A Transputer Network for the Arbitrary Rotation of Digitised

Images

H. R. ARABNIA anD M. A. OLIVER

Computing Laboratory, The University of Kent at Canterbury, Canterbury, Kent CT2 7NF

An algorithm for the rotation of a digitised image is presented. This algorithm has been designed to work on a
transputer network which has a simple topology. The data structure used to represent the image is closely related to
run-length encodement. Tests have been made on a simulation of the network.

Received June 1986, revised August 1986

1. INTRODUCTION

Transputers! and the programming language Occam? are
now available. They offer a sophisticated medium with
which to approach the problems of concurrent process-
ing. The rotation operation rotates a digitised image by
@ degrees about a specified point into a resultant digitised
image; there is no restriction on the value of 8. The
rotation of digitised images has been studied on
conventional computers.? In this paper we investigate
how a network of transputers might be used to rotate a
digitised image raster by an arbitrary angle.

The first step is to choose a suitable image data
structure for the network topology. In two previous
papers we presented a series of algorithms for the
manipulation of digitised images on machines with
SIMD (Single Instruction on Multiple Data)
architecture.* > In view of the success of the ‘stripcode’
data structure (described below) on SIMD machine
architectures we decided to look for a network topology
which would support stripcode in a natural way. The
network is described in Section 2.

Stripcode is essentially run-length code. Run-length
code exploits the horizontal coherence between adjacent
pixels on a scanline. Thus some account is taken of the
image structure and, in general, a reduction in the number
of data objects in the image representation results. It is
this reduction in the number of data objects which is
important rather than the amount of memory required to
represent them.

The key to the success of the rotation algorithm
described here is in the careful design of the data flow.
A major achievement is the avoidance of any sorting in
the algorithm: where sorting might have been expected
the data is merely merged.

The structure of the paper is as follows. In Section 2
the transputer network is described. The description of
the rotation algorithm is given in Section 3. In 3.1 there
is a general description of the algorithm which is
illustrated by a simple example. In 3.2 a more precise
specification of the algorithm is described. In a rather
long subsection, 3.3, detailed explanations of the more
complex steps in the algorithm are given (an overall view
of how the algorithm works can be obtained without this
subsection). An assessment of the algorithm is given in
Section 4, which includes estimates of times taken for
the rotation of a sample image. In Section 5 there is
a description of data input to, and output from, the
network. An alternative scheme for the output order of

the scanlines is described in Section 6. Some concluding
remarks are made in Section 7.

The coordinate system has its origin in the lower left
corner of the image space, with the x-axis to the right and
the y-axis up. Scanlines are counted from the bottom up.

Stripcode is related to the run-length encodement of an
image. Consider a run-length-encoded image and specify
a background colour. Each run of pixels of the same
colour is called a ‘strip’. Each strip of colour, other than
the background colour, is specified by the position
coordinates of its origin (original number of its first pixel,
scanline number), its length, and colour; the background
colour is not explicitly coded.

The program fragments are written in Occam:?
however, we have taken the liberty to use subscripts and
primes in variable names which are printed in italic. Also,
the arithmetic operator precedence of ordinary arithmetic
has been assumed; accordingly, the extensive use of
parentheses in arithmetic expressions has been omitted.

The image is rotated by an angle #: the values of the
trigonometric functions of # are denoted by the names of
the functions in italic. For example, tan denotes tan (6).

2. THE TRANSPUTER NETWORK

The image raster is divided into a number of blocks where
each block contains an equal number of scanlines. There
could be as few as two blocks or as many as there are
scanlines. An example is shown in Fig. 1.

Block 4

Block 3

Block 2

Block 1

Figure 1. A raster divided into four blocks.

If the number of scanlines is not divisible by the
number of blocks an appropriate number of dummy
scanlines can be included.

A transputer is allocated to each block of the raster
and these transputers are connected into a ring in the

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 425

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

H. R. ARABNIA AND M. A. OLIVER

order of the blocks. In Fig. 2 the channel connections are
shown for the four transputers which are required for a
raster subdivided into four blocks.

Figure 2. The transputer network for four blocks.

In order to handle input and output for the network
extra channels must be used. Two ways in which input
and output can be handled are described in Section 5.

3. THE ROTATION ALGORITHM
3.1. General description

The image is encoded in stripcode. The stripcode for each
block is held in the local memory of the transputer to
which that block is assigned. Each transputer is
responsible for one particular block of scanlines in the
raster. In the example shown in Figs 1 and 2, the strips
in Block 1 will be held in the memory of T,, Block 2 in
T,, and so on.

The first phase

All the transputers in the network rotate the strips which
are assigned to them by @ degrees: this gives the rotated
image exactly, but not digitised to the raster (Fig. 3(a)).
The rotated strips are then clipped to the image space:
the rectangular parts of the rotated strips that lie
completely outside the image space are removed (Fig.

2 S
AN NN S
NN

w 7

(b) clipped

AN

(a) unclipped
Figure 3. Rotation and clip of image strips.

The second phase

In order to digitise the rotated image to the raster these
rotated strips have to be represented by a new set of
horizontal strips in the raster.

The rotated strips are digitised vertically into segments.
A segment is defined as follows: the boundaries of the

segments are defined by the intersections of the upper
and lower boundaries of the scanline (vertical digitisa-
tion) together with the intersections of the upper and
lower boundaries of the rotated strip with the lower
boundary of the scanline (an example is given in Fig. 4).
These segments are not horizontally digitised. The end
segments present a complication which is dealt with in
the further details below.

The algorithm generates the segments required to build
up the data for strips scanline by scanline. The segment
data is generated in the transputer to which the rotated
strip belongs and, in general, this transputer’s block of
scanlines does not include the scanline of the segment.
The fundamental problem is how the generated segments
can be put into the transputer which holds the block to
which they belong. The solution is to pass the data round
the ring: the data for a complete scanline is built up as
new data is added from each transputer on the ring. This
new segment data has to be horizontally digitised,
merged, and compacted at each stage to form the new
strips. Each step round the ring will be called a process.

Example

As anexample take an image space which contains twelve
scanlines and is divided into four blocks. One complete
cycle of data round the ring takes four processes. The
rotated strips and their segments on the first scanline of
the second block are shown in Fig. 4; the horizontal
digitisation is not shown in this example.

Figure 4. An example.

The transputer identities inside the rotated strips, T,, T,,
T,, show in which transputer memory each of these strips
is held, Fig. 2.

The description which follows traces the path of the
data for the first scanline of the second block. However,
the strips on the first scanline of each block are computed
concurrently in the same process. The scanline process
order is shown in Fig. 5, the block order in Fig. 1, and
the network in Fig. 2.

In Fig. 4 consider the first scanline of block 2: the
segments formed to represent the rotated strips are
shown. In Fig. 5 the ordinal numbers in the fourth
scanline for each transputer give the place in the sequence
of scanline processes.

@ In the first process the segment a is computed in T,,
and then passed on to T,.

426 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

Block 2

[woo/woo dno olwepeoe//:sdiy Woly peapeojumo

0899¢€/5¢/S/0€/21P1e/|u

20z I1dy 01 uojsenb Aq |

A TRANSPUTER NETWORK FOR THE ARBITRARY ROTATION OF DIGITIZED IMAGES

12 11 10 9
8 7 6 5
4 3 2 1

11 10 g 12
7 6 5 8
3 2 1 4

10 9 12 11
6 5 8 7
2 1 4 3
9 12 17 10
5 8 7 6
1 4 3 2

T, T, Ts Te

Figure 5. Process order of scanlines in ring transputers

@ In the second process no segment is computed in T,
so a is passed on to T,.

@ In the third process the segments d, e, f are computed
in T, and these, together with q, are passed on to T,.

@ In the fourth process the segments b, ¢ are computed
in T, and these, together with q, d, e, f, are passed on
to T,.

After these four processes (the number of processes
corresponds to the number of blocks) each transputer in
the ring will hold the stripcode for the first scanline in its
block. Thus three revolutions need to be performed to
generate the entire rotated image of four blocks each with
three scanlines.

3.2. A more precise specification

Suppose that there are S scanlines in the image divided
into B blocks; there are L = §/B scanlines in each block.
Each transputer has three buffers: an input buffer for the
block of stripcode assigned to it; an output buffer for its
block of stripcode for the rotated image; a (double) buffer
for the current scanline. The angle and the centre of
rotation are made available to all the transputers in the
ring and then the following steps are performed by each
transputer:

SEQ

(a) All the strips in the input buffer are rotated by 8
degrees, which gives an exact rotated image, not
digitised (Fig. 3(a)).

(b) Rectangular parts of the rotated strips that lie
completely outside the image space are clipped
(Fig. 3(b)).

(c) Some preliminary computations on the stripcode of
the clipped rotated strips in the input buffer are done
at this point.
ii=L
WHILE >0

SEQ
J:=B
WHILE > 0
SEQ
(d) Compute the segments of the rotated strips
that are in the input buffer on the first/next
scanline. A segment occupies the portion
of the scanline between the points of
intersection of the rotated strip and the
lower edge of the scanline: possible cases

are shown in Figs 7, 10 and 11. Each
transputer processes its scanlines in the
‘process order’ assigned to it.

(e) Digitise the ends of each segment to form
strips and merge them into the strips
already in the scanline buffer; thus the
strips are maintained in their correct order
across the scanline. This merge is trivial
when the scanline buffer is empty.

(f) Compact the strips in the scanline buffer,
i.e. adjacent strips with the same colour
are represented by one longer strip. The
compaction process is applied only to
those strips that were put in the scanline
buffer at the previous step.

(g) Concurrently, output the contents of the
scanline buffer to the scanline buffer of the
next transputer on the ring and input into
the scanline buffer the contents of the
scanline buffer of the previous transputer
on the ring. Each transputer now holds
only the strips which it received from the
previous one in the ring; the data is held in
the scanline buffers. To avoid deadlock
and achieve concurrency the scanline
buffer is a double buffer.

Ji=j—1
— end of inner while loop
Append the strips in the scanline buffer to the
strips in the output buffer.
ir=1i-1
— end of outer while loop

Example

For the example of Fig. 4 the description which follows
traces the path of the data for the first scanline of the
second block through the algorithm.

@ T, calculates a (step (d)); puts a in the scanline buffer
(step (¢)); compacts a (step (f)); outputs a to the
scanline buffer of T, (step (g)).

@ T, finds no segment (step (d)); merge (step (e)) and
compaction (step (f)) do nothing; T, outputs a to the
scanline buffer of T, (step (g)).

@® T, calculates d, e, f (step (d)); merge produces a, d,
e, fin scanline buffer (step (€)); compaction produces
a, D where D is the compacted d, e, f (step (f)); T,
outputs a, D to the scanline buffer of T, (step (g)).

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 427

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

H. R. ARABNIA AND M. A. OLIVER

@ T, calculates b, ¢ (step (d)); merge produces a, b, c,
D in scanline buffer (step (e)); compaction produces
a, B, D where B is the compacted b, ¢ (step (f)); T,
outputs a, B, D to the scanline buffer of T, (step (g)).
@ T, appends a, B, D to its output buffer.

As shown above, after the data has passed through all the
transputers of the ring (one complete revolution), the
output buffer of T, contains the strips on the first scanline
of its block, namely Block 2.

3.3 Further details

Now for a detailed description of the more complex steps
in the algorithm.

Step (¢)

For each strip the variable intersect is given the value of
the x-coordinate at the point where the upper side of the
rotated strip, extended if necessary, intersects the x-axis.
This is illustrated in Fig. 6.

The intersection point for each rotated strip is
calculated as follows:

intersect:= Xx,+y, * Ol

where x,, y, are the coordinates of the top right corner
of the strip after rotation. These intersection points are
used in step (d) for the segment calculation.

Step (d)

Computation of the segments on a given scanline from
the rotated strips. A segment occupies the portion of the
scanline between the points of intersection of the rotated
strip and the lower edge of the scanline as shown in
Fig. 7. To calculate the segments, the list of the rotated
strips has to be searched in order to find those on the
scanline. Because of this search this step is the most time-
consuming part of the algorithm.

/xln}’l

Figure 6.

Define two new yp-coordinates y] and y,:
SEQ

y;:= truncate(y,)

y,.= truncate(y,)
The variable scanline takes values from 0 to S—1, where
S is the number of scanlines in the image space. A rotated
strip which is on scanline gives rise to a segment as shown
by the code which follows:

sec
O

scanline N <~ -
o
: ! \\
1 ! N
¢ 1 N
[} M N
| 1 N
I H N

1 ~
: ' N .
L cee aeeao e » x-axis
I . intersect
| intersect-scanline *cot
]
]
intersect-scanline *cot-sec
Figure 7.
IF
(¥y = scanline) AND (y, < scanline)
SEQ

decrement := scanline * cot

seg . x . end: = intersect — decrement

seg . x.begin:= seg . x.end—sec

seg . colour . = colour of the rotated strip

where seg . x . begin and seg . x . end are the initial and final
x-coordinates of the segment and its colour is seg . colour,
see Fig. 7.

The previous code produces incorrect segments at
either end of the rotated strip. These segments have to be
modified.

The code that follows modifies the segment for the
top end of the rotated strip to obtain the correct segment:

IF
(y; = scanline)
SEQ
seg . begin:= x|
IF
(seg.x.begin < seg.x.end—sec)
seg .x . begin:= seg.x .end— sec
(TRUE)
SKIP
(TRUE)
SKIP

where x] is the x value of the intersection of the top end
of the rotated strip with scanline, as shown in Fig. 8,

X=Xy —(y,—y) * tan.

The first IF checks whether the segment at the top end
of the rotated strip is to be considered. The second IF

Xl'y}’l' X1, Y1
\
VA
AV
4
~
\i"‘\ X3, V3
~
T
A
/
X3\ ys'

Figure 8.

428 THE COMPUTER JOURNAL, VOL. 30, NO. S, 1987

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

A TRANSPUTER NETWORK FOR THE ARBITRARY ROTATION OF DIGITIZED IMAGES

X V1

| X2,)2

\
intersect

Figure 9.

checks to find out if the top end has intersected the
scanline; Fig. 9 gives an example of the case where the
ends do not intersect any scanline.

The code that follows modifies the segment for the
bottom end of the rotated strip to obtain the correct
segment:

IF
(v, = scanline)
SEQ
seg.x.end:= x,
IF
(seg.x.end < seg.x . begin)
ignore this segment.
(TRUE)
SKIP
(TRUE)
SKIP

where x; is the x value of the intersection of the bottom
end of the rotated strip with scanline, as shown in
Fig. 8,
Xy:= Xy — (¥ —) * tan.

The first IF checks whether the segment at the bottom
end of the rotated strip is to be considered. The second
IF checks to find out if the bottom end has intersected
the scanline.

Fig. 10 shows the segments computed for the ends of
arotated strip for the two scanlines that intersect its ends.

segment

4

/ \ P

1 ’
X2,)2
=

’ t
X1,)1

Figure 10.

The code also handles the case where both ends of a
rotated strip are on the given scanline (see Fig. 11).

Step (e)

Digitise the ends of each segment to form strips and
merge them into the strips already in the local memory
to keep the strips in their correct order. To do this the
steps that follow are performed.

! L}
Xy, M1

/ segment

™

! r
X3, V2

scanline I

rotated strip

Figure 11.

(i) Digitise the first segment; now it is a strip. Find
position, p, in the list of the strips held in the scanline
buffer in which the new strip should be placed.
Position p is found quicker if the list is searched from
the end backwards.

(ii) Move the strips between positions p and m, n places
down the list, where mis the index of the last element
in the list and » is the number of segments. Only a
few strips have to be moved. Quite often pis m+1,
in which case no strip need be moved.

(iii) Place the first digitised segment in position p and the
remaining segments in positions p+1 onwards;
digitise them as they are being placed in the scanline
buffer.

Step (f)

Compact those strips just added to the list at step (e) in
the sense that adjacent strips with the same colour on a
scanline are represented by one longer strip.

To do this assume that the list of strips is held in four
arrays (the first element of an array is indexed by 0): Ix,
(initial x-coordinates), Ix, (final x-coordinates), Iy
(y-coordinates), Ic (colours). The uncompacted strips
(i.e. those just added to the list) are placed from position
p to p+n—1 (step (e)). The compaction process might
need to be applied from position p—1 to position p+n,
because the first (at p) and the last (at p+n—1) of these
strips could be adjacent to and have the same colour as
the strips at positions p— 1 and p+ n respectively. So the
compaction process is applied from positions stzart to
finish;, where start is p— 1 (start is zero if p is zero) and
Sfinish is:

IF
((p+n—1) < m)-m is the index of last element —~
finish:= p+n
(TRUE)

Sfinish:=p+n—1

A mask, mask, has to be constructed. The elements of
mask determine which strips can be compacted.

SEQ
k:= start
SEQ i = [0 FOR (finish— starr))
SEQ
IF
(Iclk+ 1] = Ic[k]) AND
(Ixylk + 1] < Ix,[k])
mask([i]:= FALSE
(TRUE)
mask[i}:= TRUE
k:=k+1

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 429

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

H. R. ARABNIA AND M. A, OLIVER

Now with the use of mask the actual process of
compaction is carried out.,

SEQ
pi = start+1
Pi= Py
SEQ i = [0 for (finish— start)]
SEQ
IF
(mask [i])
SEQ
Ice[p,—1]:=Ic[p,—1]
Ix\[p,):= Ix\[p,]
Ixy[p,— 1]:= Ix,[p,— 1]
Py=p+
(TRUE)
SKIP
Pai=py+1

Ixc[p, — 1]: = Ix,[finish]
Ic[p, —1]: = Ic[finish]

An example is shown in Fig. 12. Assume all strips are of
the same colour. There are three lists shown in Fig. 13.
The list of strips before compaction is shown in L,.
Assume the strips to be compacted are b, c, d, e, f. After
compaction L, will have a gap shown in L,. The second
element of L,, B, is the strip which is the compacted b,
¢, d,e.

Le |

(T TeT7]

Figure 12.
Ly L, Ly
a a a
b B B
c f f
uncompacted strips d g
e gap h
!
g g
h h

Figure 13.

The code that follows will close this gap in the list of strips
(producing L; in the example).

SEQ
k:= finish+1
SEQ i = [0 for (m—finish)]
SEQ

Ic[p,]: = Ic [k]
Ix\[p,): = Ix[k]
Ixy[p1): = Ix,[k]
Pri=p+1
k:=k+1

4. AN ASSESSMENT

The algorithm has been implemented on an Ocean
compiler which runs on a sequential machine.® If one
block contains many strips and the others none at all then

Table 1. Execution times (simulated)

Strips
in each Total
Angle of Number block strips
rotation of before after Time
(degrees) blocks rotation rotation (ms)
5 4 640 2,952 539
8 320 274
16 160 142
15 4 640 3,674 558
8 320 285
16 160 148
85 4 640 6,426 631
8 320 334
16 160 183

the speed of rotation will, in general, be the same as if the
other blocks had the same number of strips. An image
which has a uniform number of strips in each block is used
to time the system. Timings for an image of 2,560 strips
on an image space of 256 scanlines each 256 pixels long
are given in Table 1. The blocks are input to the
transputers before rotation commences.

It is assumed that the memory is IMS2600-12 dynamic
RAM (150 ns access time), the transputers are T424
(32-bit, 10 MIPS) and all data is held in external memory.
From the table it is seen that when the number of
transputers in the ring is doubled the execution time is
almost halved. The execution times have been obtained
from counts of program elements together with published
times taken for each programming element.!

On the network of transputers the execution time
depends on the maximum number of strips in a block and
the number of scanlines in image space. In general, the
more blocks (i.e. more transputers) the smaller the
maximum number of strips in any block becomes.

When more transputers are used in the network ring
less memory is needed in each transputer. This trade-off
can be exploited to gain more speed by using more
transputers with smaller and faster memories.

5. INPUT AND OUTPUT

Two methods for the input and output of the images are
shown. Fig. 14 shows one simple method. The image is
fed in by the transputer labelled I/0O. Each transputer

AN

Figure 14.

430 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

A TRANSPUTER NETWORK FOR THE ARBITRARY ROTATION OF DIGITIZED IMAGES

keeps its own block and sends the blocks which remain
on to the next transputer in the ring.

To output the rotated image after the completion of
the rotation process, each transputer in the ring
concurrently outputs the block it is holding to the next
and inputs a block from the previous transputer, except
the transputer responsible for the last block (namely T,
in Fig. 14), which does not input any block, and the
transputer responsible for the first block (namely T, in
Fig. 14), which outputs to I/O. This input and output of
blocks continues until all blocks are output to I/O.
Alternatively, after the scanline data of each transputer
has moved round the ring (one complete revolution), B
scanlines can be sent to 1/O for display, where B is the
number of blocks.

Another scheme is shown in Fig. 15. Concurrently,
each block is input or output directly into the transputer
to which it belongs.

input block 4 input block 1

input block 3 input block 2

Figure 15.

6. AN ALTERNATIVE SCANLINE ORDER
FOR OUTPUT

As described in Subsection 3.1, the nth scanline of each
block will be ready for output after the completion of the
nth revolution of data flow through the transputers.
Hence, if the image space has twelve scanlines numbered
from 1 to 12, and is divided into four blocks, at the
completion of the first revolution the scanlines 1, 4, 7, 10
(first scanline of each block) will be ready for output. We
are indebted to Tony King for pointing out to us that the

same algorithm can generate the scanlines for output in
natural order (i.e. 1, 2, 3, 4,...) by a change in the process
order together with a different distribution of scanlines
among the blocks.

Block Scanlines
1 1 5 9
2 2 6 10
3 3 7 11
4 4 8 12

Figure 16. Distribution of scanlines over the blocks.

In Fig. 16 the new distribution is shown. It shows the
scanlines held in each block for an image space of twelve
scanlines divided into four blocks (blocks do not hold
contiguous scanlines). The process order is shown in
Fig. 17.

7. CONCLUSION

A transputer network has been proposed in order to
facilitate operations on digitised images encoded in the
image data structure ‘stripcode’, which is closely related
to run-length encodement. Of all the fundamental
geometrical operations on a digitised image, rotation
through an arbitrary angle is undoubtedly the hardest to
do with any efficiency. We believe it to be a considerable
success that the rotation algorithm described in this paper
avoids any sorting. In a second paper we shall show how
the same network can be used to scale translate and
combine digitised images.

Acknowledgements

We are indebted to Dr Peter Welch (Computing
Laboratory, University of Kent) for several helpful
discussions, particularly with regard to the testing of the
implementation. Also to Tony King (Computer Lab-
oratory, University of Cambridge) for his stimulating
comments on a draft of this paper. Finally, we wish
to thank a referee (Professor M. L. V. Pitteway) for his
constructive and valuable comments.

12 9 10 11
1] 12 9 10
10 11 12 9
9 10 11 12
8 5 6 7
7 8 5 6
6 7 8 5
5 6 7 8
4 J] 2 3
3 4 1 2
2 3 4]
Jj 2 3 4
T| Tz T3 T‘

Figure 17. Process order of scanlines

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 431

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

REFERENCES

1. INMOS Limited, IMS T424 Transputer.

Cliffs, N.J.: Prentice-Hall (1984).

3. G. Johnston and A. Rosenfeld, Geometrical operations on

H. R. ARABNIA AND M. A. OLIVER

4. H.R. Arabnia and M. A. Oliver, Fast manipulation of
raster images with SIMD machine architectures. Computer
Graphics Forum 5, 179-188 (1986).

2. INMOS Limited, Occam Programming Manual. Englewood 5. H.R. Arabnia and M. A. Oliver, Arbitrary rotation of

raster images with SIMD machine architectures. (Submit-

ted for publication 1986).

digitised pictures. Picture Processing and Psychopictorics, 6. INMOS Limited, IMS B002 Transputer Evaluation Board

pp. 217-241 (1970).

ANNOUNCEMENTS
21-24 MARCH 1988

RIAO 88, Massachusetts Institute of Tech-
nology, Cambridge MA, USA. Conference
organised by the following. Centre National
de la Recherche Scientifique (CNRS), Centre
National de Recherche des Télécommunica-
tions (CNET), Institut National de Recherche
en Informatique et Automatique (INRIA),
Ecole Nationale Supérieure des Mines de
Paris and Centre de Hautes Etudes Inter-
nationales d’'Informatique Documentaires
(CID). US participating organisations are:
American Federation of Information Proces-
sing Societies (AFIPS), American Society for
Information science (ASIS) and Information
Industry Association (I1A).

This conference is prepared under the
direction of: Professor André Lichnerowicz
de I’Académie des Sciences de Paris and
Professor Jacques Arsac, correspondant de
I’Académie des Sciences de Paris.

Call for Papers: ¢ User-Oriented Content-based
Text and Image Handling’

Introduction

RIAO 88 (RIAO: Recherche d’Informations
Assistée par Ordinateur) is being held to
demonstrate the state of the art in information
retrieval, a domain that is in rapid evolution
because of developments in the technology for
machine control of full-text and image data-
bases. This evolution is stimulated by the
demands of end-users generated by the recent
availability of CD-ROM full-text publishing
and increased public access to information
databases.

A group of French organisations has taken
the initiative of preparing this conference. Its
wish in promoting this forum is not only to
stimulate and challenge researchers from all
nations, but also to increase an awareness of
European technology.

This ‘call for papers’ is being distributed
world-wide. We want to reach individuals in
the research communities throughout the
university and industrial sectors.

The conference will be held in Cambridge,
MA. We hope that it will encourage the
exchange of European and American view-
points, and establish new links between re-

(1985).

search teams in the United States and Europe,
especially France.

General theme

Full-text and mixed media database systems
are characterised by the fact that the structure
of the information is not known a priori. This
prevents advanced knowledge of the types of
questions that will be asked, unlike the
situation found in hierarchical and relational
database management systems.

You are invited to submit a paper showing
how the situation can be dealt with. Special
attention will be given to:

@ techniques designed to reduce the impre-
cision of full-text database searching;

@ data entry and control;

@ ‘friendly’ end-user interfaces;

@® new media.

A large number of specific subjects can be
treated within this general framework. Some
suggestions are made in the following section.

Specific themes

(A) Linguistic processing and interrogation
of full-text databases:

@ automatic indexing,

@ machine-generated summaries,

@ natural language queries,

@ computer-aided translation,

@ multilingual interfaces.

(B) Automatic thesaurus construction.

(C) Expert system techniques for retrieving
information in full-text and multimedia data-
bases:

@ expert systems reasoning on open-ended
domains,

@ expert systems simulating librarians access-
ing pertinent information.

(D) Friendly user interfaces to classical
information retrieval systems.

(E) Specialised machines and system archi-
tectures designed for treating full-text data,
including managing and accessing widely
distributed databases.

(F) Automatic database construction using
scanning techniques, optical character readers,
output document preparation, etc.

(G) New applications and perspectives sug-
gested by emerging new technologies:

@ optical storage techniques (videodisc, CD-
ROM, CD-], Digital Optical Discs),

432 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

integrated text, sound and image retrieval
systems,

electronic mail and document delivery
based on content,

voice-processing technologies for database
construction,

production of intelligent tutoring systems,
hypertext and hypermedia.

Conditions for participation

The programme committee is looking for
communications geared towards practical
applications. Papers which have not been
validated by a working model, a prototype or
a simulation, or for which a realisation of such
a model seems currently unlikely, may be
refused.

Authors must submit a paper of about 10
pages double-spaced, and a 100-word abstract.
Four copies must be sent before 30 October to
one of these two addresses:

RIAO 88, Conference Service Office, MIT,
Bldg 7, Room 111 Cambridge, MA 02139

RIAO 88, CID, 36 bis rue Ballu, 75009 Paris,
France

Each presentation will last 20 minutes,
followed by 10 minutes of discussion and
questions.

Arrangements have been made with the
international journal, /nformation Processing
and Management to publish expanded versions
of some papers.

High-quality audiovisual techniques should
be used when presenting the paper.

Separate demonstration sessions can be
scheduled if requested.

Particular attention will be paid to:

@ the use of readily available equipment for
demonstrations (IBM, PC, Apple, network
connections),

@ pre-recorded video or floppy disc displays.

Hardcopy printouts of results should be
avoided if possible.

English is the working language of the
conference.

For further information call:

(in North America) Karen Daifuku, tel. (202)

944 62 52

(in other countries) Secrétariat Général du

CID in France, tel. (1) 42 8504 75

¥202 Iudy 01 uo 1senb Ag L0899¢/SZH/S/0¢/8101 e/ |UlWwoo/Wwo0 dno-ojwapeoe//:sdiy wolj papeojumoq

