Accessing Textual Documents using Compressed Indexes of

Arrays of Small Bloom Filters

J. K. MULLIN

Department of Computer Science, University of Western Ontario, London, Ontario, Canada N6 5B7

A highly compressed index for a collection of variable-sized documents is described. Arrays of small Bloom filters are
used to efficiently locate documents where the search probe contains ‘anded’ and ‘ored’ combinations of words.
Theoretical and experimental results are reported. The method is applicable to unplanned searching of large text files.
We further describe a method to provide an index to the filters. Thus only a small proportion of the compressed filter
need be examined. The method is highly amenable to parallel processing.

Received November 1985, revised May 1986

1. INTRODUCTION

Libraries often need to search large text files for
particular combinations of words. Many of these files of
titles and abstracts consist of unstructured text. Office
files of memoranda, letters and a mixture of variously
formatted documents also tend to be large and, due to
diversity of formats, are often treated as unformatted.
There is often a need to search these files in unplanned
ways. A typical request is to locate all documents which
contain boolean combinations of words — or their near
meanings.

The conventional method is to construct a fully
inverted file. In such a file, each word appears along with
a list of all document numbers which contain that word.
Function words such as: the, and, but, for, an...are
excluded. One then accesses through the word and
obtains the associated document identifiers. ‘Anded’
requests are handled by intersecting the associated
document identifiers. Near meanings are treated by
‘oring’ words from a thesaurus or by stemming
algorithms. Such fully inverted files are typically larger
than the original document file. See Blair.! A B* tree is
often used to implement the file. This allows maintenance
for additions or deletions. Consider adding a new
document with fifty indexable words. There will be fifty
searches through the index levels of the B* tree to insert
the new document identifier. Thus additions to the file
are costly. Storing such a file on a video disc is inefficient
due to the need for many direct accesses and block copies.
Yet video disc storage is likely to become more prevalent.

The method described herein has the following
facilities.

(i) It produces an index file which is nearly an order
of magnitude smaller than the original file.

(ii) It permits simple insertions to the end of the file.

(iii) It permits ‘anded’ requests with exactly the same
efficiency as single-word requests. ‘ored’ requests are
also very simple and efficient.

(iv) Documents of various
efficiently.

(v) It operates by doing a single sequential scan of the
compressed index. This scan is highly efficient and can be
done in sections using a number of simple parallel
processors if desired. A pre-filter technique will be
described where only the possibly satisfying sections need
be scanned.

lengths are treated

(vi) All documents which correspond to the request
will be selected. There is, however, an inherent false drop
rate. With a small sacrifice in storage, this can be made
as small as desired.

2. BASIC METHOD

The basic method is similar to Harrison’s signatures.?
More recent expositions can be found in Faloutsos® or
Faloutsos and Christodoulakis.* This last paper com-
pares two methods: the method of word signatures and
the Bloom? filter approach treated in this paper. Knuth®
refers to the idea as superimposed coding. Gonnet?
describes a similar method. The technique is to use an
array of small Bloom filters. Each element of this array
corresponds to a single document. In one sample test
done, the documents were all titles and author names in
the 1983 and 1984 Communications of the ACM. There
were 259 documents. Each filter element consisted of five
16-bit words.
The process of building the index is:

FOR EACH DOCUMENT DO
ZERO A FILTER ELEMENT
FOR EACH NONTRIVIAL WORK IN THE
DOCUMENT DO
FOR EACH HASH TRANSFORM DO

(typically 10 to 15)

CALCULATE A BIT POSITION IN THE
FILTER ELEMENT AND SET THAT
BIT TO ONE.
WRITE OUT THE FILTER ELEMENT.

The search process is:

ZERO A FILTER ELEMENT IN MAIN MEMORY.
FOR EACH ANDED WORD IN THE PROBE DO
FOR EACH HASH TRANSFORM DO
CALCULATE A BIT POSITION AND SET
THAT BIT TO ONE.
FOR EACH FILTER ELEMENT IN THE INDEX DO
READ THE FILTER ELEMENT.
IF ALL ONES IN THE MAIN MEMORY FILTER
CORRESPOND TO ONES IN THAT READ,
THEN WRITE OUT THE DOCUMENT
IDENTIFIER.

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 343

¥20Z I4dy 60 U0 1senb Aq 1,85/ €/€¥€/¥/0¢ /8101 e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

J. K. MULLIN

These operations are indeed simple. We must now
investigate the expected false drop rate and what hash
transforms should be used. First we investigate the error
rate of the filter.

3. ERRORS

If a word is present in a document, then the bits
corresponding to that word will be set. When searching,
the same bits will necessarily be set and the document
selected. There is no possibility of missing a document
which exactly meets the search criterion. On the other
hand, it is possible to accept a document which should
not be selected. Recent work by Blair and Maron!
suggests that keyword systems do indeed fail to locate,
many relevant documents due to a lack of semantic
information about what is really desired. We discuss
broadening the search later.

Given that ¢ transformations are used on w different
words, the probability that a particular bit in the b bits
of the filter is not set (given that all bits are equally likely
to be selected) is:

Pset’ = (1—1/b)w

This is the probability that each of the tw transforms set
some other of the b bits. The probability that a bit is
indeed set is:

Pset = 1—(1—1/b)

The chance that all bits are set by a random word and
hence of a false drop is:

Paliset = Pset*®, where a is the number of words in the
anded request. For safety, a should be
considered as its minimum value of 1.

The optimum number of transformations has been shown
by Bloom?® to be that where Pset = 1/2. Thus at optimum
the probability of a false drop is (1/2)¢. Here one-half of
the bits are set to one.

4. HASH TRANSFORMATIONS

The above analysis assumes that each of the b bits in the
filter is equally likely to be selected by the hash transform.
Due to the small size of the bloom filter elements
involved, this is difficult to achieve in practice. Good
transformations were eventually achieved. The final
approach encoded character position with the character
to destroy the digram dependencies. This was done by
taking the position within the alphabet in the range 1-26
plus blank and " adding the position of the character in
the word. The last 5 bits of this result were then treated
asacharacter. We merged three such characters per 16-bit
machine word, thus increasing the number of possible
results. The 16-bit sections were then exclusive ored
together. The bit positions were arrived at by dividing the
above result by ¢ primes less than or equal to the filter
width. Since only one of these primes could span the
entire filter, we alternately addressed bits from the left
and right in the filter. The example implementation was
done on a 16-bit machine. Much of the complexity would
be eliminated with a larger machine word. The above
methods achieved an acceptable group of hash trans-
forms. It must be noted that the final transforms required
considerable experimentation.

344 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

5. VARIABLE-WIDTH
FILTERS - IMPROVEMENTS

While the basic method would be acceptable for
documents with a controlled number of keywords per
document, a large variation in number of keys per
document will make it unworkable since the number of
set bits in each bit vector will become unacceptably high.
In the case of longer documents, most of the filter bits will
be set. Such documents often cause false drops.
Christodoulakis and Faloutos* suggest dividing the
documents into fixed-length sections. This can be
undesirable when anded keys are used from two sections
of the document. Consider the case of a letter. One may
wish to locate all correspondence between two people.
The solution proposed in this paper compensates well for
a variable number of words per document. Each filter
element is sized proportional to the number of words per
document. Currently filter elements are divided into
32-bit entities. A set upper bit of each entity signals the
beginning of a new element. Thus only % of the space is
wasted to signal the beginning of an element. Shorter
documents have less filter space, while larger documents
have more space. Since the index is read in a single
sequential pass, there is no appreciable run-time
overhead for this method above that of a fixed element
size per record.

Eight different filter sizes were chosen in building the
filter. Thus 32 bits were used for one- or two-word titles,
64 bits for three or four, etc., while 256 bits were used for
titles of 15 or more words. There were very few long titles.
An algorithm to form the document-length groupings
effectively will be described later. Building the variable-
length filter is very similar to building the basic filter.

When a search is initiated, main memory filter elements
(masks) are set up using the hash transforms for each of
the possible filter element sizes. This is a small overhead
done before the search. One next loops through the filter
elements stored in the index, finds the filter element
size by counting and selects the corresponding mask and
applies it. This search is quite efficient. The hardware need
only do compare, mask and counting operations.

6. FILE MAINTENANCE

New records can be appended to the collection simply by
appending filter elements. Deletion can be handled
simply by zeroing the corresponding filter element. A
zeroed filter element can never be selected. After a
sizeable number of deletions, the filter should be
reorganised. With a variable-length filter, one needs a
sequential scan to locate the appropriate element for
deletion.

7. FILTER SIZE AND EFFECTIVENESS

The size of the filter should be proportional to the number
of documents, words per document and number of
transforms for a given false drop error rate.

Pe =[1-(1-1/b)Y,

where Pe is the false drop rate, b is the filter width
in bits, ¢ is the number of transforms and w is number
of words. If 5> 1 and tw> 1 then (1—1/b)*

¥202 I4dy 60 U0 1senb Aq 1,85/ €/€¥€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

COMPRESSED INDEXES OF SMALL BLOOM FILTERS FOR ACCESSING DOCUMENTS

Table 1.
Optimal

Words Pset Pe bits
40 0.426 1/5077 577
45 0.465 1/2138 649
50 0.500 1/1024 721
55 0.534 1/531 793
60 0.565 1/301 865

can be approximated by e(~t@/» Thus Pset =
1 —e-tw/%) With Pset set to 0.5, its optimal value,
taking the natural logarithm of both sides gives:

b= tw/In2.

One wishes to restrict the number of document length
categories so as to limit the number of search vectors
which must be initialised yet ensure good performance.
We thus wish to study the change in error rate when a
filter is sized for one particular number of words and
another number of words is actually present. This
information will be used to estimate how large a size
category may be made. Table 1 provides sample
information. The formula for Pe is used. The results are
theoretical. Fifty words per document was assumed. Thus
for an error rate of 1/1024, 721 bits were required. Ten
transforms then suffice.

‘Optimal bits’ shows the number of bits required for
an error rate of 1/1024. In this data a 109, addition of
words above what the filter was sized for approximately
doubles the error rate.

It is important to keep the number of document length
categories small, since a search vector must be initialised
for each category. The following method provides a fixed
upper bound for storage loss as compared to a separate
category for each possible document length, while
controlling the error rate Pe. A reasonably small number
of categories results.

(1) Decide on a maximum storage loss compared to a
document length category for every possible length (say
10%).

(2) Decide on an allowed error rate for the biggest
document in the group. This will be the worst case for the
group. One should note the actual average error rate for
the group will be less (say 1/1024).

(3) Let Wu be the upper length size in terms of number
of different words per document and W/ be the lower
length size for a document length category. Let s be the
allowed loss. Set Wu to the maximum document size to
be treated.

(4) Wi = (1-s)Wu. The required number of bits is
tWu/In2 for the category.

(5) Set the new Wu = Wi—1.

(6) If Wu > 10 then go back to step 4.

(7) Depending on the frequency of occurrence and
importance of short documents, form pairs of word sizes
into groups or form single length-size groups for the
remainder. In the example, pairs of document sizes were
used with good results.

One can calculate the number of groups which will be
formed from the following recurrence.

Let Max = the maximum document length.
Wu(0) = Max
Wu(k+1) = (1 —s) Wu(k)
Wu(k) = (1 —s)* Max
The recurrence limit is Wu(k) = 10. Thus tiny group sizes

are avoided. One then calculates the number of groups
k from:

k =1n(10/Max)/In(1 —s)+5 or 10 small groups.
If (1—s5) = 0.9 then one finds:

Max k

10,000 66+ 5 or 10 small groups
1,000 44+ 5 or 10 small groups
100 22+ 5 or 10 small groups

If (1 —s) = 0.8, the results are even more encouraging. A
209, difference between Wu and Wi will result in only a
109, storage loss if the actual sizes of documents in the
group are uniformly distributed.

Max k
10,000 31
1,000 21
100 11

The search vectors can become very large for large
documents. With only a few anded terms in a search
probe, these vectors will be sparse indeed. In such cases,
it would be better to keep a short list of the bit positions
which are set rather than the entire search vector.

8. RESULTS

Experiments were done to determine the false drop rate
(Pe) of the basic filter versus the variable-length filter.
The database is those titles previously described. There
was an average of 7.02 words per document (a stop list
of 59 very common words were not indexed). The
distribution of non-stop words per document is given in
Fig. 1. Ten non-‘anded’ searches were done and the
observed false drop rate was recorded; eight transform-
ations were used per word. It was decided to keep the
number of transformations modest so as to produce
some measurable errors; 509, more filter space could
reduce the error rate by more than than order of
magnitude.

Table 2 shows the observed error rate, the theoretical
error rate, the observed fraction of bits set, the theoretical
fraction of bits set, the filter size in bytes and the ratio
of filter size to the document collection size.

Notice that due to the discrete machine word sizes, the
variable-length filter is 109, bigger than the basic filter;
this accounts for the superior theoretical error rate. The
theory and practice correspond closely for the variable-
length filter, but this is not at all true for the basic filter,
where performance is much worse than predicted. This
is due to the fact that a high variation in the number of
words per document causes some filter elements to have
a high number of bits set, this greatly increasing the
likelihood that the document will be selected by chance.
In the variable-length filter, the fact that the observed
fraction of bits set is very close to the theoretical (which
assumes a truly random transformation) indicates that
the transforms are indeed very close to optimum. In
short, we cannot expect to improve much on what was

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 345

¥202 I4dy 60 U0 1senb Aq 1,85/ €/€¥€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

J. K. MULLIN

Count Documents with this work count
2 * (one document per asterisk; average = 7.0)
3 T
4 o o o o 3 o 3 o o o ok ok ok o o o ok ok ok ok
5 a0 o o 3 o ke e o 3 o ok ok ok o ok o ok 3 ok ok ok 3 ok ok ok ok o ok ok ok ok ok ok ok
6 3 30 e o 3 3 o 3 o 3 ok ok 3 ok o 3 o 3k o 3k ok ok o o 3K ok 3k ok 3K ok 3k ok ok sk ok 3 ok 3k o 3k ok 3k 3 3k ok ok 3 ok 3K ok ok ok 3k oK
7 e 30 o ok 3 o 3 ok 3k o ok k ok 3k ok 3k ok ok 3k ok o o 3K ok 3 ok 3k ok ok ok o ok ok ok 3k ok ok ok ok ok
8 o e 2 e 3k 2 3 ok 3 e 3k ok 3 3k ok 3 3k ok ok 3 3k ok ok 3k 3k ok ok 3k ok ok ok ok ok ok ok ok o ok ok ok
9 353k 3 o 3 3k o 3 ok 3k 3k ok ok ok ok ok ok 3 ok ok ok o ok ok ok ok
10 oo ok ok ko ook K K ok
11 *okkk
12 Aok
13 *k
14 *
15 *
16
17 *
21 *

Figure 1. Distribution of words per document for the collection (259 documents).

Table 2. Comparing the basic versus the variable-length filter

Variable Basic
Observed error rate 1/864 1/162
Theoretical error rate 1/917 1/639*
Observed fraction of bits set 0.4283 0.429
Theoretical fraction set 0.4263 0.446
Filter size in bytes 3416 3108
Ratio of filter to file size 0.119 0.108

* Calculations assume a fixed seven words per document.

done. Results are not shown for anded requests, as no
failure could be observed with the variable-length filter.
This is to be expected, as Pe for A ‘anded’ words is Pe4.

8.1. Prefilters

The variable-length filter provides excellent compression
and a simple, highly efficient search method adaptable to
parallel processing. Its main disadvantage is the necessity
of searching the whole filter for each search request. Some
means to avoid searching the entire filter is much desired.
In fact, such a means is available.

A pre-filter is constructed for sections of the database.
The database is partitioned into k sections. The first
section is simply the first n/k records, the second section
is the next n/k records, etc.; n is the number of records
in the database. k should be selected with two criteria in
mind.

(1) The probability of the search keys being found in
a section should be small — certainly less than 259 —
otherwise the main filter section must be examined. This
probability depends largely on the kind of searches
involved (a small drop rate is assumed).

(2) The pre-filter for a main filter section should be
much smaller than that main filter section.

A pre-filter is a large-bit vector initially set to zero.
Each word encountered in the section is transformed to
set ¢t (not necessarily distinct) bits in the filter. When
searching, the anded list of search keys (oring is definitely
possible) is collected. The main filter will only be searched
if all bits corresponding to those in the transformed
search keys have been set in the pre-filter. Thus any
section of the filter which contains the search keys in any
document or combination of documents will be searched.
Three main factors reduce the size and fraction of the
pre-filter which must be searched.

(1) Fewer transforms need be used in constructing the
pre-filter than the main filter. While the false drop rate
of the main filter must be quite small (certainly less than
one in 4000), the false drop rate of the pre-filter can be
much larger (say one in 16); a false drop in the pre-filter
simply means that a main filter section must be accessed.

When a filter is optimally loaded, half the bits are set.
We previously found b = tw/In2 given that the filter is
optimally loaded. In considering the filter elements
themselves, the total storage B that is used is the sum of
the individual filter elements in the section.

B = b*records = tw*records/In 2.

Here w must be the number of words per individual
document. In considering the pre-filter, w takes the role
of all words in the section. Thus we see that if all words
were different, and the same number of transforms were
used, the pre-filter size B would be equal to the size of the
main filter which it covers; fortunately, neither of these
two assumptions is valid.

While a main filter error rate of 1/4096 (12 transforms)
might be acceptable for the main filter, a false drop rate
of 1/16 (4 transforms) should suffice. This factor alone
reduces the pre-filter to one-third the size of the main
filter, given the above false drop rates.

(2) In natural language, common words occur with a
much higher frequency than most other words. Accord-
ing to Dewey,® the 732 most common words occur 75%,

346 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

¥202 I4dy 60 U0 1senb Aq 1,85/ €/€¥€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

COMPRESSED INDEXES OF SMALL BLOOM FILTERS FOR ACCESSING DOCUMENTS

of the time. The 69 most common words occur 50%, of
the time.

In our database of CACM titles, after excluding 59
common words, out of 1800 total words (including
author names) there were 1095 different words. The size
of the pre-filter is proportional to the number of different
words — not the number of total words. This is because
multiple occurrences of the same work set the same bits.
Extrapolation of the results shows that with about 300
titles in a section, about half the words will be different.
Thus with a section size of 300 titles and author names,
the common-word occurrence factor will further reduce
the pre-filter by a factor of two compared to the main
filter size. A larger section size would reduce the size
further. Combining the factor of fewer transforms and
number of different words would result in a pre-filter
which is one-sixth the size of the main filter section which
it covers.

(3) Another consideration reduces the volume of the
pre-filter which must be read. With half the bits set, when
unsuccessfully searching, the first probe of the pre-filter
has half a chance of failure; the second probe increases
the chance of failure by a further quarter. The expected
number of probes until failure is close to two. If one
pre-calculates the bit positions within the filter for all
anded words and then sorts these positions from low to
high, then only the leading fraction of the pre-filter will
usually need to be examined when the request is
unsuccessful. ‘Anded’ words reduce the fraction that
need be read much further.

Given ¢ transformations, sorted from lowest bit
position to highest, and half of the bits in the pre-filter
set, what fraction of the pre-filter does one expect to need
to read in a sequential scan? One may choose to access
the bit positions directly within the pre-filter. Alterna-
tively a sequential scan of the pre-filter should be
preferable with the modest-sized pre-filters envisaged. On
average, if four transforms are used, only 389, of the
pre-filter need be scanned when a prefilter rejects a filter
section.

We shall find what fraction of the pre-filter one expects
to scan when the filter section does not contain the
searched-for words. With four transformations the
average bit positions are at 1, 2,2 and . The fraction which
one expects to scan is then:

fraction = [1+1+%4+3]/(z+1)
fraction = 0.375

When ¢t = 8, fraction is 0.22.

With the conservative assumptions made here, one will
need to read i of the volume of a filter section when
rejecting a section of the database (we assume a small
number of records selected, so that most sections will be
rejected). It must be noted that when a large fraction of
the database is selected, much input/output activity is
involved — but in such a case this is unavoidable. There
is yet another factor which can further reduce the work
involved. If the database is ordered such that related
areas cluster sequentially, say using subject classification
order, then fewer main filter accesses will be required, as
fewer sections would be accepted by the pre-filter.

In summary, the amount of comparisons can be
drastically reduced using pre-filters when the proportion
of selected records to total records is small for a search
request.

9. FUTURE DIRECTIONS

A recent paper by Blair and Maron! noted a much smaller
document recall rate than previcus researchers had
reported. This study used a system (STAIRS) which
searches for documents based on boolean combinations
of keywords. We are proposing a different technology
but functionally the same type of system. Some means is
necessary to broaden a search request. The current
implementation when given a request to find documents
containing ‘computer’ will do so. it will however miss
documents containing ‘computers’ or ‘computing’ or
‘machine’ or ‘digital device’.

Sometimes a user wants documents which must exactly
match the request. In the request FIND ‘Mullin’ one
does not want documents by ‘Mullins’ or ‘Mulling’.

The filters and pre-filters can be adapted to permit
searches on either word stems or the full word. The
transform functions could be modified so that the first
t—1 or t—2 transforms use only the stem of a word. The
final 1 or 2 transforms could use the complete word. In
doing an exact match, all transforms would be employed
in the search vector. The search could be broadened to
terms with the same stem by using only the first t—1 or
t—2 transforms. There will be an increase in the error rate
Pe by a factor of two or four, but more relevant
documents could be found. We plan to investigate
appropriate stemming methods.

Another way to broaden the search is to use a
thesaurus with near synonyms. Any search term may be
broadened by oring that term with near synonyms. A
search request would be factored into disjunctive normal
form and then each ‘anded’ combination would have a
search vector prepared, each being matched to the filters.
One must note that ‘oring’ increases the error rate Pe by
a factor of the number of ored terms. Appropriate error
rates need to be chosen with this factor in mind,
increasing the size of filters and number of transforms
appropriately. The increase in storage need not be drastic.
One more transformation will halve the error rate at an
increase in storage in the ratio of t+1 to ¢ bits. The
extensions of stemming and use of a thesaurus do not
address all the major issues addressed by Blair and
Maron, but they are certainly needed. The use of ‘ored’
combinations of words is yet another use for parallelism.

10. RECOMMENDATIONS

Experiments are in progress using larger documents
(abstracts) to determine the appropriate number of
documents for a section of the pre-filter. These results are
incomplete, but demonstrate a working system with
larger documents. There are many refinements to be
studied, for example stemming algorithms. The basics
are now known; actual use will depend on needs. I see
the real problem as follows. Is there a need for a method
which compresses an index to } the file size and selects
which portions of that index need to be read by examining
a pre-filter which is small compared to the index? One
can freely index any word and do ad hoc searches. The
price of a search is a sequential scan of those portions of
the index selected by the pre-filter; the main cost of such
a search is input—output time. Only simple boolean masks
and compares are needed from the processor. Boolean

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 347

¥202 I4dy 60 U0 1senb Aq 1,85/ €/€¥€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

J. K. MULLIN

AND and OR operations are possible. The NOT
operation is error-prone due to false drops.

One particularly nice feature of this design for an
information retrieval system is the ability to use a number
of simple parallel processors. Different processors can be
used to scan different sections of filters and pre-filters.
There is an added use for parallelism in ‘ored’ requests.
This method could truly use the high degree of parallelism
envisaged in future computers.

REFERENCES

1. D. C. Blair and M. E. Maron, An evaluation of retrieval
effectiveness for a full text document retrieval system.
CACM 28 (3), 289-299, (1985).

2. M. Harrison, Implementation of the substring test by
hashing. CACM 14 (12), 777-779, (1971).

3. C. Faloutsos, Access methods for text. ACM Computer
Surveys 17 (1), 49-74, (1985).

4. C. Faloutsos and S. Christodoulakis, Signature files: an
access method for documents and its analytical perfor-
mance evaluation. ACM Trans. on Office Information
Systems, 2 (4), 267-288 (1984).

S. B. Bloom, Space time tradeoffs in hash coding with
allowable errors. CACM 13 (7), 422-426, (1970).

348 THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987

One possible drawback must be noted. Unless the
actual document identifiers are stored with the filter
vectors, one selects purely by counting from the
beginning of the file. These counts must be converted to
actual document identifiers. A simple table lookup into
a file storing document identifiers will suffice. In many
cases the main file can itself be used for this purpose if
there is a fixed-size record containing the document
identifier pointing off to the remainder of the document.

6. D. Knuth, The Art of Computer Programming, III: Sorting
and Searching. Addison Wesley, Don Mills, Ontario
(1973).

7. G. Gonnet, Unstructured data bases or very efficient text
searching. Proc. 2nd ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, March 1983, Atlanta
USA.

8. C. Dewey, Relative Frequency of English Speech Sounds.
Harvard University Press, Cambridge, Mass. USA (1950).

9. J. K. Mullin, A second look at bloom filters. CACM 26 (8),
570-571, (1983).

¥202 I4dy 60 U0 1senb Aq 1,85/ €/€¥€/¥/0¢/8101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

