so w> is a solution vector, as required. []

REFERENCES

1. B. L. Meek. Une nouvelle approche du scrutin transférable.
Mathématiques et sciences humaines 25, 13-23 (1969).

2. B. L. Meek. Une nouvelle approche du scrutin transférable
(fin). Mathématiques et sciences humaines 29, 33-39 (1970).

3. B. A. Wichmann and I. D. Hill. Algorithm AS 183 —an

Theorem 2. The solution vector, whose existence was proved in
Theorem 1, is unique.

y , — %
Proof. Let w=(w, ..., w,) and w* = (w}, ...
solution vectors, and define w® = (w?, ..

, wh) be two
., wl,) by

wi:i= min (w;, w})

for each j. For a fixed j, suppose without loss of generality that
wj = w;, and note that, by (2) and (5)

Vi(w®) = Vi(w) = Q(w) = Q(w°).

This holds for each j, and so w? is a feasible vector. By Theorem
1 we can apply the Algorithm to w°® to construct a solution
vector w* = (wi, ..., wX) such that

0< wr < w;.’ <w;

for each j. We shall prove that w* = w, from which it will
immediately follow that w = w® = w*, as required.

We prove first that Q(w*) = Q(w). By (5), Q(w*) < Q(w). By
the same argument that is used to derive (5) from (3),

(s+1)(Q(w)—Q(w*)) = E(w*)— E(w) < g (Vi(w)=Vi(w™))
j=1
= m(Q(w)—Q(w™))

since w and w* are both solution vectors. Since m < s,

O(w)—Q(w*) < 0. Thus Q(w*) = Q(w), and

Viw=) = Vi(w) ®)
for each .

Finally, let S denote the set of candidates C; (if any) for whom
wj® < w;, and suppose that S is non-empty. Since w7 < 1 for
each such j, and Vj(w*) = Q(w*) > 0, it is not difficult to see
(by considering each ballot paper) that the sum of the votes for
all the candidates in S is a strictly increasing function of the
weight assigned to each such candidate, and so must strictly
increase when the vector w* is replaced by w. But this violates
(8). So S must be empty and w* = w. This completes the proof
that there can be at most one solution vector w. [].

efficient and portable pseudo-random number generator.
Applied Statistics 31, 188-190 (1983).

4. D. R. Woodall. Computer counting in STV elections.
Representation 90, 4-6 (1982).

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 281

¥20Z I4dy 60 U0 1senb Aq 21819¢///2/€/0¢/2101e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq

