A Design for an Efficient NOR-gate only,
Binary-ripple Adder with Carry-completion-
detection Logic

A novel way of designing a ripple-carry adder
is presented. The new design uses only NOR
gates. It is both economical, using only six
NOR gates per stage, and efficient, since a
carry-completion-detection circuit can easily be
integrated into it at a cost of (approximately)
one NOR gate per two adder stages.

Received January 1986, revised September
1986

1. Introduction
Adders are important components of arith-
metic units. Many designs have been developed
described in the literature,!'? and used in
actual computers. The ripple-carry (or par-
allel) adder (fig. 1) is one of the oldest and
simplest designs.® It consists of n identical
stages, each a full adder, with carry propaga-
tion from each stage to the next.

Each stage receives two input bits a;, b;, and
a carry bit ¢;_, from the preceding stage. It
produces a sum bit s5; and a carry bit ¢;
according to Table 1.

s = agbici+agbici+abici +aibic;,
cg=abjtajc,,+bici,=a;b+(a;+b)c;,

The ripple carry adder is not parallel, since
each stage must wait for the carry from its
predecessor. A major improvement was sug-
gested by Gilchrist et al.* They proposed a
carry-completion-detection circuit (fig. 2) that
outputs a signal (carry-completed) when all
stages have generated their carries.

When all adder stages have settled down,
some stages will produce a carry (1-carry) and

SHORT NOTES

Table 1

a; b; Ci—1 Si Ci
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

others will produce no carry (0-carry). To
detect completion it is necessary to indicate
the presence of either a l-carry or a 0-carry
from each stage.

The two quantities

cly=a;b;+(a;b;+a; b)) cl;_,
normal carry)

(the 1-carry or

0; = a} b+ (aib;+a; b;)c0,_, (theO-carry,or
absence of a carry)

indicate either the presence of a carry (cl) or
its absence (c0). A detailed discussion of
carry-completion detection can be found in
Lewin,’ but two facts should be noted here.

(1) The carry-completed gate must have a
fan-in of n.

(2) The average maximum carry length has
been estimated by Hendrickson® to be
log, (5n/4).

Thus the average speed of the entire adder is
D log,(5n/4), where D is the carry-propaga-
tion time of a single stage.

The design presented here is for a ripple-
carry adder to which a simple, fast, carry-
completion-detection logic can easily be

a, b, a; by a b

|| 1 0 v T B B

Full adder Full adder Full adder

Cp Cn_y ¢2 cy
Sy Sy 1
Figure 1. A ripple-carry adder.
a, b, a, b,
0, c0,
cl, Full adder cl, Full adder

From
other
stages

Carry completed

Figure 2. Carry-completion-detection circuit.

added. The main features of the design are as
follows.

(1) Only NOR gates are used, with only six
gates per stage.

(2) Almost all signals necessary for carry-
completion detection are automatically gener-
ated by each stage. The only additional logic
necessary for carry-completion detection is
one NOR gate for each pair of stages, plus
another NOR gate for the entire adder. This
translates to approximately half a gate per
stage.

2. A Single Adder Stage
The design is based on the following logical
relations, derived from Table 1.

s =apbic;_+a;b;c;_ +aib;ci_,+a;bici_,
= (a;bi+a;by) c;_ +(a;bi+a;by)ci,
=picia+tpiciy = (Pici+piciy)
=[picioitpiai1 by +piyciy)T
=[pici+(pit+ai by +piyciy)T

=[picia+(piciytai_ b +pi 6T
(1)

Also from Table 1, ¢; = a;b;+p;c;_,. Thus
iy = a4y by +p;—, ¢ and

Picioy = (@bi+a; b)) (a;_ by, +pi_ycip)
= (a;b;+a;by)(a;_, bi_) (Pi—y €i)’
= (a; b;) (a; b7) (@i, bi—)) (Pi—; Cizg)’

=(a;bi+aib;+ai_ b +pi i)
. 2
Similarly

Picioy = (@;bi+aibi+a;_ b +p;i_ ci) (3)

Fig. 3 shows a single adder stage. It is clear
that producing the sum s; requires two NOR
gates (equation 1), producing p; ¢;_, and p; ¢;_,
(equations 2 and 3) requires two more gates,
and producing p; (rather a; and b;) requires
the other two gates.

3. The Complete Adder

Fig. 4 shows the complete adder with carry-
completion detection. The carry-completion-
detection circuit is based on signals T;
defined by

T; = (c0;+clyy

= (a;b;+p;ic;_ +ajbi+pici,) (4)

which are implemented for every other stage.
Thus i = 2,4,6,...,m where m = 2|n/2]. The
carry-completed signal is T=(T,+T,+...
+T,) . It goes high when all T; go low.

An additional control signal ¢ is necessary
to prevent false indication of carry completed.
It is included in the T; signals whose definition
thus becomes

T = @@;bi+pici V' +ajbi+pici_, 'Y (S

Initially ¢ is set high (to indicate ‘carry not
completed’), and the numbers to be added a;,
b; are fed into all the stages. It takes two
propagation delays of a NOR gate (2D) to
generate p, ¢, and p, ¢, in the first stage, at
which point the carry-propagation process
starts and ¢ should be switched low. With ¢
low, the T; signals depend on p; ¢;_, and p; c;_,
as in equation 4. When all the stages have
stabilised, each stage outputs either c1; high or
c0; high, and all 7; become low.

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 283

¥20¢Z I4dy 60 Uo 1senb Aq 9£819¢/£82/€/0¢/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

a;b;

SHORT NOTE

' '
a;i1b'i,

:
Di—1€i_2

a;_1b;_,

Pi-1€i2

'
PiCi_1

a, by, a'yb', a, by a'y b, a3 by

a'yb',

T
PiCi

Si

Figure 3. A single stage.

by_y by s

a'sb'y On_2 (@p2

@y by,

I

Pn2C'n_3

§ .
PnCn-1
b
—
+ —,
Pn_1€n_2 PnCn-1

4. Notes
(1) The T; signals are only generated by every
other stage for economy reasons. This,
however, implies that the carry-completed
signal T may be generated too early. After T
is generated there is still the possibility that a
stage / that does not generate a T; will change
its output carry ¢;. The actual carry completion
would, in such a case, take place D time units
after T is generated. This would normally
cause no problem, since the sum typically
remains in the adder until the next clock pulse
and is not moved out of the adder immediately.
If this is a concern, however, the design should
be changed so that every stage generates a T;.
(2) The maximum fan-in in Fig. 4 is |n/2].
If fan-in is a concern, the adder can be
designed with a T; generated for every kth
stage. The number of 7; signals (and thus the
maximum fan-in) in such a case would be

T

Figure 4. The complete adder.

|n/k|. In such an adder, however, T could
precede the actual carry completion by up to
(k—1) D time units.

Another solution to a fan-in problem is
replacing the single NOR gate at the bottom
of Fig. 4 with several gates. Still another
solution is to use wired logic instead of gates,
but this is possible only if T,,..., T,,_,, T,, are
open-collector.

(3) A look at Fig. 4 shows that the design
is modularised. Each group of two successive
stages can be considered a module. Such
design can easily be described as an iterative
array and thus lends itself to easy implemen-
tation in VLSI.

(4) The adder proposed here is self-timed
(asynchronous) and the author considers this
an advantage. In wafer-scale integration
(WSI) there is a need for self-timed circuits
because it is hard to bring clock signals to the

284 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

centre of the die. The clock signals get skewed
when passing through a wafer due to the large
diameter (3—4 inches) of the wafer. This is why
experts predict more asynchronous circuits in
the future.

(5) It is common practice to add another
control signal E to such a circuit to completely
disable it. Fig. 5 shows how the design can

b; b

Figure 5

¥20¢Z I4dy 60 Uo 1senb Aq 9£819¢/£82/€/0¢/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

easily be modified to include such a signal.
When E =1 the circuit is disabled. After
feeding-in the inputs, E is pulled down to zero,
enabling the device.

Acknowledgement
The author would like to thank Dr Robert
Burger for his help in this research.

D. SALOMON
Computer Science Department, California

SHORT NOTES

State University, Northridge, CA 91330,
USA.

References

1. M. Abd Alla and A. Meltzer, Principles
of Digital Computer Design. Prentice-Hall,
Englewood Cliffs, N.J. (1978).

2. J. Cavanagh, Digital Computer Arith-
metic. McGraw-Hill, New York (1984).

3. J. Cavanagh, Digital Computer Arith-
metic, p. 10S.

4. B. Gilchrist, J. H. Pomerence and S.Y.
Wong, Fast Carry Logic for Digital Com-
puters. IRE Trans. on Electronic
Computers, vol. EC-4 (Dec. 1955), pp.
133-136.

5. D. Lewin, Theory and Design of Digital
Computers. Halstead Press, New York
(1972).

6. H. C. Hendrickson, Fast, High-Accuracy
Binary Parallel Addition. IRE Trans. on
Electronic Computers, vol. EC-9 (Dec.
1960), pp. 465-469.

Correspondence

Leith and Legal Logic Programming

Dear Sir,

In his article * Fundamental errors in legal
logic programming’ (vol. 29, no. 6, 1986),
Philip Leith attacks our use of PROLOG to
formalise the provisions of the British Nation-
ality Act 1981. The basis of his attack is the
claim that we identify the legal process with
the rigid, formal application of rules embodied
in legislation. Leith is quite mistaken. No-
where in our original draft or in the later
published paper® do we ourselves make such a
claim. In the paper we state explicitly that our
British Nationality Act program can only be
used to determine what follows if the rules of
the Act are applied literally. Since there is more
to legal reasoning than the literal application
of the letter of the law, we did not propose that
our program could be used to decide questions
of British citizenship autonomously. On the
contrary, we explain why it could not be used
for this purpose, except in quite unrealistic
circumstances. Elsewhere we have consistently
emphasised the need for embedding the use of
logic within a flexible framework for assimi-
lating knowledge, for revising beliefs and for
comparing alternative systems of belief.!- 2 4
It is precisely because reasoning in law
demands such great flexibility that we believe
it is an ideal domain in which to test the
application of these developing techniques.
We do contend, however, that systems like our
British Nationality Act program can be of
substantial use, even though they address only
one relatively trivial aspect of the whole legal
process. Some of these uses are described in
our paper. The possibilities are argued at
greater length in more general accounts of our
work.*

Leith’s central contention seems to be that
there is no such thing as a clear legal rule, or
more accurately that there is no set of
circumstances in which a legal rule could be
applied routinely. In making such a claim,
Leith is attacking not simply the use of logic
programming techniques in law, but the very
idea that computer programs of any kind

could ever be used in the routine administra-
tion of law, whether these programs are
written in PROLOG, in FORTRAN, in
COBOL, or whatever. If Leith is right, then
there are no clear legal rules. The mistake must
be in thinking that there are, and not in
choosing some particular programming lang-
uage to express them. However, in the
day-to-day practice of law, there are mundane
and routine tasks that have to be performed.
That is why there are computer programs, like
payroll systems for example, which are used
every day to perform these tasks. To suggest
that the administration of law can be reduced
to some routine application of fixed legal rules
is a massive oversimplification. To suggest that
legal rules are never applied routinely is to
oversimplify to the opposite extreme.
Philip Leith’s attack seems to be based on
a mistaken impression of our work. We would
argue that it is also based on a mistaken
impression of the jurisprudential material
which he cites. Less easy to overlook, however,
is the general tone of the article. We take
particular objection to several quite out-
rageous claims that are made in the article,
none of which Leith has bothered to substan-
tiate. Leith draws attention to ‘racist impli-
cations’ of the British Nationality Act and
suggests that our work gives support to the
racist cause. He goes so far as to hint that this
might explain in some part the funding that
our work on logic programming has attracted.
If the Act is indeed racist, then a rigorous
derivation of its logical consequences can only
make its racist character more apparent. In
fact, it was precisely such ethical consider-
ations that contributed to our initial choice of
the British Nationality Act project.
Philip Leith concludes
‘I believe that I have cast substantial
doubt on the claimed success of the
Imperial team in their use of logic
programming in law. The next question
should be whether the team have made
similar claims in other areas outside
computer science which are open to the
same challenge.’

Leith is, of course, entitled to uncover and
expose errors in our work. We welcome such
challenges when they are based on technical
considerations. However, articles such as this
one by Leith, with its personal overtones,
contribute little to what would otherwise be an
important and stimulating debate.

Yours faithfully

R. KOWALSKI and M. SERGOT

Imperial College of Science and Technology,
University of London,

180 Queen’s Gate, London SW7 2BZ

References

1. R. A. Kowalski, Logic for Problem Soly-
ing. North Holland-Elsevier, New York
(1979). (See especially Chapter 13.)

2. R. A. Kowalski, Logic-based Open Sys-
tems. Department of Computing, Im-
perial College (1985).

3. M. J. Sergot, F.Sadri, R. A. Kowalski,
F. Kriwaczek, P. Hammond and H.T.
Cory, The British Nationality Act as a
logic program. Comm. ACM 29 (5) (1986).

4. M. J. Sergot, Representing Legislation as
Logic Programs. Department of Comput-
ing, Imperial College (1985). To appear
in Machine Intelligence 11, Oxford Uni-
versity Press.

Editor’s note:

The above letter draws attention to a comment
made in the paper by Leith that there are racist
implications in the British Nationality Act.
Authors and potential authors should remem-
ber that The Computer Journal is devoted
solely to reports of new technical develop-
ments in computer science and computer
applications. In general, items which are not
directly relevant to the technical aspects of
work undertaken should not be included in
papers submitted to the Journal.

Ada’s Fixed-point Types

Dear Sir,

I feel that I must make a comment on the
fragment of Ada which appears in A. J. Cow-
ling’s paper on type checking in The Computer

Journal, 29 (6) 541, where the fixed-point type
“currency’ is declared. (A minor point is that
‘delta’ should be in the bold font, not in
italics.) I believe that this fragment perpetuates
a misunderstanding about Ada (which fortu-
nately in no way invalidates the technical

content of the published paper), which I
should like to clear up.

Currency comes in indivisible units. If 1
divide £100 between 3 Scotsmen, each gets
£33.33 and I keep | penny. If I divide 1000000
lire between 3 Italians each gets 333300 lire and

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 285

¥20¢Z I4dy 60 Uo 1senb Aq 9£819¢/£82/€/0¢/2101e/|ufwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq

