Buddy Algorithms

D.J. CHALLAB anNDp J. D. ROBERTS

Department of Computer Science, University of Reading, Whiteknights, Reading RG6 2AH

Algorithms are derived for allocating and deallocating blocks of memory using Binary Buddy, Weighted Buddy and
Variant Weighted Buddy partitioning; and transformations are demonstrated for converting recursive into non-recursive

forms. Algorithms are given for the relatively difficult computation of the addressed and size of a Buddy slot in the
Weighted versions, and complexity and optimisation are also considered.

Received January 1986, revised May 1986

1.INTRODUCTION

Outline descriptions of various forms of Buddy memory-
management algorithms may be found in the scientific
literature,: % 7-® but considerable detailed design is
required of any investigator wishing to make use of these.
It is hoped that the time-consuming effort involved in
such design will be unnecessary as a result of the
following precise description. Substantially equivalent
algorithms have been used*® in several application
experiments which demonstrate the use of Buddy storage
management for implementing flexible arrays.

The original Binary Buddy System,® ? working in a
memory of size 2%, allows users to request a memory slot
of size 2% for a suitable range of k. For consistency of
discussion it is necessary to define a smallest size of slot
even though this decision is arbitrary and of no
fundamental significance. To allow & = 0 would allow a
slot to be a single word; we assume 1 < k < n to reflect
two practical considerations, namely: (i) it is common to
use two-way linked lists in the storage management which
requires two parts per slot; and (ii) the information in a
slot of size 1 could as well be held in the space allocated
for the pointers to such a slot.

The Weighted Buddy System allows a memory slot to
be requested either of size 2*¥ where 1 < k < n or size 3.2
where 1 <k <n—2. The Variant buddy system! is
similar to the Weighed buddy system except that when
a slot of size 2%+2 fragments successively into slots of sizes
3.2% & 2% and then 2¥+1, 2% & 2k the two slots of size 2%
may be merged into a single slot of size 2¥*1. These slots
are not Buddies in the original partition process and a free
slot of size 2¥ may thus be merged in a non-unique way
to form a larger free slot. The creation and deletion of
a slot of memory in either system can be described by the
pair of commands

new (p, t) which returns the address of a new slot in p,
and
dispose (p, t) which frees the slot at p for future use.

Here p is a variable of type address and ¢ is of type tag
(an integer sub-range) which takes even values for slot in
the Binary Buddy system. We define size[t] as follows

size[2k] =22¥k=1)
size[2k+1]=32%¥k > 1)
size [0] =2

Note that the value 1 is not used as a tag.
The purpose of this paper is to study the design of

algorithms for implementing new (p, t) and dispose (p, t).
These are presented firstly as recursive algorithms and
secondly in their more practicable non-recursive form.

Although the Binary Buddy and Weighted Buddy
allocation algorithms are different, they have the same
structure and can be unified into a common form by
postponing the definition of certain functions which
determine the address and size of the Buddy of any given
slot. These functions are:

Larger (?) the tag for the next larger size,

B,(p, 1), B(p,t) the address and size tag respectively of
the Buddy of the slot at p with size tag
t, and

Py(p,0), F(p,t) the address and size tag respectively

of the parent of the slot at p with size

tag t.

We note that

Py(p, 1) = min(p, By(p, 1)).

It is assumed that an array called free is declared of
which each element free [f] contains some representation
of the free set of slots of size size [f]. For the algorithm
to work, in fact for the indexing of free to remain in range,
it is necessary that at least one non-empty set of free slots
should exist of size at least size[t]. The implication of this
will be discussed later, but for the moment we just assume
that the responsibility for this rests with the writing of
any calling program.

2. RECURSIVE FORM

The description to be given of the storage-management
algorithms assumes that addressing begins at location 0
and is assumed to be within the scope of the type
declaration

type address = 0. .2"71;
tag=0. .n-1;

The following pair of procedures describe the Binary
and Weighted forms in a unified way dependent on
definitions of certain functions.

procedure new (var p : address ;t : tag);
{called only if a slot exists with size tag > 1}
procedure newp (¢ : tag);
begin
if not empty (free [1])

308 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

BUDDY ALGORITHMS

then begin
‘set p to any member of free [{]’;
‘remove (p) from free [{]’
end
else begin
since free (] is empty there must be a non-empty
{set of slots of at least the next larger size up. }
newp (Larger (1));
‘insert (B,(p, t)*) into free [B,(p,)]’

end
end;
begin
newp (t)
end

procedure dispose (p:address;t:tag);
var present:boolean;
begin
‘test if B,(p, ?) is present in free [B,(p,1)]’;
if not present
then ‘insert (p) into free [t]’
else begin
‘remove (B,(p, 1)) from free [B,(p, 1)]’;
dispose (B,(p, 1), PAp,1))
end;
end

In all the above we can replace the functions B, B,,
P, and F, either by the Binary Buddy functions which we
call BB,, BB,, BP, and BPF, or with the corresponding
functions for the Weighted Buddy system which we call
WB,, WB,, WP, and WF,. The Binary Buddy functions
can be written down quite simply as

Larger(t) = t+2

88, = |

BB,(p,t) =1t
BP,(p,t) = size[t+2]*|p / size[t+2]|
BF(p,1) = 1+2

The Weighted Buddy functions are more complex. Their
defintion is considered in Section 4.

With the Variant Weighted form the form of procedure
new is exactly as for the Weighted Buddy, but the dispose
procedure, called Vdispose, is of a more complex form
and uses both sets of functions. Here, we look to combine
the slot with either a Weighted Buddy or Binary Buddy
slot and not just a Weighted Buddy as in the ordinary
Weighted version.

D+ size[t] when p/size[t] is even
p —size[t] when p/size[t] is odd

procedure Vdispose (p:address;t:tag);
var bpresent, wpresent:boolean;
begin

‘test if BB,(p,) is present in free [BB,(p,1)]’;

‘test if WB,(p, 1) is present in free [WB,(p,t)]’;

if bpresent then begin

‘remove (BB,(p, t)) from free [BB,(p,1)]’;
Vdispose (BP,(p,t), BP, (p, 1))
end else
if wpresent then begin

* Since B,(p, 1) is the right Buddy we can replace it by p+ size|].

‘remove (WB,(p, t)) from free [WB,(p,1)]’;
Vdispose (WP,(p,t), WE, (p,1))
end
else ‘insert (p) into free [t]’
end;

All forms of procedure new may be called only if there
is a non-empty set of slots of at least the size requested.
It is important to be able to ascertain whether this is true,
and a convenient way to do this is to maintain an integer
variable called freemax, which is the largest integer i for
which free[i] is a non-empty set, or -1 if no such i exists.

After each call of new (p,t), freemax either stays the
same or decreases. This is because the insert operation is
called only after a larger slot has already been taken from
a non-empty free list with higher tag value than that into
which the new slot is inserted. The important thing about
Jfreemax is that is removes the need for a failure exit when
no slot exists, because it provides a way for the user to
test quickly if a slot does exist. When procedure new is
called, freemax may decrease but it will certainly not
increase. Therefore we can ensure that freemax is always
maintained to its true value for the user if at the end of
every call of new we insert an operation to update freemax
downwards at the end of each user call (but not
necessarily in the recursive calls) of new(p, t), namely:

while empty (free [freemax]) and freemax > 0
do freemax: = freemax-1,

Conversely freemax can increase but will certainly not
decrease when procedure dispose is called. If it does
increase, it does so at the point in the procedure where
free[t] changes from being empty to non-empty. Thus
freemax can be updated by inserting the statement

if t > freemax then freemax: =t

after the call of ‘insert (p) into free [1]’.

Note that to avoid the possibility of an out-of-range
subscript without resorting to a non-symmetric definition
of the and in the while condition above, it is convenient
to declare

var free:array [— 1. . 2n] of slotset;
with free[— 1] = empty.

3. NON-RECURSIVE FORMS

Although recursive procedures can often be particularly
clear and readily provable, it is often desirable to
represent algorithms in non-recursive form on actual
machines (cf. Knuth® and Bird* ?). We therefore need to
consider how recursive procedures can be converted to
non-recursive ones generally. Often one can eliminate
mechanically the last call a procedure makes to itself. If
a procedure proc (p, i) (where i is a value parameter) has
a call to proc (p,)) as its last step we can replace the call
proc (p,j) by an assignment, i: = j, followed by a jump
to the beginning of the code for procedure proc. This kind
of elimination is called tail recursion’ elimination. The
recursion in the dispose procedure is of this kind but the
procedure new is not, and in such cases a more general
and less simple approach is required.

Conversion to non-recursive form involves two phases
which we consider in turn. The first stage is to transform
the algorithms into forms in which the recursive parts are

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 309

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

D.J. CHALLAB AND J. D. ROBERTS

free of parameters and local variables. The second stage
is to express the recursive parts in non-recursive form.

The principles of the second stage of the technique are:
(1) to identify the structure of the recursive parts; (2) to
state which pieces of program correspond to the ‘boxes’
in the structure; and (3) to transform the structure,
substitute back the pieces of program and perform any
final simplifications.

When the first stage is done and when the code for
updating freemax is inserted we have the following.

procedure new (var p:address;t,:tag);
var t:tag,
procedure new ,;
begin
if not empty (free[t])
then begin
‘set p to any member of free[f]’;
‘remove (p) from free(t]’
end
else begin
t: = Larger (t); newy,;
t: = Smaller (1);
‘insert (p+ size[t]) into free[B,(p, t)I’
end
end;
begin
ti=ty;
new p,;
while empty (free[freemax]) and freemax > 0
do freemax: = freemax —1
end

Here all functions are as defined in the earlier form except
for Smaller(t), which is the inverse function of Larger(?).
Procedure new, is of the form

if b then 4
else begin
B;
new,;;
C
end
In general, elimination of a single occurrence of
recursion in an algorithm requires construction of a
variable called level to record the level of recursion. So
procedure new,,, becomes
begin
level: = 0;
while not b do
begin
B;
level: = level + 1
end;
A;
while level > 0 do
begin
level: = level —1;
C
end
end

In this case level is redundant, as equivalent information
is contained in ¢, the incrementing of level always being
coupled with #: = Larger(¢) and the decrementing of level
with t: = Smaller(t). Thus

t = Largereveb (1,) {level applications of Larger(t,)}

The test ‘level > 0’ can therefore be adequately replaced
by t > t,.

The following procedure represents the algorithm
new,, in a non-recursive form.

procedure new, ;
begin
while empty (free[t]) do t: = Larger(?);
‘set p to any member of free[t]’;
‘remove (p) from free[?]’;
while ¢ > ¢, do
begin
t: = Smaller(t),
‘insert (p+ size(t)) into free[B,(p,)]’
end;
end

The final form of algorithm new, after substituting the
non-recursive form of new,,, is thus as follows.

procedure new (var p:address;t,:tag);

var t:tag;
begin
ti=t,;

while empty (free[t]) do t: = Larger(?);
‘set p to any member of free [1]’;
‘remove (p) from free [{]’;
while ¢ > ¢, do
begin
t: = Smaller(t);
‘insert (p+ size[t]) into free [B,(p,)]’
end;
while empty (free[freemax]) and freemax > 0
do freemax: = freemax—1;
end

The following procedure represents the first stage of
the transformation of dispose (with the inclusion of the
statement for updating freemax) in which the recursive
part is parameter-free.

procedure dispose (p,:address;t,:tag);
var p:address;t:tag;present:boolean;
procedure dispose, ;
begin
‘test if B,(p, ?) is present in free [B,(p,1)]’;
if not present
then begin
if ¢ > freemax then freemax: =t
‘insert (p) into free [t]’
end
else begin
‘remove (B,(p, t)) from free [B,(p,1)]’;
p:=Py(p,1);t:=F(p,1);

dispose ,
end
end;
begin
Pi=DPo;l: =1y,
dispose
end

The recursive part has the following non-recursive form.

procedure dispose , ;
begin
‘test if B,(p, ?) is present in free [By(p,!)]’;

310 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

BUDDY ALGORITHMS

while present do
begin
‘remove (B,(p, t)) from free [B,(p,1)]’;
p:= Py(p,1);t:= B(p,1);
‘test if B,(p, ?) is present in free [B,(p, t)]’
end;
if 1 > freemax then freemax: =t
‘insert (p) into free[f]’
end

The following final form of dispose is obtained by the
substitution of the non-recursive form of dispose .

procedure dispose (p,:address;t,:tag);
var p:address;t:tag;present:boolean;
begin
Pi=Dosti=1y;
‘test if B,(p, ?) is present in free [B,(p,1)]’;
while present do
begin
‘remove (B,(p, t)) from free [B,(p,1)]’;
p:=Py(p,1);t:= F(p,1);
‘test if B(p, f) is present in free [B,(p,)]’
end;
if t > freemax then freemax: = t;
‘insert (p) into free[t]’
end

To express the Variant Weighted algorithm in
non-recursive form the dispose algorithm has to be
converted first into recursive form with formal parame-
ters and finally into non-recursive form without formal
parameters.

procedure Vdispose (p,:address;t,:tag);
var p:address;t:tag;
procedure Vdispose,,;
begin
‘test if BB,(p,) is present in free [BB,(p, 1)]’;
‘test if WB,(p, 1) is preent in free [WB,(p,1)]’;
if bpresent then begin
‘remove (BB,(p, t)) from free
[BB,(p,1]’;
p:=BPy(p,1);t:= BF(p,1);
Vdispose,,
end else
if wpresent then begin
‘remove (WB,(p, t)) from free
[WB(p,0]’;
p:=WPy(p,1);t: = WF(p,1);
Vdispose,,
end
else ‘insert (p) into free[t]’;
end;
begin
Pi=Dposl:=1y;
Vdispose ,
end
Procedure Vdispose,, is of the form
A;
if bpresent
then begin
B;
Vdispose,,
end else
if wpresent

then begin
G
Vdispose
end
else D;

On converting to a non-recursive form procedure
Vdispose,,, becomes
A;
while bpresent or wpresent do
begin
if bpresent
then B
else C;
A
end;
D;

Using the same technique as before, we can substitute
the non-recursive form of procedure Vdispose,, into
procedure Vdispose to get the final non-recursive form of
the Variant Weighted Buddy algorithm.

procedure Vdispose (p,:address;t,:tag);
var p:address;t:tag;bpresent, wpresent:boolean;
begin
Pi=Ppysti =1,
‘test if BB, (p, 1) is present in free [BB,(p, 1)]’;
‘test if WB,, (p, ?) is present in free [WB,(p,1)]’;
while wpresent or bpresent do
begin
if wpresent then begin
‘remove (p) from free[t]’;
p:= WPy(p,1);t: = WE(p,1)
end
else begin {bpresent}
‘remove (BB,(p, 1)) from free

[BB,(p,0)]’;
p:= BPy(p,1);t: = BB(p,1)
end;

‘test if BB,(p, t) is present in free [BB,(p,1)]’;

‘test if WB,(p, t) is present in free [WB,(p, 1)]’

end;
if t > freemax then freemax: =t
‘insert (p) into free[t]’

end

4. THE DIFFICULT FUNCTIONS

In the Binary Buddy partition, the size of every slot is
given by 2¢/2+1 and it is easy to ascertain whether a slot
at address p is a left buddy or right buddy from the ratio
defined by R = (p/2¢/»*1) (which is always an integer),
(proved in Appendix 2). The slot is a left buddy if R is
even and a right buddy if R is odd.

In the Weighted Buddy partition, it is not in general
nearly so easy to ascertain how any given slot has been
generated. Omitting first the special case of the Binary
partition of free slots of size 4, four cases need to be
considered. A slot at p of size 2* can be

(a) (when k > 1) the left child of a slot of size 3.2%1
at p and the left-left grandchild of a slot of size 2%+1 at
D, or

(b) the right child of a slot of size 3.2 at p—2k+! and
the left-right grandchild of a slot of size 2¥+2 at p— 2k+1,
or

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 311

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

D.J. CHALLAB AND J. D. ROBERTS

(c) the right child of a slot of size 2¥+2 at p—3.2%;
while a slot at p of size 3.2* can only be

(d) the left child of a slot of size 2¥*2 at p, and therefore
the 3:1 splitting of a slot of size 2¥+2 is the only way that
a slot of size divisible by 3 is generated.

With the special Binary partition case, a slot at p of size
2 exactly can also be

(e) the left child of a slot of size 4 at p, or
(f) the right child of a slot of size 4 at p—2.

If a slot is of size 3.2% it must be of case (d). If a slot is
of size 2%, the case is not uniquely determined by the size
alone and it is useful to consider the properties of the ratio
of the parent or grandparent. Suppose the slot in question
has ratio R, then in case (a) the ratio of the grandparent
is R/2.

Case (a) can therefore apply only if R is even, i.e.

R mod 4€{0,2}

In case (b) the ratio of the grandparent is [(R—2)/4],
therefore

Rmod4 =2

In case (c) the ratio of the parent is [(R— 3)/4], therefore
Rmod4 =3

In case (e) the ratio of the parent is R/2, therefore
Rmod 4€{0,2}

and in case (f) it is [R—1)/2], therefore
Rmod 4€{1,3}

Thus the origin of a slot of size 2 is indicated by R mod
4 when this takes the value 0 or, 3, but when R mod 4 = 2
in general more analysis is required. To proceed further
we need the following definition and lemma.

Definition

The boolean function ex(R), where R is any positive
integer, is defined to take the value true if and only if
R+ 1 can be expressed in the form (2n+ 1)*47, i.e., if and
only if 2 is a factor of R+ 1 with even multiplicity.

Lemma

A slot can be generated in cases (a), (b) or (c¢) with ratio
R only if ex(R) takes the value true (proof in Appendix 1).

Using this lemma we can resolve between the cases
(a) and (b), because in case (a) a grandparent exists with
ratio R/2 so that the factor 2 has even multiplicity in
(R/2+1) and in case (b) a grandparent exists with ratio
R—2/4 so that the factor 2 has even multiplicity in
(R—2/4+1) = {(R/2+1). If the multiplicity of 2 is odd
in R/2+1, case (a) is eliminated; and if the multiplicity
of 2 is even in R+1, then it is odd in }(R/2+1) thus
eliminating case (b). Thus we can distinguish between
cases (@) and (b) by whether the boolean function
ex(R/2) takes the value true or false respectively. To trace
the origin of the slot we can therefore refer to Table 1a.

To implement the procedure new, it is sufficient to
compute the function WB,(p,t). The algorithm for this
is obtained from Table 1 as follows.

Table 1. The “difficult’ functions in the Weighted Buddy
system: (a) identification of cases; (5) values of functions
Table 1(a)

t even
Rmodd4 =0 t>1 t odd
0 Case e Case a
1 Case f IMPOSSIBLE Case d
2 ex<£> —case b

2
R

NOT ex(i) —case a
3 ex(R) — case ¢

NOT ex(R) — case f Case ¢

For definition of ex(R) see Section 4.

Table 1(b)
Case WPy (p,t)y WP(p,1) WB,(p,t) WB(p,1) sizell]
a p t+1 p+2(¢/2)+1 =2 2(!/2)+1
b p—2.2Wt1 143 p—2.2tD+1 42 2t/D+1
c p—3.2Wdt1 4 4 p—3.2t/+1 143 20/2+1
d p t+1 p+3.2t-02 3 3.2¢-vre
e p 2 p+2 0 2
f p—2 2 p—2 0 2

function WB,(p:address;t:tag):tag;
var R:integer;
begin
if (mod 2) =0
then begin

14
size[t]
case (R mod 4) of
0:WB,:=1t-2;
1:WB,: =0;

. R
2:if ex (E)

then WB,: = t+2
else WB,: =t—-2;
3:ifr>0
then WB,: =143
else if ex (R)
then WB,: =3
else WB,: =0
end
end
else WB,:=1t-3
end

s

This is satisfactory for procedure new. But in dispose the
analysis of cases is best introduced by restructuring the
whole algorithm.

The reasons for procedure Wdispose needing restruct-
uring are (a) case identification is not trivial (in some cases

312 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

BUDDY ALGORITHMS

ex (R) is involved); (b) up to four function calls may be
needed, all for the same case of the pair (p, f).

In the procedure dispose, the values of B,(p, t), B,(p, 1),
P,(p,) and F(p, 1) are computed in sequence, all for the
same cases (a, b, ¢, d, e, f). As these are in different parts
of the loop and, as identification of the case is a major
part of the computation, it is useful to unbundle the
identification of the case from the evaluation of the
functions. Thus, after each pair of assignments to p and
t we identify the case, asin the following restructured form
of the non-recursive form of the Weighted Buddy
procedure Wdispose.

procedure Wdispose (p,:address;t,:tag);

var p:address;t:tag;present:boolean;
fease:(a, b, c,d, e, f);
bp:address;bt:tag;

begin
P:i=Ppo;t: = ly;
‘identity fcase’;

‘compute bp, bt from fcase, p,t’;
‘test if bp is present in free [bt]’;
while present do
begin
‘remove (bp) from free[bt]’;
‘p:=WPy(p,1);t: = WP(p, 1) given fcase’;
‘identity fcase’;
‘compute bp, bt from fcase, p,t’;
‘test if bp is present in free [bt]’
end;
if 1 > freemax then freemax: = t;
‘insert (p) into free[t]’
end

It remains to express the algorithms for computing parent
and Buddy slots which is again done with reference to
Table 1(b).

‘identify fcase’:
if (tmod 2) =0
then begin
P
size[t]’
case (R mod 4) of
0:if s >0
then fcase: = a
else fcase: = e;
1:fcase: =f;

. R
2:if ex<3>

then fcase: = b
else fcase: = a;

3iift>0
then fcase: = ¢
else if ex (R)
then fcase: = ¢
else fcase: = f
end

end
else fcase: = d

‘p:= Py(p,1); t:= F(p, 1) given fcase’:

case fcase of
a, dt:=1t+1;
b:begin
p:=p—size[t+2]; t: =143

end;
c:begin
p:=p—3 *size[t];t: =t+4
end;
e:t:=2;
f:begin
p:=p—2;t:=2
end
end

‘compute bp, bt from fcase,p,t’:

case f case of
a:begin
bp: = p+size[t];bt: = t—2;
end;
b:begin
bp: = p—size[t+2];bt: =142
end;
c:begin
bp: = p—size[t+3];bt: =t+3
end;
d:begin
bp: = p+size[t];bt: =13
end;
e:begin
bp:=p+2;bt:=0
end;
/f:begin
bp:=p—2;bt:=0
end
end

5. COMPLEXITY CONSIDERATIONS

To make a quantitative measure of the performance of
the procedures new and dispose, we need to consider the
number of remove, insert and test operations, the
numbers of calculations of B,, B,, P,, F, and the number
of miscellaneous basic operations.* This measure
captures the essence of the computation while at the same
time being divorced from any particular situation. There
is no fundamental difference in terms of complexity
between the recursive and the non-recursive forms of the
algorithms (except that the refinement using freemax has
been applied only to the non-recursive versions).
Calculation of B, in the Binary Buddy system is
straightforward and B, is trivial, BB, = t, but both these
functions are more difficult for the Weighted Buddy

Table 2. Analysis of complexity of new, dispose and Vdispose

Whnew
and
Bnew Bdispose Vnew Wdispose Vdispose
‘Insert’ A 1 A 1 1
‘Remove’ 1 U 1 U u
‘Test’ — 1+u — 1+u 24u
Calculation to 2+ 2u
of
B,, B, — 142 A 1424 14 2u
» i

* These are: indexing of an array, addition, subtraction, multiplic-
ation, assignment to variable, incrementing and decrementing.

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 313

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

D.J. CHALLAB AND J. D. ROBERTS

Table 3. Combined complexity of different variations of new and dispose

Bnew (p,t) and Whnew (p,t) and Vnew (p, t) and
Bdispose (p, 1) Wdispose (p, t) Vdispose (p,t)
‘Insert’+ A+1 A+1
‘remove’ +
‘test’

Extra tests — -

Calculation of 1424 1434
the functions Binary functions (‘Difficult’ functions
of Section 4)

Between 1 and u+1

1432
(Mixed)

system. Table 2 illustrates the complexity of the various
operations involved in new and dispose and the Variant
Weighted version Vdispose, the figures being expressed in
terms of the average length of search A required to find
a non-empty free list and the average number u of
‘remove’ operations caused by combining a newly
disposed slot with existing free slots. The actual
quantitative performance of any of the Buddy systems
being considered is liable to be dependent both on the
characteristics of the machine being used and on the
distribution of the request sizes. A full experimental
investigation is beyond the scope of this paper, but
elsewhere one of the authors® has observed A (and y) to
take values between 1.53 and 2.02 in an application
requiring fairly random dynamic allocation of slots of
several different sizes. We can show how from theoretical
consideration it is possible to make certain partial
qualitative comparisons. In a long run, the number of
slots removed must balance the number inserted and the
numbers of calls of new and dispose must also balance.
Thus it follows from theoretical arguments that A = u
and its also follows that the total memory management
overhead is indicated by the cost of one call of new plus
one call of dispose. This leads us to Table 3, points of
which to note are the following.

(i) The Binary version involves evaluations of the
Binary functions BB, etc. at the points where the
Weighted version involves the functions WB,, etc., which
are the ‘difficult’ functions discussed in Section 4. There
are also fewer Binary function calls because the function
BBy(p, t) = t and requires no computation at all.

(i) The Variant Weighted version is likely to involve
more executions of ‘test’ but fewer evaluations of the
‘difficult’ functions than the ordinary Weighted version,
which differences will tend to cancel each other out.

The consequences in relation to implementation are
that the memory-management operations can be kept
down to the equivalent of a reasonable number of
elementary operations provided all the set manipulation
operations ‘insert’, ‘remove’ and ‘test’ can be reduced
to a few elementary operations, and provided we can also

REFERENCES

1. A. G. Bromley, An improved Buddy method for dynamic
storage allocation. Proc. 7th Aust. Comp. Conf., pp.
708-715 (1976).

2. R. S. Bird, Notes on recursion elimination. Comm. of the
ACM 20 (6) (1977).

similarly reduce the work involved in evaluating the
functions B, B,, P, and F,. The operations ‘insert’ and
‘remove’ are simple to implement using standard
techniques with two-way lists, but ‘test’, if it is to be
efficient, requires the two-way list to be augmented by a
bit-map which is also standard for Buddy systems. The
functions B, etc. in the Binary version involve
determining whether p/size[t] is even or odd, which can
be expressed as an inspection of bit 27+ 1 in p. Similarly,
in the Weighted Buddy case the computation of fcase
involves the assignment R: = p/size[t], but it is important
to look at how R is used. First, R mod 4 is required
(obtained by inspecting a pair of bits in p) to determine
the case, and secondly, in the computation of ex(R/2) or
ex(R), further pairs of bits in p are inspected until at least
one of the bits is zero. The assumption behind the
estimates given is that the loop in function ex is executed
an average 1} times, and there is an even mixture of the
values of fcase.

6. CONCLUSION

Recursive and non-recursive forms of algorithms for the
Binary Buddy, Weighted Buddy and Variant Weighted
Buddy systems have been derived. The functions for
finding the location and size of a Weighted buddy are
more difficult than for a Binary buddy and generally
require many iterations of basic operations.

The most efficient ways of computing these ‘difficult
functions make use of bit indexing, which is a technique
that is also used to optimise the testing for membership
of slots of given size in free lists. With reasonable
optimisation the mean computational complexity of the
Weighted and Variant Weighted versions will still be
more complex than that of the Binary version, but
probably not by a large factor.

)

Acknowledgement

The authors wish to thank the painstaking but
anonymous referee.

3. R. S. Bird, Recursion elimination with variable parameters.
The Computer Journal, 22 (2) (1979).

4. D.J. Challab and J. D. Roberts, Flexible array implemen-
tation by Buddy methods. (Submitted for publication).

5. D.J. Challab, Ph.D. thesis (in preparation).

314 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

BUDDY ALGORITHMS

6. K. C. Knowlton, A fast storage allocator. Comm. of the
ACM 8 (10) (1965), 623-625.

7. D. E. Knuth, The Art of Computer Programming. Vol. 1.
Fundamental Algorithms. Addison-Wesley, Reading,
Mass., 2nd edition, pp. 111, 435-455. (1968).

APPENDIX 1

Lemma

A slot can be generated in the cases (a), (b) or (c) with
ratio R only if ex(R) takes the value true (i.e. only if the
factor 2 occurs in R+ 1 with even multiplicity).

Proof (by induction)

Initially R = 0, therefore R+ 1 = 1, in which 2 has zero
multiplicity. The rest of the proofis to show that evenness
of multiplicity is preserved by the process of generating
new slots. Any slot of size 2¥ with ratio R is one of the
following (cf. Section 4):

(a) a left-left grandchild of a slot with ratio R/2;
(b) aleft-right grandchild of a slot with ratio R—2/4;
(c) a right child of a slot with ratio R—3/4.

This means that the ratio R,,,, of any newly generated
slot (in case a, b, c) satisfies

R,,,€{2R,4R+2,4R+3}
whence
R,,,+1€{2(R+1)—1,4(R+1)—1,4(R+1)}

Thus every value R, + 1 produced must either be odd
or 4 times a previous value, in both cases preserving the
evenness of the multiplicity of 2 in R,,,+1 (end of
proof).

Corollary 1

The quaternary representation of R+1 is of the form

{iJo

8. D. E. Knuth, Structured programming with goto state-
ments. ACM Computing Surveys 6 (4), 261-301 (1974).

9. K. K. Shen and J. L. Peterson, A weighted Buddy method
for dynamic storage allocation. Comm. of the ACM 17 (10)
558-562 (1974); corrigendum 18 (4) 202 (1975).

Corollary 2

. . 0] 4o
The quaternary representation of R is of the form {2} 3%

APPENDIX 2
Lemma

Blocks generated by Weighted splitting fall into two
classes: A of size 2* and address a multiple of 2¢ (k > 1);
B of size 3.2* and address a multiple of 4.2% (k > 1).

Proof

The initial state of the memory is a single slot of size 2™
at location 0 (of class A). A subsequent Weighted splitting
of a slot of class A of size 4.2% located at 4 R. 2* produces:
(i) a slot of size 3.2% at R.2* (which is of class B); and
(ii) a slot of size 2% at (4R+ 3).2* (which is of class A).
A slot of class B of size 3.2% located at 4R . 2% splitsinto:
(iii) a slot of size 2.2% at 4R . 2¥ (which is of class A); and
(iv) a slot of size 2% at (4R+2).2¥ (which is of class A).
In the special case of the Binary splitting a slot of size 22
located at R. 22 splits into slots of size 2 located at 4R and
4R +2 (which are also both of class A) (end of proof).

Corollary

The address of a slot of size 2* (where k& > 1) is a multiple
of 2F.

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 315

¥202 I4dy 60 U0 1senb Aq 2£8G/€/80€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

