DAP Prolog: A Set-oriented Approach to Prolog

P. KACSUK* aAnND A. BALE

Queen Mary College DAP Support Unit, Queen Mary College, Mile End Road, London El1 4NS

Prolog is based on first-order predicate logic and works by generating sets of values for variables expressed as
arguments to rules. However, current Prolog systems, implemented on sequential machines, work by using the Left-to-
Right, Depth First (LRDF) search strategy and thus generate successive members of the solution set one at a time.
This approach is unsuitable for implementation on many parallel machines.

At Queen Mary College a project is under way to implement Prolog on an SIMD machine — the ICL Distributed Array
Processor (DAP) — involving a set-oriented view of Prolog which is suitable for implementation on such a machine, and

leads to an efficient execution of many symbolic problems.

SIMD (Single Instruction, Multiple Data set) computers are a class of machines that are ideally suited to exploit the
rapidly growing field of VLSI research to produce high-power computation at a low cost. They do so by replicating a
simple processing unit many times. This makes them very efficient for a large class of homogeneous, regular problems
as diverse as database applications and fluid-flow calculations. The set-oriented view of Prolog interpretation exploits
the associative parallelism of an SIMD machine by distributing the database over the processors and implementing

unification of constants on a within-processing element basis.

In the first section we describe the research background to the current project involving defining and implementing DAP
Prolog on the DAP. We then outline a general view of DAP Prolog and explain the set-oriented semantics in some
detail. Section 3 is a brief overview of the basis of a sequential implementation of Prolog, while section 4 describes the
main data structures and algorithms involved in implementing DAP Prolog on the DAP.

Received June 1987

1. RESEARCH BACKGROUNDS
1.1 Parallel implementations of Prolog

Since Prolog was selected to be the basic language for the
Japanese fifth-generation project the language has
become more and more popular, particularly in the fields
of artificial intelligence and expert systems. However,
two things have become clear:

(i) the Left-to-Right Depth First (LRDF) search
strategy of Prolog on sequential machines is not suited to
large Al problems; and

(i)) by modifying Prolog’s execution mechanism a
large amount of inherent parallelism can be expressed,
making implementations on parallel machines feasible.

Three basic types of parallelism can be distinguished in
the execution of a Prolog program as follows.

(1) Parallelism within unification. When the number of
arguments in a clause head is large, the unification of
different arguments may be performed in parallel. This
type of parallelism has only been touched in a few papers
because of the large problems of consistency arising from
shared variables in a clause head.! 2

(2) Parallelism among unifications. When a definition
contains several alternative clauses the unification of the
current goal can be done in parallel with all the alternative
clause heads. This form of parallelism was utilized in
Ref. 3 and is the parallelism expressed in DAP Prolog.

(3) Parallelism in the control strategy. Instead of using
the sequential LRDF strategy for traversing the search
tree there are many possible parallel strategies. These can
be divided into three major classes as follows.

(a) OR-Parallelism. When the search tree has several
alternative routes to solving a goal, these routes can be
traversed in parallel by separate processes. This type of

* Academic Visitor from Computer Research and Innovation
Center, H-1015 Budapest 1. Donati u. 35-45, Hungary.

parallelism is particularly suited to MIMD architec-
tures.*®

(b) AND-Parallelism. When a goal consists of several
sub-goals, these goals can be solved in parallel. This is
the parallel breadth-first strategy. However, the common
variables in the sub-goals present a similar problem to
that found in within-unification parallelism.®’

(¢) Streamparallelism. Stream parallelismisacombina-
tion of OR- and AND-parallelism where the sub-goals
are organised into a pipeline. The partial results produced
by sub-goals are immediately consumed by the next sub-
goal, resulting in a parallel operation on the sub-goals.®
In order to utilise the control-strategy parallelisms, two
basic computational paradigms have been proposed,
control flow and data flow. The control-flow idea was first
proposed to investigate the suitability of shared-memory
multiprocessors for Prolog,"® though some projects have
explored implementations on distributed multiproces-
sors.’®! The data-flow paradigm has generally been
targeted at distributed multiprocessors.'*™™* All of these
projects have concentrated on MIMD computers, and
there have so far been no proposals for implementing
Prolog on SIMD machines.

1.2 Parallel logic languages

When implementing high-level languages on parallel
computers a major question is how to express the
parallelism. Two basic possibilities can be identified.

(a) Implicit parallelism. No explicit parallel construct
appears in the language, while the compiler performs all
the work of expressing any inherent parallelism. Typical
examples are the vectorising Fortran compilers.'?

(b) Explicit parallelism. The high-level language is
extended with certain parallel constructs, and it is the
programmer’s responsibility to use these constructs to
express the parallelism in his algorithm. For example

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 393

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

P. KACSUK AND A. BALE

Fortran Plus (the main language for the DAP) provides
parallel matrix operations to express a regular parallel
operation on a large data structure.*®

Though implicit parallelism is frequently assumed to be
more attractive to the user, there are many reasons for
considering explicit parallelism. This is particularly true
in Prolog, where implicit parallelism has several serious
drawbacks.

(@) Implicit OR-parallelism can (i) cause unexpected
changes in the semantics of the program due to the side-
effects of certain built-in predicates (for example the cut
or the database operations); (ii) lead to unregulated
parallelism where the number of parallel processes
becomes much larger than the number of processors.
This results in most of the work that the system performs
being wasted in administration, and any gains through
parallelism being totally negated.

(b) Implicit AND-parallelism. Automatic detection of
AND-parallelism requires the administration of all the
independent subsets of goals which are to be executed in
parallel, and the dependencies of goals to be maintained
in the right order. This run-time analysis of programs
can also cause a significant performance degradation.

All these reasons have led many researchers to extend
Prolog with language constructs regulating the paral-
lelism, -8 or to modify the semantics and syntax of
Prolog to create a parallel programming language like
PARLOG?* or Concurrent Prolog.?

Another reason for introducing new language con-
structs into Prolog is to express the constraints introduced
by the particular architecture under consideration as the
target machine for our implementation. This reason has
influenced our choice of DAP Prolog as a parallel
extension of Prolog in order to effectively implement it
on the DAP architecture.

1.3 DAP architecture

The DAP is designed to handle the wide class of
problems which are homogeneous over the problem
space. In other words the same algorithm can be applied
to each item in a large data set. This class of problem
obviously includes tasks such as text searching and large
database handling as well as more numerically intensive
tasks like fluid-flow calculations or many-body problems.
The DAP has traditionally been used almost exclusively
for numerical applications, largely due to the lack of a
suitable language to handle symbolic tasks.

The hardware of the DAP in some sense models the
nature of the tasks it is designed to handle :!

(1) Large problem spaces leads to a large number of

processing elements.

(2) The localised nature of data interchange common
in this class of problem demands a highly efficient short-
range connection network between processing elements
at the expense of long-range connections.

(3) Since algorithms frequently can be performed
using simple data — short word-length data — the DAP is
a ‘bit-serial’ machine, giving high efficiency for short
data with very little loss in efficiency for long data.

The DAP is therefore designed as a regular (square)
array of simple, fast, one-bit processing elements (PEs)
which can communicate with their four nearest neigh-
bours. They are all under the control of one central
processor called the Master Control Unit (MCU) which

specifies the actions of all the PEs concurrently, and
hence they are frequently referred to as one unit: the PE
‘plane’. This fits with a concept of a large, regular data
structure on which certain well-defined operations can be
performed (see Fig. 1).

Square array
of identical one-bit data

processing elements
under central control

Local
memory
foreach

processing
element

1t LI
Figure 1. The DAP-A distributed array of processors.

The PEs each have several one-bit registers which
enable them to perform arithmetic on their local memory.
These registers can again be referred to as composite
objects, of which the most important is the ‘Activity
register plane’, or Activity plane. This register can be
loaded from local memory or from a register in the
MCU, and can control whether a particular PE partici-
pates in any given operation. The Activity plane can
therefore serve to partition an algorithm across a data
set, or permit operations to be dependent on some local
condition.

The interprocessor connections of the DAP, while
forming a two-dimensional network, can model any
other interconnection pattern. In particular it is very
efficient to consider the DAP to have a one-dimensional
mode of operation, and it is in this mode that much of
the current implementation of Prolog operates.

The DAP can be considered as an associative memory :
each PE can simultaneously set a local register to depend
on the contents of a memory plane; this register plane
can then be considered as a ‘parallel pointer’ to all the
selected objects, making the DAP a very efficient search
engine.

The particular version of the DAP on which the work
was undertaken is the pre-production model called the
Mini-DAP which has an array of 32 by 32 PEs.

2. DAP PROLOG
2.1 General aspects of DAP Prolog

Most of the work done on parallel implementations of
Prolog has been based on MIMD architectures. They
have frequently attempted to modify the control mech-
anisms of Prolog in order to use the multi-tasking
parallelism of such machines, and have often, therefore,
neglected features of Prolog like its databasing capabili-
ties.

The approach taken in the current project is based on
the strengths of SIMD machines such as the DAP, i.e.:
they are efficient at data-parallel rather than task-parallel
problems, enabling them to work efficiently with large,
homogeneous data structures; they are good associative
engines, well engineered for database applications.

It was also decided that any new implementation of

394 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

DAP PROLOG: A SET-ORIENTED APPROACH TO PROLOG

Prolog should be a pure extension to current Prolog.
That is, all existing Prolog programs (in some common
implementation such as C-Prolog) should run without
modification in the new language. Of course, no efficiency
guarantees could be made about such unmodified
code!

DAP Prolog is therefore standard Prolog extended
with two new data structures and relevant support code.
The structures are as follows.

(i) Sets. These utilise the associative nature of an
SIMD machine, and provide for efficient implementation
of such built-in predicates as ‘member’, ‘delete’, etc.
They enable Prolog to be used efficiently in relational
database applications.

(ii) Arrays. Arrays are the most obvious software
realisation of the SIMD aggregate of processing elements.
The extension of Fortran to Fortran Plus involved the
introduction of arrays for the same reason. Arrays
enable Prolog to be used efficiently in applications with
a large numerical part. We shall not describe the array
part of DAP Prolog any further in this paper.

DAP Prolog can therefore be described by:

DAP Prolog = Prolog + Sets + Arrays

In line with this, DAP Prolog has three main ‘modes of
operation’. They are a normal mode semantically
identical to Prolog; a Set mode; and an Array mode.
Communication between the various modes is through
built-in procedures. Thus a program which wishes to use
the Set mode will use the procedure

set_mode(goal(V,V,...V,),sdef)

Ordinary Prolog part

ces set_mode(goal(V1,V2, ... ,Vn),sde)
Ordinary Prolog part
ves array_mode(goal(V1,V2,...,Vn))

Ordinary Prolog part

Figure 2. DAP Prolog Execution trail.

in order to call the goal procedure, within whose scope all
interpretation is carried out in set mode. Based on this
operational behaviour, Fig. 2 gives a paradigm of
execution for a DAP Prolog program.

In this paper we concentrate on the set mode, which is
most relevant to symbolic computation. The Array mode
of DAP Prolog is explained in Ref. 22,

2.2 Set mode

An SIMD machine is able to operate on large data sets
in a naturally associative fashion. DAP Prolog is
therefore designed to use this associative power by
considering sets of acts (unit clauses) as unitary objects,
enabling database-oriented Prolog programs to execute
very effectively with little rewriting.

In the DAP Prolog Set mode, a set-oriented interpreter
adopts a mixed depth-first/breadth-first search strategy
in which the multiple-fact branches of a conventional
Prolog search tree are considered as generating binding
sets rather than search non-determinism.

Problem Prolog search tree DAP Prolog search tree
male(john)-. i |
male(peter). male(X) male(X)
male(bob)-
-male(X))
X is john X is bob Xis N
X is peter {john,peter,bob

The semantics of this fit well with predicate logic: given
the set

male = {john.peter,bob}
the solution of
X: Xemale

is exactly the set {john,peter,bob} returned by DAP
Prolog (and returned in a sequential fashion by Prolog).

Of course, multiple rule branches are still preserved as
true choice points by the interpreter:

Problem

1 1
animal(X):-male(X) animal(X) animal(X)
animal(X):-female(X).

male(john).
male(peter).
male(bob).
female(mary).
female(joan).
animal(X).

male(X) female(X) 010030
{john,peter,bob}
john peter bob mary joan

so that the ‘true’ set solution is the union of the solutions
returned by DAP Prolog.

There are several advantages to this set-oriented
approach.

(i) Speed-up. The interpreter can handle the breadth-
first stage in a single step (on an SIMD machine),
eliminating a significant amount of backtracking when
there are a large number of clauses in a set.

(it) Semantics. In the above query :-male(X) the
semantics are that X should be bound to the full set of

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 395

Prolog search tree DAP Prolog search tree

Sfemale(X)

{mary,joan}

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

P. KACSUK AND A. BALE

solutions. There is no semantic ordering in the above
program. A conventional Prolog interpreter will return
with the answer X = john, however, and must be forced to
backtrack to generate any further solutions.

2.2.1 Set restriction

The sequence of unifications:

...,number(X),succ(X,Z),....greater_than_two(X),...
with X and Y initially unbound does several things:

X becomes bound to the values in the set numbers
— which we shall suppose to contain {0,1,2,3,4,5}

the tuple (X,2Z) is unified with the set succ — let us say
the value {(0,1),(1,2),(2,3),(3,4),(4,5),(5,6)}

thus Z is bound to {1,2,3,4,5,6}

X is unified with the value of greater_than_two -
containing {3,4,5,...}. This ‘restricts’ X to the value
{3,4,5}.

All values which are bound to X must also be
restricted including that of Z, which must be restricted to
{4,5,6}.

This set restriction is the key to set-oriented Prolog,
and is the underlying mechanism of the interpreter.
However, note that its effects are non-local in the sense
that variables can be bound in any part of the set
mode.

In the above example we see one kind of association
between sets. However, we should identify two kinds of
set, associated and derived. Two sets are associated if
they represent two arguments in the same clause. For
example, in the succ definition

succ(0,1).

succ(4,5).
the two sets of arguments {0,1,2,3,4} and {1,2,3,4,5} are
associated sets. This is because they are selections from
one set of two-tuples

(7)-{0EEOOE)

In other words, individual elements of the two sets are
associated. We denote this association by X < Y.

A set X is derived from Y if each element in X is
derived from an element of Y:

VxeX and VyeY:x,=fy)
The same relation can be defined in Prolog:

derived_set(X,Y):-
X is AY).

The difference between Prolog and DAP Prolog is that
while Prolog defines the elements of X by the backtrack
mechanism, DAP Prolog defines X in one step. ‘X is
derived from Y’ will be denoted X« Y.

In terms of association and derivation, restriction is
defined as follows. Whenever a set X is restricted, all sets
which are derived from or associated with X should also
be restricted, i.e. for all elements X, deleted from X,
corresponding elements Y, of Y(Y«X) and Z, of Z
(Z—X) are also deleted.

Sets can be restricted in three ways: by implicit
restriction ; by a restriction condition; or by unification.

Implicit restriction is the process of restriction that
occurs when X is associated with or derived from some

other set that is restricted. A restriction condition can be
viewed as a ‘filter’ to be applied to the elements of a set.
For example in:
..y number(X), X>2, ...

the original set of X'({1,2,3,4.5}) has selected from it all
elements greater than 2. X is restricted to {3.4.5!. Notice
that again the same set is generated by Prolog through
backtracking.

2.2.2 Set unification

Unification must deal with both associated (and derived)
sets, and independent sets.

(1) Associated set unification. This involves pair-wise
unification on set elements:

XY vXeY VvV YeX then
unify(X,Y) = V(x,y) e < (X,Y): unify(x.v)

Associated sets can be handled as parallel vectors, and
the unification step can be performed in parallel. Consider
the following program:

triungle(3,4,5)
triangle(3,3,5)
triangle(1,3,3)
triangle(5,5,9)
isosceles :-(X. X, Y).
lisosceles.

The unification process proceeds in three steps:
(1) X =1{33,1.5}

(2) unify(X,{4,3,3,5}) — the two sets are associated and
so the unification is pair-wise:

Y Y Y 4
F T F T

X is now the set { ,3,.,5}
(3) Y is now restricted, since Y«<»X. Thus Y is the set
{.,5,..9}. This is equivalent to:

{(X.V): (X, A, Y)etriangle N X = A}

The reader can again see that Prolog generates the same
solutions through backtrack.

(2) Independent set unification. If two sets are
neither associated nor derived, they are ‘independent’,
denoted * -’

X--Yif -XoY
and -~ XeY
and -Y«X

Unification of two independent sets is defined as the
intersection of the sets:

if X—Y then
unify(X,Y)<=>VyeX A VyeY: unify(x,y)

Independent set unification appears in those cases
where we are unifying the argument sets from different
definitions. For example, consider the following pro-
gram:

396 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

DAP PROLOG: A SET-ORIENTED APPROACH TO PROLOG

river(london,thames).
river(rome,tiber).
river(budapest,danube).
river(moscow.rolga).

capital(italy,rome).
capital(austria,vienna).
capital(hungary budapesn).
capital(england.london).
capital(france.paris).
Ycapital(X.Y), river(Y,Z).
where the query corresponds to:
UX.Y.Z): (X,Y)ecapital A (A, Z)eriver N Y = A}
The first goal generates

Y = {rome.vienna.budapest london.paris)
The second goal unifies:
Y and {london,rome.budapest.moscow!
The intersection gives
Y = {rome.budapest.london}

being the capitals for which information is available.
Performing the restriction of associated sets Z and X

gives

X iraly hungary england
Y] = rome budapest london
V4 tiber _danube thames

Again, note that Prolog generates the same set through
backtrack.

2.2.3 Defining sets and using set mode

Definitions to be used as sets should be declared as set
definiti :
chnitions set_definition(sdef/n)

sdef is declared to be an n-tuple set which can be used to
return the value from a piece of Ser mode code. The set-
oriented execution of DAP Prolog can be used through
the built-in procedure:

set_mode(goal(V,,V,,....V ,).sdef)

which has the semantics:

switch into set working mode

solve the goal using set-oriented semantics

put the result tuples of {V,} into sdef

return to Normal mode

The work in Set mode is non-deterministic if rule
branches are in the search tree. From the point of view
of the Normal mode code it behaves as a non-
deterministic built-in procedure. After the call of
set mode sdef behaves just as any other set of definitions.
In particular, on backtrack it will generate successive
members of the solution.

2.3 Programming style

Two basic programming styles can be distinguished in
Prolog: list oriented and database oriented. In the list-
oriented style of programming compound data structures
are represented by lists, and operated on by recursive
list-processing predicates. This is generally a clean. side-
effect-free programming style, and is well suited to
functional programming one of Prolog’s major applica-
tion fields.

The database programming style represents data
structures by clause sets. Frequently this type of program
manipulates the database directly (using asserts and
retracts and so on), which are generally extra-logical

side-effecting operations. Backtracking is generally neces-
sary to explore all possible solutions (leading to the sez_
of class of built-in predicates). However, this style is well
suited to database applications such as expert systems.

Prolog programmers have frequently preferred the
list-oriented style of programming even in the case of
database operations. In DAP Prolog, however, the set-
oriented features of the language make database style
operations much more attractive. Let us consider a
database problem to illustrate the difference between
the styles, and the difference between Prolog and DAP
Prolog. (This problem was originally presented in Ref.
23)

A travel agency offers one- and two-week holidays in
various cities in Europe and Africa. For each destination
the brochures contain the transport cost and the price of
a week’s trip, which depends on the destination, the
season and the level of accommodation (hotel, bed and
breadfast, camping).

The list-oriented program is as follows.

town(europe,
[rome,... budapest]).
town(africa,[tunis,...]).

% The journey to Rome
%costs £120

travel(rome,120).
travel(tunis,200).

%A week in a Rome hotel
%is £210

stay(rome,hotel,210)
stay(budapest,camping,70).

duration(1).
duration(2).

high_season(europe,[june,
July,august)).

high_season(africa,[decem-
ber january february)).

low_season(europe,[jan-
uary: 60, february:
55,...,december:75])
low_season
(africa,[june:65,...])

%a week in June in Africa
%is 65% of the high-
%season cost

trip(Town,Accommodation,Price, Travel) :-
travel(Town, Travel),stay(Town,Accommodation,
Price).

trip_cost(Continent,Month,Weeks, Price, Travel,Cos?) :-
high_season(Continent,L)member(Month,L),
duration(Weeks),
Cost is Price* Weeks + Travel.
trip_cost(Continent,Month,Weeks, Price, Travel,Cost) :-
low_season(Continent,L),member(Month : Percent,L),
duration(Weeks),
Cost is (Price* Weeks* Percent)/ 100 + Travel.

economy_trip(Continent, Month,Town, Weeks,Cost,Max

-Co?c?wn(Continent,L),member(Town,L),
trip(Town,_,Price,Travel),
trip_cost(Continent,Month, Price, Travel, Weeks,Cost),
Cost < Max_cost.

member(H,[H|T)).

member(X,{H|T)):-member(X,T).

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 397

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

P. KACSUK AND A. BALE

goal Number of arcs

economy_trip 1

town

10
10
10
trip_cost 30
lowseason 60
24*60
duration 2%24*60
Co..s't 224460
Price*Weeks Price*Weeks 2+24*60
*Percent .
/100 2*18*60
+Travel 2*18*60
+Travel rave 2%*24*60
FQost <Max_cost 2+24*60
20282

Figure 3. Prolog search tree for the travel agency program.

The same program written in a database form is as
follows:

town(europe,rome).
town(africa,tunis).

town(europe,budapest).

travel(rome,120).
travel(budapest,150).

stay(rome,hotel,210)
stay(budapest,camping,70).

duration(1).
duration(2).

high_season(europe june).
high_season(africa.jan).

low_season(europe january,60).

low_s'e;son(africa,june,65).

trip(Town,Accom, Price,Travel) :-
travel(Town, Travel),stay(Town,Accom, Price).

trip_cost(Continent,Month,Price,Travel, Weeks,Cost) :-
high_season(Continent,Month),
duration(Weeks),
Cost is Price* Weeks + Travel.
trip_cost(Continent,Month,Price,Travel, Weeks,Cost) :-
low_season(Continent,Month,Percent),
duration(Weeks),
Cost is (Price* Weeks* Percent) /100 + Travel.

economy_trip(Continent,Month,Town,Weeks,Cost,Max _
cost):-
town(Continent,Town),
trip(Town,_,Price,Travel),
trip_cost(Continent,Month,Price,Travel, Weeks,Cost),
Cost < Max_cost.

The main difference between the programs is in the
representation of the database. In the first case the unit
clauses contain repeating groups (lists), while in the
second case new clauses are introduced into the database
representation. This is the same transformation that is
used in the relational database model to obtain the first
normal form (INF) of the relations.

Let us compare the database access in the two

approaches:
...,town(Continent,L,),member(Town,L),... 1
...,town(Continent,Town),... 11

In case I member involves 2*i unifications to return the
ith member of the list, so 2*i+ I unifications in total are
required.

Case II requires only i unifications. Moreover, an
array processor can perform the access in one associative
step in case II, but not in case I since the list access is
inherently sequential. With the set-oriented interpreter
the complete set of alternatives can be picked up at
once.

Fig. 3depicts a search tree for the sequential interpreter
of the INF form of the following problem:
Yeconomy_trip(Continent,Month,Town, Week,Cost,350).

What trips are available for under £3507

given a certain (small) size of database.

Fig. 4 shows the set-oriented search tree, which
contains only one branch. In Fig. 3 each leaf represents
only one possible member of the solution set, while in
Fig. 4 a leaf represents a whole partition of the set.

goal
economy_trip
town
trip
travel
stay
/%cost
highseason lowseason
duration duration
Cost Cost
Price*Weeks Price*Weeks
*Percent
/100
+Travel +Travel
Cost < Max_cost Cost < Max_cost

Number of arcs = 22
Figure 4. DAP Prolog search tree for the travel agency
program.
The theoretical speed-up (TS) obtainable by the set-
oriented interpreter is:

Number of arcs in sequential search tree

TS = - -
Number of arcs in set-oriented search tree

For the travel agency program, with the size of database
indicated in Fig. 3, the theoretical speed-up is:
20282
=——=921
TS >
TS is, of course, an upper limit on actual speed-up since
the execution time for an arc in the set-oriented search
tree is likely to be higher than in the normal search tree

398 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

DAP PROLOG: A SET-ORIENTED APPROACH TO PROLOG

because of the set restriction administration. However,
note that the speed-up would increase with the size of the
problem until all PEs in the array processor are in use.

3. PROLOG INTERPRETERS ON
SEQUENTIAL MACHINES

Any interpreter must have certain functional parts,
namely: some way of representing the user’s input
script — the static data structures; some representation of
partially completed evaluations — the dynamic data struc-
tures ; the mechanism to evaluate the static data structures
and produce a ‘result’ — the interpretation mechanism;
input/output routines including a parser and output
conversion routines.

3.1 Static data structures
3.1.1 Clause representation

A Prolog statement has the form:
atom(term,term,...) :- functor functor,....

We therefore need some way of representing three kinds
of item.

(@) The rule head — with its name (atom); its arity
(number of arguments); its actual arguments; and a
pointer to its body. Also useful is to store the number of
variables in the rule.

(b) The rule body - each of whose functors will have a
similar representation to that of a rule head.

(¢) The items of information, such as atoms, numbers
and rules. Numbers are represented by their values;
atoms are represented as pointers to their string values,
and terms are represented as pointers to another storage
area with similar structure to the two structures outlined
above.

3.2 Dynamic data structures

Stacks. Prolog’s non-deterministic behaviour is one of its
most unconventional features, and the element that gives
it much of its expressive power. A Prolog interpreter
works by searching a database of facts according to a list
of rules. Whenever it fails to find a solution via one route
it will ‘backtrack’ and find another route to a solution
until all routes have been tried.

The dynamic data structures must therefore contain
more than the environments of most other languages.
Not only must they contain results of partial evaluations
but also the information necessary to allow the back-
tracking mechanism to operate. These dynamic structures
are in the form of stacks which build up as a program
progresses and then decreases as it backtracks. They
therefore need to contain the values of variables (Variable
Stack), and information as to when a variable received its
value (Trail Stack); information about which procedure
to backtrack to (Environment Stack); and which
procedure will be the next to be called in the event of
success.

3.3 Interpretation process

Clause selection. Given the simple program
male(john).
Sfemale(mary).

male(bob).

married(fred,mary).

male(X):-married(X,Y) female(Y).

:-...,male(X),...

it is clearly necessary for the interpreter to find all the
clauses corresponding to the name male, and no other
name. Thus we should have some means of finding the
correct item in the head data structures. Generally this is
done using some kind of hash-based search strategy, but
having an associative processor is clearly an advantage in
this context!

Unification. In the program above, once a clause has
been found that satisfies the criteria of name and arity,
any arguments in the calling procedure must be ‘unified’
with its arguments. Unification is a matching process
whereby variables receive values. The rules are that a
variable matches anything (there is no typing in Prolog);
a constant only matches itself; and a functor matches a
functor with the same name and arity, if and only if all
the arguments match.

Shallow backtrack. If this matching process fails, then
the interpreter must proceed to the next rule in the
database with the same name and arity. In the above
program, if X has been bound to something that does not
match with john, the interpreter must look for the rule
male(bob). This process of attempting a match and
proceeding in the case of a fail is known as ‘shallow
backtrack’.

Backtrack. Once unification has been performed on
the clause head, the interpreter proceeds to the clause
body (if any). Now each of the parts of the body are tried
in turn to try to find a match. Again, in the above
program, suppose the interpreter has reached the rule:

male(X):-married(X,Y) female(Y).

The interpreter must be capable of recovering its state
should any call in the rule body fail. If the married call
should fail, the interpreter must undo any bindings that
occurred in the rule head unification, and find another
male(X) procedure to call. If the fail occurs in the
female(Y) call, then the interpreter must undo any
bindings that occurred due to the married(X,Y) call, and
try for another successful married rule. Thus we must
save several pointers: the next call in the current rule; the
rule being searched for unification with the current call;
the place where a search for re-satisfying each previous
call will have to begin; all previous values of variables,
and where they received their values, which are the
contents of the dynamic data structures. This process of
going back to the previous call to find a re-satisfaction is
called ‘backtracking’.

4. IMPLEMENTING DAP PROLOG ON
THE DAP

DAP Prolog is an extension to Prolog. Therefore the first
step in the implementation of DAP Prolog is to
implement ordinary Prolog. The further features of DAP
Prolog such as the Array and Set modes can be built on
to a regular foundation.

4.1 Ordinary Prolog implementation

The operation of a Prolog interpreter is an exhaustive
search of a tree representing the input program. Thus the

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 399

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

P. KACSUK AND A. BALE

existence of a powerful search engine (using the associa-
tive power of an SIMD machine) is clearly useful in
implementing even ordinary Prolog.

4.1.1 Static data structures

The definitions of the static data structures can be
expressed in Prolog:
(1) Clause head representation
clause_head description(N,ANO,VNO,AL,BP):-
clause_name(N),
arg_number(ANO),
var_number(VNO),
arg list(AL),
body_pointer(BP).

Clause head records
are stored in the
head plane (Fig. 5)

dataplane | N [ano|vnolaLt] =+ l4Ln | BP
type plane | 7 TAL| ses |TAn

Note that clause records are not stored in any linked-list
structure since they are not found by a sequential search.
Instead they are identified by their name (&) and the type
name flag (7N) and found in an associative lookup.
(2) Clause body representation
clause_body(]]).
clause_body([goal_descriptor(_,_,_,)|GL]):-
clause_body(GL).
goal descriptor(N,ANO,AL,GP :-
goal_name(N),
arg_number(ANQ),
arg_list(AL),
next_goal_pointerGP).

Goal descriptors
are stored in the
body plane (Fig. 5)

data plane N |ANO|AL1} «=«|ALn| GP
type plane [7n TAl|ee= |TAn

(3) Term representation
term(N,ANO,AL):-

term_name(N),

arg_number(ANQ),

arg list(AL).

Term descriptors
are stored in the
term plane (Fig. S)

dataplane | N 1ANO|AL1| <= |ALn
type plane | 7 TAl| =+~ |TAn

For each static data structure the possible argument
list elements are represented by:

Pointer to the Symbol table

(a) atom
TA type field
Value
(b) number
TNO type field
. Var., The position of the variable
(c) variable | RO within the clause
v type field
(d) term —— Pointer to the Term table
T type field

4.1.2 Dynamic data structures

(1) Environment stack. For each node of the search tree
the following environment frame is created in the
environment stack (see Fig. 5):

environment_

frame(CG,FN,LCN,CP,CVSP.CMSP,CL) -

current_goal(CG),

father_node(FN),

last_choice_node(LCN),

current_var_stack_pointer(CVSP),

current_ mol_stack_pointer(CMSP),

current_level(CL). '

(2) Variable stack. For each variable in a procedure a
new item is allocated in the variable stack (see Fig. 5),
which consists of three planes: data plane, containing the
binding value of the variable; type plane, representing
the type of the binding value; level plane, giving the
binding level in the search tree.

4

Head plane

Static
data
structures

Logical planes

are shaded
Environment stack 4
plane(s)

| AN RN T T 117113

Variable stack Dynamic

plane(s) data

] structures

Molecule stack

plane(s) #

Figure 5. Representation of the interpreter’s data structures.

(3) Molecule stack. When a variable is bound to a
compound term, a ‘molecule’ (as opposed to an ‘atom’)
is created on the molecule stack (see Fig. S): variable
plane, pointer to the variable stack frame from which the
variables of the term should be taken; term plane,
pointer to the term plane.

4.1.3 Interpretation process

The interpretation process is a normal structure-sharing
interpreter with one exception: the backtrack undo. The
task of the undo process is to unbind variables
bound since the latest choice point. This process is
conventionally based on a sequential trail stack.

In the DAP Prolog interpreter the whole undo process

400 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

DAP PROLOG: A SET-ORIENTED APPROACH TO PROLOG

is executed in one step independently of the number of
variables to be un-instantiated. The trail stack is replaced
by a variable stack containing the binding level of each
variable. The DAP can associatively find all variables
bound below a given node and delete all of them in one
step.

4.2 Implementation of set mode
4.2.1 Static data structures

In order to represent a set definition we introduce a new
type of clause-head structure which will be more
economical in space, and will enable the parallel nature
of an SIMD machine to be used in set operations.

All the clauses in a set definition are represented by a
common clause-head description in the head plane
(Fig. 5)
clause_head_description(N,ANO,VNO,AL MP) :-

clause_name(N),

arg_number(ANO),

var_number(VNO),

arg list{(AL),

mask_pointer(M P).

The elements of AL are pointers into the set mask planes
(Fig. 6). Since the argument sets of a set definition are
associated, one common mask plane is sufficient to
describe set membership. Notice that the structure of the
clause-head descriptor is identical to that for a normal
clause, making it easy to handle set definitions in Normal
mode.

Head
plane

NANO VNO ALMP

l’s&l i lSCl — Ils'c!1¢"'

Set argument
planes

—> First argument plane

Nth argument plane

i Set mask |
\ planes i
\ — s
A S s 1024th
] ‘ clause
T' column
First 32nd
clause clause
column column

Figure 6. Representation of set definitions.

4.2.2 Dynamic data structures

A new stack, the set descriptor stack, is added to the
interpreter’s set of stacks. This stack plays the same réle
for sets as the molecule stack plays for functors. Whenever

a variable is bound to a set, the interpreter creates a set

description record and pushes it on to the set description

stack.

set_description_record(SAP,SMP,SCL,ST) -
set_arg_pointer(SAP),

set_mask_pointer(SMP),

set_creation_level(SCL),

set_type(ST).
where
set_type(B):-

base_set.
set_type(D):-

derived_set.
set_types(S):-

sibling _set.
set_type(R):-

restricted_set.

Administration of relationships among sets is as
follows.

(@) When an unbound variable is unified with the
argument set of a set definition, the binding set is a ‘base
set’.

(b) Associated sets. Associated sets X and Y are
administered automatically through their shared mask:
when one set is restricted, the other automatically has the
corresponding elements deleted.

(¢) Derived sets. When X is derived from N associated
sets

XY, xY,x...xYy YooY, o e,
X becomes associated with the deriving sets.

M
L1 | e Ln
B 8 ||p]
Y1 Yn X

When the N sets are independent:
XV, xY, x .o xY Y —Y,—...—Y,
the set descrnptlon records of X and Y, should be

created:
W B
l

e~ ()

SAl SA1 SAn| Where

L: the current level of

SM1 DM |DMn the search tree

L1 L L D: ‘derived set’

indicator
B 8 B DMi: mask used in the
Yl YY YA derivation process

(d) Sibling sets. A set Y'is the sibling set of Y if Y’ was
created during the unification of Y and a head argument.
For example, in

Ycapital(X, Y),river(Y,2Z),...

Y is initially bound to {rome,vienna,budapest,london,
paris}. Its sibling set Y’ is created when Y is unified with
{london,rome budapest,moscow}. As a result, Y will be
{london,rome budapest} and Y should be restricted to Y”’,
{rome,budapest,london}. Semantically, of course, the
sibling sets are the same object.

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 401

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

P. KACSUK AND A. BALE

The administration of sibling sets is performed by
creating a new set description record for Y’, and if Y is
restricted, then for Y as well:

S41 542 fjgj‘ﬂ_- where

SM1 SM2|ism3: L2: the current level of
[t the search tree

Ll L2 ;L2 | 8. “sibling set’ indicator

T1 S s | SM3: the new mask for the
----- restricted set of Y

Y Y Y

(e) Restricted sets. When a set is restricted, a new set
description record is created for it, containing the level
number and new mask of the set.

Fig. 7 shows the representation of the set descriptor
stack.

Set descriptor

stack
argument pomnter *

mask pointer

creation level 1024th
type i set

t44
1st2nd3rd 32nd
setset set set

Figure 7. Representation of the set descriptor stack.

4.2.3 Interpretation process

The interpretation process consists of four basic opera-
tions: set unification, set derivation, set restriction,
backtrack.

Set unification. There are three cases to consider.

(a) Variable/set. A new set description record will be
created and pushed on to the set descriptor stack. A
pointer to this record is associated with the variable in
the variable stack.

(b) Two associated sets. Corresponding elements in the
sets where the set mask is ‘true’ are unified in parallel.
The new value of the mask is a ‘ true’ wherever unification
succeeded.

(¢) Two independent sets. Given two independent sets
X with M elements and Y with N elements, M < N,
unification is the following serial/parallel algorithm :

X_mask = false; Y _mask = false;

Jori=1,M do

Y_mask = true where unifies(X,,Y);
X_maskli] = true if any Y, was unifiable;

endfor
The operations in the loop body can be executed in one
step on an SIMD machine. Thus we require 2 x
min(M,N) steps rather than M x N.

REFERENCES

1. N. Ito er al., Data-flow based execution mechanism of
parallel and concurrent Prolog. New Generation Computing
3, 15-41 (1985).

2. P. Kacsuk, Wavefront method for parallel unification in
proputer array. 5th Symposium on Microcomputer and
Microprocessor Applications, Budapest (1987).

3. S. Taylor, er al, Logic programming using parallel

402 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

Set derivation. Suppose the derivation to be executed is
the following:

Y« AY,,Y, ..., Y,) where Y, has N, elements, etc.

There are two main cases:

(a) The Y, sets are associated. Each operation of the
function ‘f’ can be executed in 1 step instead of N, x
N, x ... N, steps.

(b) The Y, sets are independent. In this case one set —
the largest set is most efficient — should be selected for the
set operation. Instead of N; x N, x ... x N, steps only
N, x ... x N,, steps are required.

Set restriction. Whenever a set X is restricted through
a restriction condition or unification, all of its associated,
derived and sibling sets should also be restricted. Because
of the shared mask the restriction of associated sets is
automatic. For derived and sibling sets the common-
level number stored in the set descriptors can be used
associatively. When such a set is found, its mask should
be modified in line with X’s and a new set description
record should be created containing the new mask and
the current level of the search tree.

Backtrack. The undo mechanism is based on the set
descriptor stack. If the last choice point is on level L, all
set description records whose set creation level is greater
than or equal to L will be deleted from the stack. In this
way all sets created in or after L are removed from the
stack.

S. CONCLUSIONS

DAP Prolog is an extension to Prolog, so the basic ways

‘of thinking and problem-solving techniques are very

similar in the two languages. The actual differences are
strongly dependent on the application field. The two
main application fields of Prolog are the following: Al
problems; relational database systems (RDBS).

In the case of Al problems the DAP Prolog program-
mer uses many of the techniques of the Prolog
programmer, but substitutes sets for lists whenever the
order of elements is irrelevant to the problem and the
structure of the elements is homogeneous.

In the case of RDBSs the DAP Prolog programmer
thinks in terms of sets rather than individual binding
values, making the difference between the languages a
fundamental one is this field.

The introduction of arrays into Prolog makes DAP
Prolog a candidate for numerical as well as symbolic
programming, where Prolog is inadequate.

Since Prolog is inherently list-oriented — that is, in-
herently sequential - implementing Prolog on an SIMD
machine is not attractive. Implementing DAP Prolog is
much more effective, since sets and arrays can be handled
in parallel on a machine such as the DAP.

associative operations. Proceedings of the 1984 International
Symposium on Logic Programming 58-68 (1984).

4. A. Ciepielewski, S. Haridi and B. Hausman, Performance
evaluation of a storage model for OR-parallel execution of
logic programs, Symposium on Logic Programming, Salt
Lake City (1986).

5. Y. Sohma, er al, A new parallel inference mechanism
based on sequential processing. IFIP TC-10 Work, Con-
ference on Fifth Generation Computer Architecture, Man-
chester (1985).

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

7.

10.

1.

12.

14.

DAP PROLOG: A SET-ORIENTED APPROACH TO PROLOG

. D. De Groot, Restricted AND-parallelism. Proceedings of

the FGCS 84, 471-478 (1984).

M. V. Hermenegildo, An abstract machine for restricted

AND-parallel execution of logic programs. Proceedings of

the 3rd International Conference on Logic Programming,

London, 25-39 (1986).

. P. Borgwardt. Parallel Prolog using stack segments on
shared memory multiprocessors. Proceedings of the 1984
International Symposium on Logic Programming, 2-11
(1984).

. J. Crammond, A comparative study of unification algo-

rithms for OR-parallel execution of logic languges. IEEE

Transactions on Computers, 34 (10) 911-917 (1985).

D. S. Warren, et al., Executing distributed Prolog programs

on a broadcast network. Proceedings of the 1984 Inter-

national Symposium on Logic Programming, 198-202

(1984).

G. H. Pollard, Parallel execution of horn clause programs.

Ph.D. Thesis, University of London, Imperial College

(1986).

S. Umeyama and K. Tamura, A parallel execution model

of logic programs. Proceedings of the 10th Symposium on

Computer Architecture, 349-355 (1983).

. R. Hasegawa and M. Amamiya, Parallel execution of logic

programming based on dataflow. Proceedings of the ICOT
Conference, 507-516 (1984).
P. Kacsuk. Some approaches to parallel implementations

15.

16.

17.

18.

19.

20.

21.

22.

23.

of Prolog. Proceedings of IFIP '86 Congress, 803-809
(1986).

R. W. Hockney and C. R. Jesshope, Parallel Computers.
Adam Hilger, London (1981).

DAP 500: Fortran-Plus Language, man003.01. Active
Memory Technology Ltd.

K. L. Clark, F. McCabe and S. Gregory, 1C-Prolog lan-
guage features. In Logic Programming, edited K. L. Clark
and S. A. Tarrilund, pp. 253-266. Academic Press,
London.

M. Ratcliffe and P. Robert, PEPSy: A Prolog for Parallel
Processing. ECRC Technical Report CA-17 (1986).

K. L. Clark and S. Gregory, PARLOG : Parallel Program-
ming in Logic. Research Report DOC84/4, Department of
Computing, Imperial College, University of London.

E. Y. Shapiro. 4 Subset of Concurrent Prolog and its
Interpreter. Technical Report TR-003, Institute for New
Generation Computer Technology, Tokyo (1983).

S. F. Reddaway, The DAP approach. In Infotech state of
the art Report Supercomputers, vol. 2 pp. 309-329
(1979).

P. Kacsuk. The design philosophy of DAP Prolog. Third
Conference on Vector and Parallel Processors in Computa-
tional Science, Liverpool (1987).

F. Giannesini, H. Kanoui, R. Pasero and M. van Caneg-
hem, Prolog. Addison-Wesley, New York.

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 403

¥202 Iudy 01 uo 1senb Aq t1/99¢/€6€/G/0¢/8101e/|ulWwoo/woo dno-ojwapeode//:sdiy wolj papeojumoq

