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A simple but general map overlay function is defined for quadtrees. It is shown that many common quadtree operations,
including union, intersection, relative complement, masking, copy, complement and generalisation of quadtrees, can all
be viewed as special cases of map overlay, depending on how pixel values of the result of an overlay are determined from
the corresponding pixels of the maps being overlaid.

It is shown that some operations, such as union, can be more efficiently performed by specialised algorithms. A more
general overlay function is given, which is optimal (to within a constant factor) with respect to both time and space for
all of the above operations. This overlay function requires two functions as parameters. One function determines when the
quadtrees being overlaid are simple enough to be processed without further subdivision. The other performs the overlay
Sfor simple cases.
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1. INTRODUCTION

There are many ways of representing a map in a
computer.> We shall regard a map as an image. A map
may be partitioned into a large number of small squares,
called pixels. Associated with each pixel is a value
identifying the theme or district in which the pixel
belongs. A district within a map may correspond to a
state-defined area (e.g. county), to a soil type (e.g. Alfisol)
or to an elevation range (e.g. 600-700 m). The map may
be represented by an array of pixel values. However, the
above approach may be impracticable, since the array
normally requires a very large amount of storage. For
example, the British National Grid is a 1000 kilometre
square divided into 102 1 metre square cells. This
problem may be substantially reduced if the quadtree
data structure is used.

Consider the map in Fig. 1, where 1,2,...,5 denote
district numbers. Fig. 2 is an approximation of Fig. 1.

The map representation in Fig. 2 can be transformed Figure 1. A map.
to that of Fig. 3 by applying the following process. The

pixel array is divided into four square subarrays. If a v frfrj{2(2]2|2(2]2[2]2
subarray is constant (i.e. belongs entirely to a district) the 1{r [y frjrf2f2f2]2{2]2][2]2
subarray can be represented by a single value. Otherwise, o frfrfr)r]2]2(2]|2]2]2]2]|2
the subarray is again quartered into four small subarrays, ihhhhhhhhlz22212121212
inarecursive fashloq. The quartering may continue down il i 3320212212122 12
to t}:e ltevel of individual pixels which of course are ih 33220212121 212]2
constant.

We will restrict our attention to pixel arrays which Ljvjrjiisysis|sjzj242j2421212)2
contain 2% x 2k elements for some integer k. (Any array 3131313131313/515]5]512/212]2)2
can be embedded in such an array. The cost of using an 3/3313/3[3|3[5|5|5]|5]5|5]5]5|5
overly large array as the basis for the structure defined 313(3|3[3]3]3|5]|5[5]|5]5]|5]5]5]5
below is usually not significant.) 3/3[3[3|3[4]4]4|5|5[5[5|S[5]|5]s

3[3(3[3|3[3[4[4|5]|5|5[5|5[5]5]5
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9 To whom correspondence should be addressed. Figure 2. Pixel array approximating a map.
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Figure 3. A compact representation for a map.

type

quadtree = "quadrec;
quadrant = (nw, ne, sw, se);
children = array[quadrant] of quadtree;
quadrec = record
case leaf: boolean of
true: (value: integer);
false: (child: children)
end;

Figure 4. Type quadtree and related types.

A quadtree is defined as a recursive Pascal record type
as shown in Fig. 4.

A quadtree is a degree-four tree of height k or less.
Each node of a quadtree corresponds to a square array
or subarray of pixels. If all of the pixels in the subarray
have the same value, the node is a leaf (leaf is true) and
the value field contains the common value. Otherwise
(leaf is false) the array is partitioned into four subarrays
(nw for northwest, ne for northeast, sw for southwest and
se for southeast). Fig. 5 is the quadtree representation of
the map in Fig. 1.

We shall call this quadtree data structure an integer
quadtree, since the values appearing on it are integers.

(We can have quadtrees of any type.) If the values of the
pixel array (Fig. 2) are restricted to the values 0 and 1,
the pixel array may be used to represent a geographical
region, and its corresponding quadtree is a 0—1 quadtree.
For the rest of this paper we shall use the term quadtree
to mean integer quadtree.

With reference to the quadtree data structure the
following remarks will be made. First, Ref. 9 and the
references therein provide an excellent account of the
many research studies and applications of quadtrees.
Secondly, in Ref. 2 we have proved that each thematic
map requires for storage a quadtree with 0(n) nodes,
where 7 is the number of pixels in the boundary of maps.
The fact that, in general, n < 2¥ x 2k guarantees the
utility of the structure.

2. THE MAP OVERLAY PROBLEM

In a computerised geographical processing system it is
often useful to overlay different types of site data to
produce some kind of composite map. For example,
given a topographic map, a ground cover map and a
hydrological map, it might be desired to overlay them to
find areas suitable for building as defined by the criteria
that slope should be less than 309/ , existing stands of trees
should not be disturbed and buildings should not be
located on a flood plane.” This problem is commonly
referred to as the map overlay problem.

Simple, usually recursive, algorithms for map overlay
and similar problems are well known.? 8 We shall show
that a single simple algorithm can solve a number of
related problems if it is supplied with appropriate
functional parameters. While our examples are in Pascal,
the approach is even more suitable for languages, such
as Ada, which allow generic or polymorphic functions to
be defined.

We shall assume that we have two maps partitioned
into districts in two different ways and that each map is
structured as a quadtree. Figs 3 and 6 present two such
maps. For example, Fig. 3 may correspond to a soil map
and Fig. 6 may be a political map. Our aim is to construct
the overlay map which is also structured as quadtree and
defines a new district for each (soil type, political unit)
pair.

For each new district, we must produce a name as a
function of the two defining districts. One simple way to
do this is to multiply the number of the first district by
a factor (say 10), and add the number of the second

1)1 3| 5|s 2]2
== /—-4 — s - |2
1]1 /,3 - | 3 3 515 2]2
- ~ 4 — | 4 B - |
11 1]1 1[1 3]3 3[3 3|3 3] 4 45
3|3 3[3 13 3]s 4|4 4|4 3|3 3]s 4|5 515 512

Figure 5. The quadtree representation for a map.
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Figure 6. Another map.
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Figure 7. The overlay map for the maps in Figs 3 and 6.

district. In this way the new district with number 23
would be the intersection of (soil) district 2 with (political)
district 3. Fig. 7 gives the overlay map for the maps in
Figs 3 and 6 by taking the factor as 10.

Many other problems may be regarded as variants of
the map overlay problem. For example, we might want
to produce a 0—1 map, where a 1 indicates that the (soil
type, political unit) pair satisfies some particular
condition. In this case, in certain portions of the map, the
leaves of the result of the overlay operation may be at a
higher level than the leaves of the arguments.

In general, we want to be able to give the map overlay
function an arbitrary function expressing how district
pairs should be mapped to new district names. This
function should be an argument to the map overlay
function.

For example, we might pass the map overlay function
the function combine, defined by

function combine (x, y: integer): integer;
begin

combine:= 10*xx+y
end:

to perform the first type of overlay. On the other hand,
if we want a 0-1, map where 1 indicates soil type 2 and
political unit 3, we might pass the overlay function the
function select defined by

function select (x, y: integer): integer;
begin
if x =2 and y = 3 then select: = 1
else select:= 0
end;

In this second case, if the maps in Figs 3 and 6 are
overlaid, all the pixels outside the northwest quadrant
have value 0 and can therefore be represented by three
leaves.

Before presenting the overlay function, we will
introduce two useful quadtree manipulation functions.
These are given in Fig. 8.

Given a quadtree, we will often want the quadtree
representing a particular quadrant of the original. If the
original is not a leaf, we select the appropriate subtree.
Otherwise, the quadrant may be represented by the same
leaf as the original. Function ‘quarter’ in Fig. 8 performs
this simple computation.

In many cases, in performing an overlay we will
produce a quadtree consisting of four identical leaves.
These can be combined into a single leaf by the function
reduce given in Fig. 8. Since storage management varies
between Pascal implementations, we note the location
where the quadrecs representing the original leaves should
be returned to free storage if appropriate. We will assume

function quarter(a: quadtree; q: quadrant): quadtree;
begin
if a” . leaf then
quarter:= a
else
quarter:= a” . child[q]
end;

procedure reduce(var a: quadtree);
var
v: integer;
same: boolean;
q: quadrant;
begin if a” . child[nw]" . leaf then
begin
v:=a".child[nw]" .value;
same : = true;
for g: = ne to se do

with a” . child[q]” do
if leaf then
same : = same and (value = v)
else ’
same : = false;
if same then
begin
{Free children if required by storage
management}
a” .leaf . = true;
a” .value:=v;
end
end

end;

Figure 8. Useful quadtree manipulation functions.

THE COMPUTER JOURNAL, VOL. 30, NO. 4, 1987 357

¥20Z I4dy 01 uo 1senb Aq $26G/€/SSE/P/0¢/8101e/|ulwoo/woo dnoolwspeoe//:sdiy wolj papeojumoq



F. W. BURTON, V. J. KOLLIAS AND J. G. KOLLIAS

that arguments passed to the overlay function never have
nodes with four identical leaves as children, and ensure
that the result of the operation is similarly well behaved.

The map overlay function is given in Fig. 9. Notice that
reduce is called just before the function returns its result.
This ensures that sets of identical leaves are combined at
each level before higher-level nodes in the same part of
the tree are considered.

function overlay(function f: integer;
a, b: quadtree): quadtree;
var
result: quadtree;
q: quadrant,
begin
new(result);
result” leaf = a" .leaf and b" . leaf;
if result” . leaf then
result” .value:= fla” .value, b" .value)
else
begin
for g:= nw to se do
result” . child[q] : = overlay (f,
quarter(a, q), quarter(b, q));
reduce (result)
end;
overlay : = result
end;

Figure 9. A general map overlay function.

The function application
overlay(combine, a, b)

returns an overlay map computed from the two maps a
and b. For example, given the quadtree representation of
Figs 3 and 6 the quadtree representation of Fig. 7 is
produced. Similarly,

overlay(select, a, b)

constructs from the quadtrees of Figs 3 and 6 a 0-1
quadtree having the value 1 only to the nodes which
satisfy the selection criterion (i.e. soil type =2 and
political unit = 3).

The overlay algorithm is optimal to within a constant
factor with respect to both time and space if the function
S is arbitrary with no known characteristics. It is clearly
necessary to inspect all nodes of both trees in order to
compute the result of a map overlay. The time required
by this algorithm is clearly bounded above and below by
a constant times the combined sizes of the arguments.
(We never go to a lower level of recursion unless at least
one of the arguments has lower-level nodes to be
considered.) As for space, apart from the space required
by the result, storage requirements are proportional to
the depth of recursion. (This includes the storage required
for up to three leaf nodes at each level of recursion, which
will later be combined into a single leaf when the fourth
node is produced and found to be an identical leaf.)

3. OTHER USAGES OF THE ALGORITHM

We shall now demonstrate how the procedure overlay
may produce other useful map operations by merely
changing the function combine.

3.1. Masking

Suppose that we have a quadtree a, representing a map.
Suppose further that we want to produce another
quadtree which corresponds to some part of the map.
Assume that the part of interest has been expressed by
the 0-1 quadtree b. It is easy to see that the call

overlay(mask, a, b)

produces the desired operation provided that we have
defined the following function:

function mask(x: integer, y: zo): integer;
begin

mask : = x*y
end;

In the above function we assume that the data type zo
(for zero-one) has been defined globally with the
statement

zo=0..1;

3.2. Intersection, Union and Difference

The following three functions apply only to 0-1
quadtrees, which may represent geographical regions.
Given two such quadtrees a and b it is useful to be able
to compute the intersection, union and difference of the
regions. We can do this by passing overlay the
appropriate function out of the following:

function intersection(x, y: zo): zo;
begin

intersection: = x*y {Same as mask}
end;

function union(x, y: zo): zo;
begin

union:= x+ y—xx*y {Pascal has no max function}
end;

function difference(x, y: zo): zo;
begin

difference := x+y—2xxxy
end;

3.3. Single-Argument Operations

There are many single-argument quadtree operations,
such as copy and complement. Of course these can be
performed using overlay if the second argument is
ignored. For example, to compute the complement of a
0-1 quadtree a we write:

overlay(complement, a, a)

where

function complement(x, y; zo): zo;
begin

complement .= 1—x
end;

The code for copy is similar.

Another useful variant of the map overlay problem is
the map generalisation problem. If a pixel of the single
quadtree passed to the generalisation function has value
v, then the value of the corresponding pixel of the result
must have the value F(v) for some function F. The
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function F may be a many-to-one function. Map
generalisation may be used to reverse a map overlay. For
example given

function reverse(x, y: integer): integer;
begin
reverse:= x mod 10
end;
the expression
overlay(reverse, a, a)

will produce the quadtree of Fig. 6 if a is the quadtree
of Fig. 7. We can generate the quadtree of Fig. 3 from
that of Fig. 7 by

overlay(remainder, a, a);

where
function remainder(x, y: integer): integer;
begin
remainder := x div 10
end:

4. AMORE GENERAL OVERLAY
ALGORITHM

In Section 2 we presented a general overlay function
which was optimal to within a constant factor, with
respect to both time and space, if fis an arbitrary function
with no known properties. However, the functions union
and intersection have properties which can lead to
improved efficiency (e.g. The intersection of the empty set
with anything is the empty set). If we change the problem
statement slightly, further savings are possible.

The overlay function of Section 2 always generates a
new quadtree as a result. However, if subtrees can be
shared between various quadtrees, substantial savings
may result in some cases. For example, if a is an arbitrary
quadtree, the intersection of this quadtree with a
quadtree consisting of a single leaf (which is also the root)
having value 1 is a tree identical to a. If we are allowed
to return a pointer to the root of a, rather than a copy
of a, this operation can be performed in constant time
and space. Otherwise, the time and space required to
produce a copy of a is proportional to the size of a.

With shared substructures, care must be taken never to
modify or free a shared node. Reference counts® may be
used to detect shared nodes if necessary. If a scan-mark
garbage collector is used, the user need only avoid
modifying quadtrees which might be shared.

To take advantage of the possibility for shared subtrees
the overlay function must become a little more
complicated.

With problems such as computing the intersection or
union of 0~1 maps, the recursive descent can stop as soon
as either argument is a leaf. With masking, it is necessary
to descend until the second argument is a leaf. Finally,
with overlays in general, it may be necessary to descend
until both arguments become leaves. Hence we need a
more general method for stopping the recursive descent
than the test

a” .leaf and b" . leaf

used in Fig. 9. In addition, when descent is halted, it may
be necessary for the function f'to return a quadtree, rather

than just a leaf value. With these changes in mind
overlay may be generalised as shown in Fig. 10.

function overlay2(function p: boolean;
function f; integer; a, b: quadtree): quadtree;
var
result: quadtree,
q: quadrant;
begin
if p(a, b) then
overlay2:= fla, b)
else
begin
new(result); result” . leaf: = false;
for g:= nw to se do
result” . child[q]: = overlay2(p, f,

(quarter(a, q), quarter(b, q));

reduce(result);
overlay2 .= result
end

end;

Figure 10. An overlay function that produces shared subtrees.

5. EXAMPLES OF OVERLAY WITH
SHARING

In the case of a map overlay such as the one which
produces Fig. 7 from Figs 3 and 6, no sharing is possible
and no advantage is gained by using overlay2. However,
we can still perform this computation by

overlay2 (bothsimple, combine2, a, b)
with
function bothsimple(a, b: quadtree): boolean;
begin
bothsimple:= a" .leaf and b" . leaf
end;

and

function combine2(a, b: quadtree): quaditree,
var result: quadtree;
begin
new(result);
result” . leaf . = true,
result” .value:= a” .valuex10+b" . value;
combine2 : = result
end;

where a and b are quadtrees representing the maps of Figs
3 and 6. ;

Let us consider some examples where use of overlay2
may be of advantage.

5.1. Union and Similar Problems

We can compute the union of two 0-1 quadtrees by
overlay2(eithersimple, union2, a, b)

where

function eithersimple(a, b: quadtree): boolean;
begin

eithersimple:= a” .leaf or b" . leaf
end;
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and
function union2(a, b: quadtree): quadtree;
begin
if a” . leaf then
begin
if a” .value = 1 then union2:= b
else union2:=a
end
else {b" . leaf must be true}
begin
if b” .value = 1 then union2:= b
else union2:=a
end
end;

Computation of intersections, differences and so forth
is similar. It is clear from the examples in Section 4, where
one argument to an intersection computation is
arbitrarily large and the other is a leaf, that in general the
use of overlay? (and hence the generation of shared
subtrees) may reduce the time and space requirements
from those proportional to the size of the large argument
to a constant. Let us consider another situation.

In Ref. 2 it is shown that the size of a quadtree
representing a region is on average proportional to the
number of boundary pixels. If the resolution of an image
is doubled, then so is the size of the boundary, in most
cases. If a map is defined as an n x n pixel array, then the
size of a quadtree, and the time required to compute the
intersection of two quadtrees using overlay tends to be
0(n) as n is increased and the image is held constant. On
the other hand, with overlay2, it is necessary to consider
only those parts of an image which contain parts of the
boundaries of both arguments. There tend to be a fixed
number of those on each level. Since the maximal depth
of a quadtree is log,n the time and space requirements
tend to be O(log,n). This is a substantial saving. (It is
interesting to note that it is possible to generate a result
of 0(n) size in 0(log, n) time in these cases, since shared
subtrees are not examined.)

Sometimes it is desirable to perform operations such
as 0-1 quadtree union such that the resulting quadtree
contains no shared subtree. (This is useful if quadtree
modifications are expected.) The solution given in Section
2is not quite optimal, since it does not recognise that the
union of a set with the universal set is always the universal
set. An optimal (to within a constant) solution is given
by

overlay2(unionsimple, union3, a, b)
where

function unionsimple(a, b: quadtree): boolean;
function universal(a: quadtree): boolean;
begin
if a” . leaf then universal:= a” . value = 1
else universal : = false
end;
begin
unionsimple:= (a” . leaf and b" . leaf)
or universal(a)
or universal(b)
end;

function union3(a, b: quadtree): quaditree:
var result: quadtree;
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begin
new(result);
result” . leaf:= true;
ifa” .leaf and b" . leaf then
result” .value:.= a” .value+b". value
—a” .valuexb” .value
else {either a or b is the universal set}
result” .value:=1;
union3 := result
end;

5.2. Masking

The masking operation can also benefit from use of
overlay2. To perform masking we compute

overlay2(rightsimple, mask2, a, b)
where

function rightsimple(a, b: quadtree): boolean;
begin

rightsimple := b" . leaf
end;

and

function mask2(a, b: quadtree): quadtree;
begin
if b” . value = 1 then
mask2:= a
else
mask2:= b
end;

The time required for masking with sharing is clearly
proportional to the size of the mask.

6. CONCLUSION

We have seen that a single quadtree overlay function is
able to perform a number of common quadtree
operations including union, intersection, difference,
masking, copy, complement and map generalisation. A
slightly more complicated variation of this function
allows us to take full advantage of the special
characteristics of each of these operations and to perform
the computations in a manner which is optimal to within
a constant factor, with respect to both time and space.
The approach is motivated by the functional style of
programming,* where higher-order functions may encap-
sulate complex control structures. (Functional program-
ming also suggests other ways to write simple and efficient
programs.!) In a functional language (or even in a
language such as Ada that supports generic functions) it
is possible to create specific functions such as intersection
as results of higher-order functions (or as instances of
generic functions). For example, we could compute

intersection : = overlay2(eithersimple, intersection2)

and then use the function intersection in expressions such
as

intersection(intersection(a, b), c).

This saves having to include the functions eithersimple
and intersection in every intersection computation.
(Performing functional programming in Pascal is rather
like doing structured programming in Fortran IV. It is
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possible, but the result is not as pretty as might be
desired.)

We note that, while we have given an optimal
algorithm for computing intersections of pairs of
quadtrees, our solution is not optimal if the intersection
of three or more quadtrees is desired. See Ref. 1 for
further discussion of this problem.
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