easily be modified to include such a signal.
When E =1 the circuit is disabled. After
feeding-in the inputs, E is pulled down to zero,
enabling the device.

Acknowledgement
The author would like to thank Dr Robert
Burger for his help in this research.

D. SALOMON
Computer Science Department, California

SHORT NOTES

State University, Northridge, CA 91330,
USA.

References

1. M. Abd Alla and A. Meltzer, Principles
of Digital Computer Design. Prentice-Hall,
Englewood Cliffs, N.J. (1978).

2. J. Cavanagh, Digital Computer Arith-
metic. McGraw-Hill, New York (1984).

3. J. Cavanagh, Digital Computer Arith-
metic, p. 10S.

4. B. Gilchrist, J. H. Pomerence and S.Y.
Wong, Fast Carry Logic for Digital Com-
puters. IRE Trans. on Electronic
Computers, vol. EC-4 (Dec. 1955), pp.
133-136.

5. D. Lewin, Theory and Design of Digital
Computers. Halstead Press, New York
(1972).

6. H. C. Hendrickson, Fast, High-Accuracy
Binary Parallel Addition. IRE Trans. on
Electronic Computers, vol. EC-9 (Dec.
1960), pp. 465-469.

Correspondence

Leith and Legal Logic Programming

Dear Sir,

In his article * Fundamental errors in legal
logic programming’ (vol. 29, no. 6, 1986),
Philip Leith attacks our use of PROLOG to
formalise the provisions of the British Nation-
ality Act 1981. The basis of his attack is the
claim that we identify the legal process with
the rigid, formal application of rules embodied
in legislation. Leith is quite mistaken. No-
where in our original draft or in the later
published paper® do we ourselves make such a
claim. In the paper we state explicitly that our
British Nationality Act program can only be
used to determine what follows if the rules of
the Act are applied literally. Since there is more
to legal reasoning than the literal application
of the letter of the law, we did not propose that
our program could be used to decide questions
of British citizenship autonomously. On the
contrary, we explain why it could not be used
for this purpose, except in quite unrealistic
circumstances. Elsewhere we have consistently
emphasised the need for embedding the use of
logic within a flexible framework for assimi-
lating knowledge, for revising beliefs and for
comparing alternative systems of belief.!- 2 4
It is precisely because reasoning in law
demands such great flexibility that we believe
it is an ideal domain in which to test the
application of these developing techniques.
We do contend, however, that systems like our
British Nationality Act program can be of
substantial use, even though they address only
one relatively trivial aspect of the whole legal
process. Some of these uses are described in
our paper. The possibilities are argued at
greater length in more general accounts of our
work.*

Leith’s central contention seems to be that
there is no such thing as a clear legal rule, or
more accurately that there is no set of
circumstances in which a legal rule could be
applied routinely. In making such a claim,
Leith is attacking not simply the use of logic
programming techniques in law, but the very
idea that computer programs of any kind

could ever be used in the routine administra-
tion of law, whether these programs are
written in PROLOG, in FORTRAN, in
COBOL, or whatever. If Leith is right, then
there are no clear legal rules. The mistake must
be in thinking that there are, and not in
choosing some particular programming lang-
uage to express them. However, in the
day-to-day practice of law, there are mundane
and routine tasks that have to be performed.
That is why there are computer programs, like
payroll systems for example, which are used
every day to perform these tasks. To suggest
that the administration of law can be reduced
to some routine application of fixed legal rules
is a massive oversimplification. To suggest that
legal rules are never applied routinely is to
oversimplify to the opposite extreme.
Philip Leith’s attack seems to be based on
a mistaken impression of our work. We would
argue that it is also based on a mistaken
impression of the jurisprudential material
which he cites. Less easy to overlook, however,
is the general tone of the article. We take
particular objection to several quite out-
rageous claims that are made in the article,
none of which Leith has bothered to substan-
tiate. Leith draws attention to ‘racist impli-
cations’ of the British Nationality Act and
suggests that our work gives support to the
racist cause. He goes so far as to hint that this
might explain in some part the funding that
our work on logic programming has attracted.
If the Act is indeed racist, then a rigorous
derivation of its logical consequences can only
make its racist character more apparent. In
fact, it was precisely such ethical consider-
ations that contributed to our initial choice of
the British Nationality Act project.
Philip Leith concludes
‘I believe that I have cast substantial
doubt on the claimed success of the
Imperial team in their use of logic
programming in law. The next question
should be whether the team have made
similar claims in other areas outside
computer science which are open to the
same challenge.’

Leith is, of course, entitled to uncover and
expose errors in our work. We welcome such
challenges when they are based on technical
considerations. However, articles such as this
one by Leith, with its personal overtones,
contribute little to what would otherwise be an
important and stimulating debate.

Yours faithfully

R. KOWALSKI and M. SERGOT

Imperial College of Science and Technology,
University of London,

180 Queen’s Gate, London SW7 2BZ

References

1. R. A. Kowalski, Logic for Problem Soly-
ing. North Holland-Elsevier, New York
(1979). (See especially Chapter 13.)

2. R. A. Kowalski, Logic-based Open Sys-
tems. Department of Computing, Im-
perial College (1985).

3. M. J. Sergot, F.Sadri, R. A. Kowalski,
F. Kriwaczek, P. Hammond and H.T.
Cory, The British Nationality Act as a
logic program. Comm. ACM 29 (5) (1986).

4. M. J. Sergot, Representing Legislation as
Logic Programs. Department of Comput-
ing, Imperial College (1985). To appear
in Machine Intelligence 11, Oxford Uni-
versity Press.

Editor’s note:

The above letter draws attention to a comment
made in the paper by Leith that there are racist
implications in the British Nationality Act.
Authors and potential authors should remem-
ber that The Computer Journal is devoted
solely to reports of new technical develop-
ments in computer science and computer
applications. In general, items which are not
directly relevant to the technical aspects of
work undertaken should not be included in
papers submitted to the Journal.

Ada’s Fixed-point Types

Dear Sir,

I feel that I must make a comment on the
fragment of Ada which appears in A. J. Cow-
ling’s paper on type checking in The Computer

Journal, 29 (6) 541, where the fixed-point type
“currency’ is declared. (A minor point is that
‘delta’ should be in the bold font, not in
italics.) I believe that this fragment perpetuates
a misunderstanding about Ada (which fortu-
nately in no way invalidates the technical

content of the published paper), which I
should like to clear up.

Currency comes in indivisible units. If 1
divide £100 between 3 Scotsmen, each gets
£33.33 and I keep | penny. If I divide 1000000
lire between 3 Italians each gets 333300 lire and

THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987 285

¥20Z I4dy 01 uo 1senb Aq LG819¢/582/€/0¢ /8101 e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

I keep 100 lire. In either case, I need to map
the indivisible unit on to unity, and use integer
division with a remainder, to get the right
answer. The ‘ Steelman’ specification for Ada’s
fixed-point arithmetic could be read as
expecting such discrete ‘scaled integers".

In the event the Ada designers chose not to
provide either the exactness or the operations
such as remainder needed for this: they
recognised that Ada is intended for embedded
applications not financial ones. Ada’s fixed-
point types are classified as ‘real types’ and
are intended to be used for the representation
of variables which ideally would be continu-
ous, not discrete.

As well as having obvious use on micro-
computers which lack floating-point hard-

CORRESPONDENCE

ware, fixed-point types are important in
embedded applications for communicating
with the outside world, because the transdu-
cers that are used to read sensors and control
actuators rarely accept floating-point data
representation. These are the areas that Ada’s
fixed-point types address.

So Ada’s fixed-point types are best imple-
mented as ‘scaled fractions’, with any ‘spare
bits’ used to provide more accuracy, not more
range. There is certainly no guarantee that the
‘delta’ or *small” of a type is indivisible: only
that the ‘small’ is represented exactly.

Unfortunately, Ada’s fixed-point declara-
tions betray their evolution from Steelman, by
still concentrating on the ‘delta’ and ‘small’
rather than mapping the ‘range’ on to pure

fractions and minimum
‘mantissa’.

A.J. Cowling is not the only one to be
misled by this evolution: most casual readers
of the Ada reference manual are, and I have
even seen misleading ‘dollars and cents’
examples in Ada textbooks. It would be nice
to see this and other problems with Ada’s
fixed-point types sorted out, some day.

specifying the

Yours faithfully

T.J. FROGGATT
Senior Consultant
Ada Division
Software Technology
Systems Designers plc

Announcements

1-3 JuLy 1987
International Workshop on Designing for Yield,
University of Oxford

Aim

The aim of this workshop is to bring circuit
designers, VLSI architects and IC process
engineers together with test and yield model-
ling experts in order to discuss mutual
objectives of designing ICs to yield targets.
The worshop will be held in an informal
environment with panel, regular-paper and
short-paper sessions along with time for
impromptu discussions and seminars. The
number of delegates will be restricted to allow
maximum interaction.

Background

The workshop is organised by the University
of Oxford Department of External Studies in
conjunction with the Department of Engineer-
ing Science. It is sponsored by the University
of Oxford in association with the IEEE
Computer Society.

The workshop is the third in a series on
topics in VLSI started at Southampton in
1986. Edited proceedings of the former
workshops have been published by Adam
Hilger, Bristol BS1 6NX.

Wafer Scale Integration by C. R. Jesshope and
W. R. Moore (1986).

Systolic Arrays by W.R. Moore, A.P. H.
McCabe & R. B. Urquhart (1987).

Scope

The scope of the workshop includes, but need

not be limited to, the following topics.

Advanced processing techniques, quality con-
trol, process monitoring.

Defect mechanisms and fault analysis.

Design rule optimisation.

Statistical defect models and yield estimation.

Fault models and test coverage.

Design for testability. BIST and test
equipment.

Fault-tolerance, WSI and robust archi-
tectures.

Semi-custom and full custom circuits.

Repair techniques, discretionary wiring and
high-density hybrids.

Packaging yield.

Reliability.

Cost models,
problems.

case studies and further

Local details

The workshop will be held at the University of
Oxford from 1 to 3 July 1987 with meals and
accommodation available in Balliol College
on the nights of 30 June to 2 July. The cost of
the workshop, proceedings, meals and accom-
modation will be around £295 (to be
confirmed).

The University and its Colleges are located
in the centre of this historic city, which has fast
connections to London and its airports.
Oxford and the surrounding area has numer-
ous cultural and tourist attractions and has
plenty to interest accompanying partners.
Special visits can be arranged if there is
sufficient demand.

For further information please contact:
Secretary, Designing for Yield Workshop,
Department for External Studies, 1 Welling-
ton Square, Oxford OXI2JA (Tel:
44-865-270360).

11-13 JuLy 1987

International Conference on Data Bases in the
Humanities and Social Sciences, Montgomery,
Alabama, USA. ICDBHSS 87 will be hosted
by Auburn University at Montgomery
(AUM) Library and Schools of Liberal Arts
and Sciences, with events scheduled at other
sites as well. Co-sponsors include: Air Uni-
versity, Maxwell Air Force Base; Alabama
Library Association; American Biblio-
graphical Center/Clio Press; AUM Lecture

286 THE COMPUTER JOURNAL, VOL. 30, NO. 3, 1987

Series; Friends of the AUM Library; Hunting-

don College; National Archives and Records

Administration; Veterans Administration

Hospital, Tuskegee; Tuskegee University

School of Veterinary Medicine. .
Accommodation includes a wide selection

of nearby motels or inexpensive dormitory
rooms at Huntingdon College. Depending on
personal choices, conference costs will be
modest: i.e. ¢ $180 (room and board, local
transportation, registration, banquet, recep-
tions and social hours, theatre) plus trans-
portation to Montgomery. Delta Airlines is
offering a 309, discount on all domestic coach
services to ICDBHSS °87.

Plans for a three-day conference, from a
welcome Friday evening until 2 p.m. Monday,
include these special events:

@ Reception, cash bar, and banquet with
keynote speaker at the Officers Club,
Maxwell Air Force Base.

@ Taming of the Shrew, performance by the
Alabama Shakespeare Festival Theatre,
followed by a wine and cheese party at the
state theatre.

@ Plenary sessions and keynote addresses by :
Dr Toni Carbo Bearman, Dean of the
School of Library and Information
Science, University of Pittsburgh; and
former executive Director, National Com-
mission on Libraries and Information
Services (NCLIS), on libraries and data
bases in the Humanities and Social
Sciences.

Dr Frank Burke, Executive Director of the
National Historical Publications and
Records Commission (NHPRC) and Act-
ing Archivist of the United States, on
archives and data bases in the Humanities
and Social Sciences.

Professor Ching-chih Chin, Associate
Dean, Graduate School of Library and
Information Science, Simmons College;
and project director of the Emperor I
Videodisc project, on image data bases in
the Humanities and Social Sciences.
Professor Neil Freeman, Department of
Theatre, York University, on data bases

¥20Z I4dy 01 uo 1senb Aq LG819¢/582/€/0¢ /8101 e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq

