Colour Manipulation of Superposed Families of Curves
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When several families of closely grouped curves are superposed a complex pattern of interference often appears. In this
paper we show how the use of colour can help to unravel these complexities by emphasising or suppressing selected

components of the interference.
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1. INTRODUCTION

Families of curves in the plane can often be conveniently
described as contours in the form {®(x,y) = n:ne N},
where N is some subset of the family of integers. Thus an
equispaced family of concentric circles may be expressed
as {(x2+y2pt =n:n=0,1,2, ...} and a family of m lines
radiating from the origin may be expressed as
{(m/m) tan! (y/x) =n:n=0,1,...,m—1}. The super-
position of such families of curves often causes inter-
ference to appear, and our main interest here lies
in its observation and interpretation. The study of this
interference involves a fascinating mixture through
computer graphics of geometry, the physical properties
of the eye, and the psychology of visual perception.

In a previous paper? the geometry of monochrome
superposition of families was studied to explain both why
and when we should see the various types of interference.
Following this the usefulness of interference techniques
in the visual interpretation of composition of flows in
hydrodynamics was considered,? and later this work was
extended by including the use of cine techniques.? Each
of these papers was concerned with monochrome output
for just two families of curves. As the number of families
of curves increases so too does the complexity of the
interference pattern observed, and our aim here is to
demonstrate how colour might be used to interpret and
unravel these complexities.

2. SUPERPOSITION TYPES

Of the types of superposition described by Bryngdahl,!
just two are commonly observed in computer-drawn
images. These are multiplicative and additive super-
position.

If d®(x,y) represents the density at the point (x,y)
for the family of curves {®(x,y)=n:neN}, where
0 < d®(x, y) < 1, a convenient description of the density
function for a family of curves drawn by a pen plotter or
ona VDU is

{ d®(x, y) = 0 between the pen strokes,
d®(x,y) = 1 on the pen strokes.

For most monochrome graph plotters or VDUs the
density of ink or light on a pen stroke is essentially
saturation density, so at points where two curves cross
this density does not change. For this type of visual
output a good approximation to the density function for
two superposed families of curves described by the
functions ® and ¥ is given by min {d®(x, y) + d¥(x, y), 1}.
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Figure 1. Multiplicative superposition.
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Figure 2. Additive superposition.

This is multiplicative superposition and is the situation
illustrated in Fig. 1.

Some monochrome plotters allow the density of pen
strokes to vary, and on these the second type of
superposition can be displayed. If the density function
for both of the families of curves described by the
functions ® and W is set at 0 between the pen strokes and
at no more than { on the pen strokes, for the superposed
families the density at the point (x,y) will be given by
d®(x,y)+d¥(x,y). This is additive superposition and
is the situation illustrated in Fig. 2. With additive
superposition the intersection points are emphasised, and
this is particularly useful with the cine techniques
described in Ref. 4, where a flow is examined by observing
the movement of these intersection points. Many colour
plotters give essentially additive superposition in their
output when only density is considered. Moreover the
introduction of colour can emphasise even further the

Please note that the colour printing process has (a) changed some of
the colours of the computer drawn images, thereby changing the
emphasis, and (b) introduced extra interference (e.g. the herringbone
effects in Fig. 18) as discussed by Firby®.
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intersection points, which can appear as a different colour
to the underlying curves. The effectiveness of this use of
colour to emphasise the intersection points can be seen
in Figs. 3(a) and (b).

3. COLOUR SUPERPOSITION

Attempts to use a colour system to separate different
components of a picture first of all bring out the fact that
given a choice the eye has definite preferences for certain
colours. This is illustrated in Fig. 4, in which three
families of radial lines are superposed. One family is red,
a second is blue and the third is green. The main visible
components of this picture consist of three dipole effects
each of the same density, but one is yellow, the second
is cyan and the third is magenta.

These dipole effects are the interference patterns
produced by each of the three pairs of families. For most
people the yellow interference is more readily seen than
the cyan interference, which in turn is much more readily
seen than the magenta. Thus it is possible to distinguish
separate components in a picture by manipulating the
colour arrangement. However, the readiness of the eye to
accept certain colours in preference to others suggests
that a more effective use of colour would be to emphasise
or suppress certain selected components.

Experiments with the colour output of the Dicomed
D148C microfilm plotting system at the University of
London Computer Centre suggest that yellow is one
colour more readily accepted as dominant by the eye for
this system, and therefore that a good way to get the
interference between two families to stand out is to draw
one of the families in red and the other in green. Figs 3(a)
and (b), consisting of two superposed families of radial
lines, illustrate the strength of the interference produced
by this combination. In Fig. 3(a) the lack of symmetry
is caused by the differing number of lines in the two
families. In Fig. 3(b) several orders of interference are
visible, the first-order interference being the central
Cross-point.

Several of the available colours are largely ignored by
the eye in the presence of other colours and so may be
effectively used to suppress part of a picture. Magenta is
one of these, as can be seen in Fig. 4.

In practice this use of colour to emphasise or suppress
selected interference components is rather more restricted
than might at first appear. To understand these
limitations we must look more closely at the combination
of the colours in Dimfilm and also at the way the families
of curves combine to give observable interference.

4. BUILDING COLOURS IN SUPERPOSED
FAMILIES

The colour of a curve in one of our families can be
specified by means of a triplet of values determining the
amount of red, green and blue respectively in the required
colour. Each of these values lies between 0 and 1. Thus
(1,0,0), (0,1,0) and (0,0, 1) specify fully saturated red,
green and blue respectively, (3,1, 0) specifies half-strength
yellow and (x, x,x) specifies grey, with (0,0,0) being
black and (1, 1, 1) being white.

The colour system is additive subject to a maximum
value of 1 for each component, and thus the points at
which n families of curves, with colours specified by
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(a;,b;,¢;) (i=1,2,...,n) cross will have colour specified
by (min {X a;, 1}, min {¥ b;, 1}, min {X ¢;, 1}). It can be seen
that the more families of curves and the more colours we
introduce the more likely it is that such crossing-points
will appear grey, and it is through these crossing-points
that we aim to emphasise or subdue the interference using
colour. As well as this local assertion we can make the
following global assertion. The more families and
the more colours we introduce, the greater will be the
tendency of the picture to appear a uniform monochrome
and so the less effective will be the use of colour. As we
shall demonstrate, these facts place severe limitations on
the number of interference families which can be
observed, and manipulated, within a picture.

Another point to note is that since the curves we
consider do not cross themselves, if a picture contains n
families then a point in the picture can have no more than
n curves passing through it. Thus the colour of a point
in the picture is determined by the combination of no
more than n single colours, one from each of the
families. This means that it is not usually possible to give
controlled emphasis, through colour manipulation, to
the interference caused by the interaction of two or more
sets of interference whenever a single family is involved
in the production of more than one of these sets of
interference. For example, in Fig. 10 where we are
considering the interference produced by three families of
curves determined by ®, W, I' we observe that the
interference in region Z, (see Fig. 12) corresponds to the
function 20 —¥ +TI', and that this can be thought of as
the interaction of the interference corresponding to the
function ® — ¥ and the interference corresponding to the
function ® +I'. Although we can arrange the colours for
the families @, ¥, I so that the two sets of interference
appear red and green, we cannot expect the interference
for 20 —-¥ —T to appear yellow as demonstrated in
Fig. 17.
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Figure 5. First-order interference for two families of equally
spaced circles. The two circles describe the boundaries of the
regions of interference.
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Figure 6. Interference for three families of equally spaced circles centred on the vertices of an equilateral triangle.

S. COLOUR MANIPULATION OF
INTERFERENCE FAMILIES

In a previous paper® the complexity of the first-order
interference pattern produced by two superposed families
was analysed. When three or more families are
superposed the complexity of the picture increases
dramatically, often showing several orders of interference
for each pair of families as well as the interference from
more than two of the families. To illustrate this, and to
show how the components of the picture can be
recognised and then emphasised or suppressed selectively
by the use of colour, we consider two examples of the
superposition of three families of equispaced circles.
First of all, so that we can recognise the main
components of the pictures, we recall the interference
pattern for two superposed families of concentric circles
shown in Fig. 5. As explained in Ref. 3, if the two families
are described by the functions @ and P, outside the two
overlapping circles is seen the family of interference
fringes corresponding to the function ® —¥, and in the

BRI
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Figure 7. The main regions of interference visible in Fig. 6.

6

Figure 8. Contours for ® + ¥ + I positioned as in Fig. 6.

region of overlap of these two circles is seen the
interference corresponding to ®+¥. In the remaining
areas no interference is visible.

In our first example of three-family superposition the
families of circles are centred on the vertices of an
equilateral triangle and the monochrome picture pro-
duced is shown in Fig. 6. If we suppose that the functions
corresponding to these families are ®, ¥ and I
respectively then, referring to Fig. 7, the strongest
components of the picture, appearing in regions
X,, X,, X;, are the interference fringes corresponding to
®+Y¥, Y+TI and ®+TI respectively. A little of the
interference corresponding to ®—¥, ®—TI and YT
can be seen near the vertices outside the triangle, but the
rest of the visible interference comes from three-family
interaction. The strongest of the remaining visible
components, appearing in the regions labelled Y,
corresponds to ®+¥ + T, as is illustrated by the con-
tour map in Fig. 8. The very faint interference visible
at positions Z,,Z,,Z, corresponds to 20+2¥ +T,
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7

Figure 9. Contours for 2@ + ¥ + 2I' positioned as in Fig. 6.

®+2¥+2I' and 20+ ¥ +2I', respectively, as demon-
strated by the contour map in Fig. 9. In fact these latter
interference families correspond to the interaction of
the interference family associated with ®+¥ +TI" with
the interference families ®+¥, Y+I' and ®+T,
respectively.

In our second example the three families of circles are
centred on a line, and the monochrome picture produced
is shown in Fig. 10. The interference formed by pairs of
families can readily be seen and recognised. Thus
referring to Fig. 11, which describes the approximate
boundaries for this type of interference, in regions B and
C are seen ®+¥ and ¥ +T respectively, and in region
D which includes regions Band Cis seen @ +I'. In regions
A and E is seen a mixture of ®—¥, ®—TI'and ¥ —T". In
region F the dominant interference seen is that of ¥ —TI'
and in region G the dominant interference is that of
@ — V. The rest of the interference visible is caused by the
interaction of the three families. Referring to Fig. 12,
which again gives just approximate boundaries, in region
X is seen the interference associated with ® —¥ +T". In
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Figure 11. The main regions of interference visible in Fig. 10.

regions Y, and Y, » appear ®— 29 +2I' and 20 -2¥+T
respectlvely In reglons Z, and Z, is the interference
associated with ® — ¥ + 2F and 20 — ¥ +TI respectively.
The latter interference is in fact caused by the interaction
of the two sets of first-order interference fringes ® + T,
I'-¥ and ®+TI, ®—Y¥ respectively. The sequence of
contours shown in Fig. 13 demonstrate the validity of
these assertions, showing the contours for each of the
combinations of @, ¥ and I" for which the interference
is readily visible.

It is interesting to note that while in both of these
examples the pattern of all possible combinations
1D +m¥Y +nl” (I, m,ne Z) exists within the picture, most
are not visible. Also for those which are visible their
contour pattern can be seen only over part of the picture.
Thus for example one of the most basic combinations,
that of ® + ¥ + I, can readily be seen in the first example.
However, in the second example the pattern produced by
this combination, described by the contour map in Fig.
14, is not sufficiently distinctive within this picture to be
visible over any region.
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Figure 10. Interference for three families of equally spaced circles with centres positioned in a line.
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Figure 12. The main regions of higher-order interference visible
in Fig. 10.

Finally, to see how colour can be used to distinguish,
emphasise or suppress selected components in these
examples, compare Figs 15 and 16 with Fig. 6 and Figs
17 and 18 with Fig. 10.

In Fig. 15 the families ®, ¥ and I' are shown in
half-strength magenta (},0,%), cyan (0,},1) and yellow
(3,3, 0) respectively. The ® + ¥ interference thus appears
as (3,1,1) (grey-blue), while W+1I" appears as (},1,1)
(grey—green) and ® +I' appears as (1,4, 1) (grey-red) and
the three components of the interference pattern can be
clearly distinguished.

In Fig. 16 an attempt has been made to emphasise the
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Figure 14. Contours for ® + ¥ + T with centres positioned as in
Fig. 10.

@, ¥ and @, I' combinations while suppressing the ¥, I'
combination. This has been done by colouring the @
family (,0,}) (magenta), the ¥ family (0,%,0) (green),
and the I' family (0,3,1) (cyan). This produces (},1,1)
(grey) for the @, ¥ combination, (0, 1, ) (green—cyan) for
the ¥, I' combination, and (4,3, 1) (grey-blue) for the
®, I' combination with the effect shown.

In Fig. 17 the @, ¥, I families are set at (4, 1, 0) (yellow),
(0,4, (cyan) and (},0,}) (magenta) respectively. As in
Fig. 15, this shows how the various components of
interference appearing in the same or different regions
may be distinguished using colour, but it also shows that

&

Figure 13. With the centres for ®, ¥, I positioned as in Fig. 10. (a) Contours for ® —'¥ +T'. (5) Contours for ® —2¥ + 2I". (c) Contours

for ®—¥ +2I.

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 353

cp1 30

202 I4dy 60 U0 1senb Aq $88G/€/67€/¥/0¢/2101e/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq



COLOUR MANIPULATION OF SUPERPOSED FAMILIES OF CURVES

we cannot force a colour effect from the superposition of
one interference family over a second interference family.
With this colour combination we might expect the
interference in region Z, of Fig. 12 to appear yellow, and
therefore stand out, since it can be considered as the
combination of ® + I interference (grey-red) and ® — ¥
interference (grey—green). As pointed out in Section 4,
this does not happen because the colour at any point in
the picture can be determined by at most three additions
of the basic colours used, magenta, cyan and yellow, with
the strengths given.

Finally in Fig. 18 the colours are set to emphasise the
®, V¥ interaction and to suppress the ¥, I' and the ®, I
interaction. This also has the effect of suppressing all the
three-family interference. The colours used here for the
®, ¥, T" families are (},0,0) (red), (},1,1) (grey—green)
and (0,0, 1) (blue) respectively.

6. CONCLUSION

Superposition of two or more families of curves can
produce a complex picture containing interference of
several orders associated with many of the possible
combinations of the families. Interference associated with
a particular combination is often visible over only a small
region of the picture, being overwhelmed in the rest of the
picture by the relative strength of the visible patterns
there. Often the picture is further complicated by the
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