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1. INTRODUCTION

One of the main steps in compiler development is the
definition of the static semantics, that is to say the
semantics of context dependencies. The static semantics
must be defined independently of the adopted implemen-
tation environment, so that the same language can be
implemented in different environments.

The most frequent way of defining the static semantics!
is either through attribute grammars? or through
two-level grammars.? Attribute grammars have been used
extensively in the literature to define the static semantics
of programming languages (for an example of an
attribute grammar for the ADA programming language
see Ref. 4).

In Ref. 5 an attribute grammar was developed for a
conceptual schema language which was implemented
with the YACC/LEX/C tools available in the UNix
system.® As far as the authors know this was the first
attempt to bring the attribute grammar techniques to the
environment of conceptual schema languages. The
experience revealed the necessity of introducing a
methodology for defining attribute grammars for
conceptual schema languages in a structured way.
Perhaps the problem is not so relevant concerning
attribute grammars for programming languages since the
respective context dependencies are better known.

The objective of this paper is to introduce a
methodology for defining attribute grammars for
conceptual schema languages taking advantage of
conceptual modelling abstraction tools. The basic idea is
to develop the conceptual schema (the data dictionary)
of the modelling approach whose conceptual schema
language is to be defined. The conceptual schema can be
defined using any modelling approach including that
same one. The information and the alteration structures
of the modelling approach allow the identification of the
different components of the attribute grammar. Namely,
the information structure guides the definition of the
context-free grammar as well as the choice of the
attributes. The environment attribute corresponds to
the state concept in conceptual modelling approaches.
The alteration structure guides the definition of the sem-
antic conditions and the semantic rules.

t To whom correspondence should be addressed.

The methodology can be used for the definition of any
attribute grammar, with a small modification. Namely,
in this situation it is necessary to get the context-free
grammar and to develop the conceptual schema of the
context dependencies.

The methodology is illustrated by an attribute
grammar for the Infolog conceptual schema language.
Since attribute grammars are not very well known in
the field of conceptual modelling, it seems that the
methodology can be very helpful for aiding in the
definition of attribute grammars for conceptual schema
languages.

In Section 2 the definition of attribute grammar is
introduced and a small example is presented. In Section
3 the information and the alteration structures of the
Infolog modelling approach are briefly introduced as well
as the Infolog data dictionary. In Section 4 the
methodology is presented and illustrated by an attribute
grammar for the Infolog conceptual schema language.

2. ATTRIBUTE GRAMMARS

Attribute grammars were first introduced in Ref. 7.
Several aspects of attribute grammars are discussed in
Refs 2, 8-11. Illustrations of attribute grammars for
programming languages are presented in Refs. 4 and 12.
In Ref. 5 an attribute grammar for a conceptual schema
language is presented and some ideas about its
implementation using the YACC/LEX/C tools available
in the UNIx system are discussed. Finally, a bibliography
of attribute grammars can be found in Ref. 13.

2.1. Definition
An attribute grammar is a 5-tuple
(G, A, VAL, SR, SC)

where G is a reduced context-free grammar, A is a set of
attributes, VAL is a set of domains of attribute values,
SR is a set of semantic rules and SC is a set of semantic
conditions.

The attribute set is the union of the sets of attributes
for each symbol in the G grammar. The set of semantic
rules is a set of equations allowing the evaluation of the
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attribute instances. Thus a semantic rule is an equation
of the following form:

(a0, p, Xk0) = f((al, p, Xk1), ..., (ar, p, Xkr))

where p is the production X0 - X1,..., Xn, ai
(i=0,...,r) is an attribute of Xki, Xki is one of the
grammar symbols involved in production p and fis a
function whose range is the domain of attribute a0.

The semantic conditions are Boolean expressions used
to constrain the set of sentences in the language, by
allowing only the sentences of the G grammar than satisfy
them.

An attribute has many instances according to the
production rules where instances of the corresponding
symbol appear. The instances of an attribute can be
evaluated by different semantic rules and must satisfy
conditions depending on the associated production rules.

The attributes can be classified either as synthesised or
as inherited. A synthesised attribute is evaluated when its
owner symbol is on the left side of a production. On the
other hand, an inherited attribute is evaluated when its
owner symbol is on the right side of a production.
Generally, the start symbol only appears on the left side
of productions, having therefore only synthesised
attributes.

The main advantage of attribute grammars is that they
are completely independent of any implementation
issues. For instance, no symbol table structure has to be
defined when specifying an attribute grammar.

2.2. An example

Herein, a small example of an attribute grammar is given.
Consider that in a programming language the declaration
of the variables of the same type is defined in BNF as
follows:

(declaration)::= VAR {list-of-idents) :{type-var)
(list-of-idents) :: = (ident)
| list-of-idents )1 {ident)
(type-var)::= CHAR|INT
Assume also that there is a context dependence stating
that the variables of the same type must have different
identifications.

An attribute grammar for expressing the static
semantics has the following attributes:

Attribute Symbol

type declaration
type type-var
list-val-idents list-of-idents
val-ident ident

The semantic rules are the following:
type ({declaration)) = type ({type-var))
type ({type-var)) = CHAR

in the scope of the production
(type-var):.:= CHAR

and

type ({type-var)) = INT

in the scope of the production

{type-var)::= INT

list-val-idents ({list-of-idents)) = val-ident ({ident))
in the scope of the production rule

(list-of-idents) :: = {ident) and

list-val-idents ({list-of-idents)) =

append (list-val-idents ({list-of-ident)1), val-ident
(Cident}))

in the scope of the production rule
(list-of-idents) :: = (list-of-idents)1 {ident)

assuming that append is the operation append defined on
the data type list.*

The last semantic rule gives the value of the attribute
list-val-idents. According to the context dependency
informally stated above, the new value can only be
appended to the list defined provided there is no other
variable with the same identification as the new one. This
means that the following semantic condition must be
introduced:

~ EXISTS (list-val-idents ({list-of-idents)1)) val-ident

(Kident"»):
val-ident ({ident’)) = val-ident ({ident))

This semantic condition must be verified whenever
introducing a new element in the list. Note that the
semantic condition above involves one instance of the
attribute val-ident.

3. THE INFOLOG CONCEPTUAL
MODELLING APPROACH

Conceptual modelling approaches include the specifica-
tion of the information (data), the alteration (events) and
the evolution (processes) structures of a system. Herein,
a brief description of the information and the alteration
structures of the Infolog modelling approach is pre-
sented.!>"!® The information structure includes abstrac-
tions for dealing with specialisation, generalisation and
aggregation. The event structure includes the specifica-
tion of events and rules stating the conditions that must
be verified before the occurrence of an event, and the
effects of an event.

3.1. Information structure

The basic Infolog information abstraction is the
archetype. An archetype is a collection of archetype
occurrences that share the same attributes. An attribute
is a mathematical function that can either be a designator
or a property. The co-domain of a designator is also an
archetype and the co-domain of a property is a data type.

There are several kinds of archetypes: surrogate,
relation, characteristic, specialisation, generalisation and
aggregation. In this paper, no discussion is included
concerning the generalisation abstraction.

The different kinds of archetypes can be distinguishable
from each other through a definition involving compul-
sory properties and/or designators.

A surrogate is an archetype for which there is a key
mechanism allowing the unique identification of the
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different occurrences independently of the other arche-
types. The key mechanism is composed of the following
elements: the key data type, the key map and the key
property. The key map is a function that by giving a value
of the key data type allows the unique identification of
the corresponding occurrence of the surrogate. The key
property is a property whose co-domain is the key data
type. For example, in a conference support system
PAPER can be considered a surrogate with the following
definition:

NUMBER: PAPER — INTEGER
PAP: INTEGER — PAPER

Given an occurrence of PAPER, the key property
NUMBER refers to an integer value which identifies the
occurrence of PAPER itself through the key map PAP.

A relation is an archetype that depends for existence on
some other archetypes, called the arguments of the
relation (the number of argument archetypes is the arity
of the relation). The definition of a relation includes
argument designators for each of the arguments of the
relation and a reverse designator, such that by giving a
tuple of occurrences of the argument archetypes returns
a unique occurrence of the relation providing that it
exists. For example, AUTHORSHIP can be considered
as a binary relation between PAPER and AUTHOR with
the following definition:

PAPE: AUTHORSHIP — PAPER
AUT: AUTHORSHIP - AUTHOR
PAPAUT: PAPER* AUTHOR - AUTHORSHIP

Given an occurrence of AUTHORSHIP, the above
argument designators PAPE and AUT refer, respectively,
to the corresponding occurrences of PAPER and
AUTHOR, whereas the reverse designator PAPAUT
refers to an occurrence of AUTHORSHIP given a tuple
of occurrences of PAPER and AUTHOR.

A characteristic archetype also depends for existence
on some other archetypes. The definition of a charac-
teristic involves argument designators for each of the
argument archetypes, and a partial key mechanism that
allows the distinction between the different occurrences
of a characteristic that can be connected to a tuple of
argument occurrences. The partial key mechanism is also
composed of three elements: the partial key data type,
the partial key map and the partial key property. For
example, ACCEPTED-PAPER can be considered as a
unary characteristic of SESSION with the following
definition:

SESS: ACCEPTED-PAPER — SESSION
NUMP: ACCEPTED-PAPER — INTEGER

ACCP:
SESSION x INTEGER - ACCEPTED-PAPER

Given an occurrence of ACCEPTED-PAPER, the
argument designator SESS refers to the corresponding
occurrence of SESSION. The partial key map ACCP
refers to an occurrence of ACCEPTED-PAPER given a
tuple composed by an occurrence of SESSION and an
integer. The partial key property NUMP refers to the
integer value above given the respective occurrence of
ACCEPTED-PAPER.

A specialisation archetype groups in a new archetype
occurrences of another archetype (the argument of the
specialisation) for which it is needed to have additional
information. The definition of a specialisation includes a
discriminant property in the argument of the specialisa-
tion, a value in the co-domain of that property and a
discriminant condition that must be verified whenever an
occurrence of the argument archetype is an occurrence of
the specialisation. Moreover, the definition includes an
argument designator and a reverse designator as in the
case of the unary relation. For example, AUTHOR can
be considered as a specialisation of PERSON with the
following definition:

PERS: AUTHOR — PERSON
TYPEP: PERSON —{A, R, 0)
TYPEP (p) = A

AUTH: PERSON - AUTHOR

Given an occurrence of AUTHOR, the argument
designator PERS refers to an occurrence of PERSON.
The discriminant property TYPEP relates each occurre-
nce of PERSON with a specific value of the enumerated
set {4, R, O}. The discriminant condition TYPEP
(p) = 4 imposes which occurrences of PERSON are
to be occurrences of AUTHOR. The reverse designator
AUTH refers to an occurrence of AUTHOR given an
occurrence of PERSON, provided it satisfies the
discriminant condition instanced for the relevant
PERSON occurrence.

An aggregation archetype includes several definitions
of archetypes. For example, ACCEPTED-PAPER can
be considered as an aggregation of a unary characteristic
of SESSION (as discussed above) and as a specialisation
of PAPER. Thus, in this case, the aggregation includes
two definitions of archetypes.

3.2. Alteration structure

The basic abstraction at this level is the event type. An
event type is a collection of events (event type
occurrences) whose information is structured in details
and references. Both are mathematical functions.
However, the co-domain of a detail is a data type, while
the co-domain of a reference is an archetype.

There are several event types in the Infolog modelling
approach: insertion and deletion of occurrences in arche-
types and modification of properties and designators.
An event is seen as an atomic state transition (leading
the system from one state to another state) whose
occurrence is indivisible. Thus the events must have a
certain granularity. For example, an insertion occurrence
allows the insertion of only one occurrence of an
archetype. Only insertion event types are dealt with in this
paper. An insertion event type is denoted by = } 4, where
A is the archetype affected by the event.

There are two main aspects related to insertion events.
The conditions that allow the occurrence of insertion
events (for example the target occurrence must not be
present immediately before the insertion) and the effects
of the insertion. The conditions are referred to as enabling
rules and the effects are named change rules.

The following is an example of an enabling rule:

{{~ EXISTS (TARGET (=}a))}} =}a
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where EXISTS is a Boolean property that must be
defined for every archetype stating whether a given
occurrence is or is not present, TARGET is a compulsory
reference of every insertion event type, allowing the
identification of the archetype occurrence that must be
inserted when the corresponding event-type occurrence is
to occur, and =}a is an occurrence of the insertion even
type =} A. This means that an insertion event can only
occur if the target occurrence does not exist in the state
immediately before the occurrence of the event.

The following is an example of a change rule:

{} =}a {EXISTS (TARGET (=}a))}

where the symbol { } denotes the empty condition. Since
the event occurs only when the enabling rule above is
true, there is no need to state which condition is satisfied
before the occurrence of the event. The meaning of the
change rule is the following: after the occurrence of the
event, the target occurrence must exist, no matter what
happened in the state before the occurrence of the event.

It is worthwhile to say that the set of occurrences of
an archetype that exist in a given moment is called its
valuation. For example, the occurrence of an insertion-
event type alters the valuation of the target archetype by
including one more occurrence. The valuation before the
occurrence of an event is designated by pre-valuation.
The valuation after the occurrence of an event is called
pos-valuation.

3.3. The Infolog data dictionary

As an illustration of the Infolog modelling approach,
consider that one wants to develop the conceptual
schema of the Infolog specifications (that is to say the
data dictionary of the Infolog modelling approach).
The discussion below includes the information and
the alteration descriptions of the conceptual schema
of Infolog specifications using the Infolog modelling
approach.

Information structure

The first concept is specification. Consider the archetype
SPECIFICATION as the collection of all Infolog
specifications. The different specifications can be distin-
guished through a name. Thus the archetype SPECIFI-
CATION must be considered as a surrogate whose key
property is the name of the specification (spec-name).

Each specification can have several archetypes as a part
of its information structure. Moreover, the archetypes
must be uniquely identifiable in each specification. Thus
the archetype ARCHETYPE, the collection of all
archetypes, must be a characteristic of SPECIFICA-
TION. The argument designator must be defined as
follows:

spec-arc: ARCHETYPE — SPECIFICATION

The partial key property arcname (the name of the
archetype) allows the unique identification of the
different occurrences of ARCHETYPE for a given
occurrence of SPECIFICATION.

For similar reasons, consider the archetype DATA-
TYPE as the collection of all data types that can be
defined within a given specification. The archetype
DATA-TYPE must also be a characteristic of the
archetype SPECIFICATION. thus it is possible to

identify uniquely all the data types belonging to the same
specification.

Each archetype has two main aspects: a compulsory
definition and the collection of optional attributes. Thus
the archetype COMP-DEF, whose occurrences are the
compulsory definitions of the archetypes, must be a
relation of the archetype ARCHETYPE. On the other
hand, an archetype can have several attributes. Then, the
archetype ATTRIBUTE, the collection of all attributes,
must be a characteristic of the archetype ARCHETYPE.

Assume that the argument designator of COMP-DEF
is defined as follows:

arcname: COMP-DEF - ARCHETYPE

This designator identifies to whose archetype a given
compulsory definition belongs.

The compulsory definition of an archetype depends on
the category of archetype. An example is the surrogate
case. Thus the different compulsory definitions must be
specialisations of the archetype COMP-DEF. Assume
that the discriminant property of the archetype COM P-
DEF is defined as follows:

arccat: COMP-DEF —{SUR, REL, CHA, SPE,
GEN, AGG}

Each of the values corresponds to a possible category of
archetype. The archetype SURROGATE, the collection
of all surrogate archetypes, is a specialisation of the
archetype COMP-DEF with the following discriminant
condition:

arccat (COMP-DEF) = SUR

Similar observations could be stated for the other
compulsory definitions. The argument designator of the
specialisation can be defined as follows:

arcname: SURROGATE - COMP-DEF

Note that with the modelisation above it is not possible
to have archetypes with the same name in different kinds.
On the other hand, the grouping of archetypes of the
same kind in new archetypes, e.g. SURROGATE, is
important because the different kinds have different
definitions.

Whenever an archetype is a surrogate the key
mechanism must be defined. Thus the archetype
KEY-DEF, the collection of all key definitions, must be
arelation of the archetype SURROGATE. The argument
designator of the relation can be defined as follows:

arcname: KEY-DEF - SURROGATE

As stated above, the key mechanism includes the key
map, the key property and the key data type. They are
represented in the data dictionary in the following way:

K-map: KEY-DEF — string
K-prop. KEY-DEF - PROPERTY
K-data-type: KEY-DEF - DATA-TYPE

The key property and the key data type are defined as
designators since they are supposed to be considered,
respectively, as common properties or data types. For
example, for a certain archetype no other property can
have the same name as the key property.

In a diagram, each archetype can be represented by a
rectangle with a letter in the lower right-hand corner
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SPECIFICATI 01)\2

3

ARCHETYPE c

COMP-DEF ATTRIBUTE
R C
—<SURROGATE —« PROPERTY
S S
K-prop \j‘o-dom
L A
K-data-type
KEY-DEE > DATA-TYPE
R C

Figure 1. The Infolog partial data dictionary

indicating its kind. For example, X indicates that the
corresponding archetype is a surrogate. The arrows
denote dependencies between archetypes.

The final diagram for the Infolog partial data
dictionary is presented in Fig. 1.

An attribute can be either a property or a designator.
Thus the archetypes PROPERTY and DESIGNATOR,
respectively the collection of all properties and designa-
tors in a given specification, must be specialisations of the
archetype ATTRIBUTE. The archetype DESIGNATOR
is not included in Fig. 1 for the sake of simplicity. The
co-domains of the properties and the designators can be
defined as designators in the following way:

Co-dom: PROPERTY — DATA-TYPE
Co-dom-des: DESIGNATOR - ARCHETYPE

Alteration structure

Consider that one wants to introduce a new surrogate in
a given specification. A sequence of events of the
following types must occur:

=}ARCHETYPE, =}COMP-DEF,
GATE, =} KEY-DEF

This sequence leads to the insertions of occurrences,
respectively, in the following archetypes: ARCHETYPE,
COMP-DEF, SURROGATE and KEY-DEF. For the
sake of simplicity the optional properties and designators
are not included. The definition of the even types is
presented below.

=}ARCHETYPE

=}SURRO-

References and details
spec-arc:=} ARCHETYPE — SPECIFICATION
target-arc:=} ARCHETYPE - ARCHETYPE
arcname:.=} ARCHETYPE — string

The reference spec-arc defines the context (particular
occurrence of SPECIFICATION) where the new
occurrence is to be inserted. The reference target-arc
refers to the integration of the new occurrence in
ARCHETYPE. Finally, the detail arcname allows the
unique identification of the new occurrence for the
argument occurrence of SPECIFICATION.

Enabling rules

{{~ EXISTS (target-arc{=}archetype))}} =} archetype
{{EXISTS (spec-arc (=} archetype))}} =} archetype
where =}archetype is any occurrence of type =}arche-
type.

The enabling rules above state, respectively, that the
new occurrence (indicated by target-arc) must not belong
to the pre-valuation of ARCHETYPE and that the
referred-argument occurrence (indicated by spec-arc)
must belong to the value of SPECIFICATION.

Change rules

{} =}archetype (arcname (target-arc (= }archetype))
= arcname (=} archetype)}

{} =}archetype {arcname (target-arc ((=}archetype))
= spec-arc (=} archetype)}

The first rule states that after the occurrence of the
insertion event the value of the property arcname must be
the value of the detail arcname of the occurrence (referred
by target-arc) of the event. The second change rule states
that after the occurrence of the event the value of the
argument designator arcname must be the value of the
reference spec-arc of the insertion event.

=}COMP-DEF

References and details
arcname:=} COMP-DEF - ARCHETYPE
target-comp-def:=} COMP-DEF - COMP-DEF

arccat: =} COMP-DEF —» {SUR, REL, CHA, SPE,
GEN, AGG}

Change rules

{} =} comp-def {arcname (target-comp-def (=}comp-
def)) = arcname (=} comp-def)}

{ } =} comp-def {arcat (target-comp-def (=} comp-def))

= SUR}
=} SURROGATE

References and details
ARCNAME: =)} surrogate - COMP-DEF
target-sur: - SURROGATE - SURROGATE

Change rules

{} =}surrogate (arcname (target-sur(=}surrogate))
= arcname (=} surrogate)}

=} KEY-DEF
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References and details
arcname:=} KEY-DEF - SURROGATE
target-key-def:=} KEY-DEF — KEY-DEF
K-map:=} KEY-DEF — string
K-prop:=} KEY-DEF - PROPERTY
K-data-type: =} KEY-DEF - DATA-TYPE

Change rules

{} =} key-def {arcname (target-key-def (=} key-def))
= arcname (=} key-def)}

{} =} key-def {K-map (target-key-def (=} key-def))
= K-map (=} key-def)}

{} =} key-def {K-prop (target-key-def (=} key-def))
= K-prop (=} key-def)}

{} =}key-def{K-data-type(target-key-def( = }key-def))
= K-data-type (=} key-def)}

The details, the references and the change rules for the
last events are not detailed herein, since they have similar
interpretations to those of the details, references and
change rules for the insertion event =} ARCHETYPE.

4. DEVELOPING AN ATTRIBUTE
GRAMMAR FOR A CONCEPTUAL
SCHEMA LANGUAGE

Herein a methodology is introduced for defining attribute
grammars in a structured way. The methodology is
exemplified for the Infolog conceptual schema language,
but it could have been used for defining attribute
grammars for any conceptual schema language.

4.1. The methodology

The methodology for introducing attribute grammars for
conceptual schema languages assumes that the concept-
ual schema of the modelling approach is defined (that is
to say its data dictionary). Two assumptions are made.
In the first place, the data dictionary of the modelling
approach for which a conceptual schema language is to
be developed must be defined by using the Infolog
abstractions. In the second place, the conceptual schema
of the data dictionary must be simple. That is to say the
conceptual schema has no n-ary relation and character-
istic with n > = 2. The case when the conceptual schema
is not simple is discussed below.

The methodology

Input. A simple conceptual schema of the data dictionary
of a modelling approach defined with the Infolog
abstractions

Output. An attribute grammar for a conceptual schema
language for the referred modelling approach
Steps
(1) Context-free grammar

(1.1). All the archetypes correspond to syntax symbols
in the context-free grammar.

(1.2). If an archetype A is a unary characteristic of
another archetype A 1, the following production must be
included:

Kal)::= (list-of-a) {a)

assuming that a1l and a are the symbols that correspond
respectively to the archetypes 4 1 and 4. Thus the symbol
that represents the argument archetype of the unary
characteristic must be the left-hand side of the
production, and a list of symbols must be included in the
right-hand side representing the characteristic archetype.
Moreover, the following production must be introduced :

(list-of-ay::= {a)
| list-of-a) {a)

(1.3). If an archetype A4 is a unary relation of another

archetype A1, the following production must be
included:

(al)::=<(a)

where al and a are the symbols that represent,
respectively, the archetypes A1 and 4. Thus the symbol
that represents the argument of the relation must be the
left-hand side of a production rule where the symbol that
represents the relation is on the left-hand side.

(1.4). If an archetype 4 has several specialisations

Al, ..., An, the following production rule must be
considered:

(ay::=<al)]...|<{an)
where a,al,...,an are the symbols that represent,

respectively, the archetypes 4, A1, ..., An. Thus, the
symbol that corresponds to the argument archetype must
be the left-hand side of several productions (as many as
the specialisations) whose right-hand sides are the
symbols that represent the specialisations.

(1.5). If an archetype A4 is the argument of several
unary characteristics 41, ..., 4n and several unary
relations B1, ..., Bm, then the following production
must be added:

{ay::= (list-of-al) ... list-of-an) (b 1) ... {bm)

where a, al, ...,an, bl, ..., bm are symbols that rep-
resent, respectively, the archetypes 4, A1, ..., An, B1,
..., Bm.

(1.6). The starting archetype (which is always a
surrogate) leads to the introduction of a production rule
where the corresponding symbol is the left-hand side and
whose right-hand must include all the symbols that
represent the archetypes that have the starting archetype
as argument.

(2) Attributes

(2.1). The attributes of each syntax symbol in the
attribute grammar must correspond to the properties and
the designators of the archetype represented by the syntax
symbol;

(2.2). The attribute environment of each syntax
symbol represents the valuation of the corresponding
archetype. The in-environment attribute represents the
pre-valuation of the archetype (before the insertion of
the new occurrence) and the out-environment attribute
represents the pos-valuation of the archetype (immedi-
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ately after the insertion of the new occurrence). The
in-environment and the out-environment are designated
below, respectively, by inenv and outenv followed by a
mnemonic of the symbol to which they refer.

(3) Semantic conditions

The semantic conditions involving each syntax symbol
must correspond to the enabling rules that restrict the
occurrence of the insertion events related to the archetype
that is associated with the syntax symbol.

(4) Semantic rules

The semantic rules involving each syntax symbol must
represent the change rules that define the values of the
properties and the designators of the new occurrence of
the archetype associated with the syntax symbol.

4.2. Illustration of the methodology

The methodology is illustrated for the Infolog conceptual
schema language. The Infolog data dictionary described
in 3.3 above guides the definition of the attribute
grammar for the conceptual schema language. The use of
keywords is not part of the methodology itself. The
objective of introducing keywords is for simplicity
reasons. Whenever a syntactic category needs a name the
syntactic category ident is introduced.

(1) Context-free grammar

{specification):: = Specification
Cident) {list-archetypes {list-data-types)

For example, the syntax symbol specification corres-
ponds to the archetype SPECIFICATION. For the sake
of simplicity, the symbol (ident) is added to the
specification without any reference to how it was
obtained using the proposed methodology. This pro-
duction rule conforms to rule 1.5 of the methodology,
since both the archetypes ARCHETYPE and DATA-
TYPE are unary characteristics of the archetype
SPECIFICATION. The symbol {specification) appears
at the left-hand side of this production, since according
to rule 1.6,

(list-archetypes) :: = {archetype)
| {list-archetype) 1 {archetype)
archetype)::= {comp-def ) {list-attributes)

The symbol comp-def corresponds to the archetype
COMP-DEF. On the other hand, the symbol [ist-
attributes corresponds to the characteristic archetype
ATTRIBUTE.

{comp-def)::= {surrogate)
|Crelation’
[{characteristic)

|{specialisation)

The different options in the right-hand side of this
production correspond to the different specialisations of

the archetype COMP-DEF (e.g. the archetype SURRO-
GATE whose syntax symbol is surrogate).

(list-attributes) :: = {attribute)
[list-attributes) {attribute)
{attribute) ::= {property) | {designator)

{surrogate)::= Surrogate {ident)
Ckey-def )

The symbol key-def corresponds to the relation archetype
KEY-DEF. The key-def symbol appears in the right hand
side of the production rule, since the archetype KEY-DEF
is a unary relation of the archetype SURROGATE.

Ckey-def)::= Key
Map (ident)
Prop (ident) : {ident)

An example of a fragment for the conference support
system is the following:

Specification CSS
Surrogate paper
Key
Map pap Prop code: integer
Title: string
Number-of-Words: integer

(2) Attribute choice

As was stated above, the attributes of a given symbol
correspond to the properties and designators of the
corresponding archetype. The symbol specification that
corresponds to the archetype SPECIFICATION has the
following attributes:

spec-name: specification — string
corresponding to the key property of SPECIFICATION.

Consider the symbol archetype that represents the
archetype ARCHETYPE. The following are attributes of
the symbol archetype:

spec-arc: archetype — string

arcname: archetype — string

The attribute spec-arc corresponds to the argument
designator with the same identifier. It indicates the
specification to which an archetype must be connected.
The attribute arcname corresponds to the partial key
property of the archetype ARCHETYPE.

The attributes of the symbol comp-def are the
following:

arcname: comp-def — string

arccat: comp-def - {SUR, REL, CHAR, PART, GEN,
AGGR}

The attribute arccat corresponds to the discriminant
property of the same archetype (which allows the
definition of the different specialisations).

Consider the symbol surrogate that corresponds to the
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archetype SURROGATE. The following is an attribute
of the symbol surrogate:

arcname: surrogate — string

corresponding to the argument designator that connects
the specialisation SURROGATE with the argument
archetype COMP-DEF.

The symbol key-def corresponding to the archetype
KEY-DEF has the following attributes:

arcname: key-def — string
key-map: key-def — string
k-prop: key-def — string
k-data-type: key-def — string

The attribute arcname corresponds to the argument
designator of the archetype KEY-DEF whose argument
is the archetype SURROGATE. The other attributes
correspond, respectively, to the property K-map and the
designators K-prop and K-data-type of the archetype
KEY-DEF.

All the syntax symbols introduced above have the
attributes in-environment and out-environment, which
correspond to the valuation of the different archetypes.
A change of valuation resulting from the insertion of an
occurrence in an archetype leads to a new value of the
environment attribute.

(3) Semantic conditions
The following is an example of a semantic condition:
validarcname (spec-arc ({archetype),
arcname ({archetype)), inenv-arc ({archetype)))

This semantic condition restricts the introduction of a
new archetype to the validity of the condition. It
corresponds to the following enabling rules:

{EXISTS (spec-arc (target-arc (=} archetype))}} =}
archetype

{{~ EXISTS (target-arc (=} archetype))}} =} arche-
type

introduced above. Note that the semantic condition
depends on the existence of the relevant specification, the
name of the new archetype and the value of the
in-environment attribute inenv-arc just as the enabling
rules above. Note that if an archetype does not exist in
the referred specification with the indicated name, there
is no need to perform more validations on the archetypes
SURROGATE and KEY-DEF. Concerning the attribute
grammar, there are no semantic conditions for validating
the attributes of the symbols comp-def, surrogate and
key-def.

(4) Semantic rules

The semantic rules are defined below, taking into account
the production rules, where the attributes of the symbol
on the left-hand side of the production rule are evaluated.

{specification):: =

(ident) (list-archetypes) {list-data-types)

spec-name ({specification)) = val ({ident))

spec-name ({list-archetypes)) = spec-name ({specifica-
tion))

Thus the attribute spec-name for specification is a
synthesised attribute (since it is evaluated when the
respective symbol is on the left-hand side of the
production rule), while spec-name for list-archetypes is an
inherited archetype (since it is evaluated when the res-
pective symbol is on the right-hand side of the produc-
tion rule). Note that val is an attribute of the symbol
ident.

{archetype) .. = {(comp-def ) {list-attributes)
arcname ({archetype)) = arcname ({comp-def ))
outenv-arc ({archetype)) =
ins-arc (spec-name ({archetype),
arcname ({archetype)), inenv-arc ({archetype))

The first semantic rule corresponds to the following
change rule:

{ } =} archetype {arcname (target-comp-def (=} comp-
def)) = arcname (=} comp-def)}

Note that arcname (target-comp-def (=}comp-def))
refers to an occurrence of ARCHETYPE. The second
rule corresponds to the change of valuation generated by
the new insertion event. Note that the insertion function
ins-arc must have as arguments the attributes of the
symbol that represents all the properties and designators
of the archetype represented by the symbol.

{comp-def ):.= (surrogate)

arcname ({comp-def )) = arcname ({surrogate)
arccat ({comp-def >) = SUR

outenv-comp-def ({comp-def >) =

ins-comp-def (arcname ({comp-def>), arccat ({comp-

def)),
inenv-comp-def (comp-def )

The new compulsory definition must be inserted in
connected with the archetype, the respective category
and the previous valuation.

(surrogate) :: = Surrogate (ident)

key-def )
arcname ({surrogate)) = val ({ident))
arcname ({key-def ») = arcname ({surrogate))
outenv-sur ({surrogate)) =

ins-sur ({arcname ({surrogate), inenv-sur ({surro-
gatey))

Note that the value of the attribute arcname is
effectively evaluated in the first rule, since its value
depends on the value of the identifier on the right-hand
side of the production rule. Moreover, the attribute
arcname for key-def symbol is inherited.

(key-def > ::= Key

Map (ident) 1

Prop (ident) 2: {ident) 3
k-map (Kkey-def ») = val ({ident) 1)
k-prop ({key-def>) = val ({ident 2))
k-data-type ({key-def )) = val ({ident 3))
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outenv-key-def ({key-def)) = ins-key-def ({arcname
(Ckey-def )), k-map (Ckey-def )), k-prop (Ckey-def )),
k-data-type ((key-def ), inenv-key-def ({key-def )))

Note that the new key definition must include the
definition of the designators K-data-type and K-prop and
the definition of the k-map property.

The conceptual schema

B1 B2

I

B
R

is equivalent to the following conceptual schema

B1 B2

Figure 2.

Consider now that the conceptual schema of the
dictionary is not simple. That is to say it has relations
and/or characteristics with arity > 1. The first objective
is to transform the conceptual schema into a simple
conceptual schema according to the following prop-
osition: ‘An n-ary (n = 2) relation (characteristic) is
equivalent (in terms of semantic power) to an aggregation
of n relation (characteristic) archetypes each one with
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5. CONCLUSIONS

The basic objective of the paper was to introduce a
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conceptual schema language is under development, is
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information structure of the conceptual schema provides
guidelines for defining both the context-free grammar
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of the semantic conditions and the semantic rules. The
methodology is illustrated for a conceptual schema
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It is worthwhile to report that the above methodology
was used in the definition of a meta-knowledge
representation language (Knowlog),!? as well as in the
definition of the Infolog conceptual schema language.
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