Functional Programming for Concurrent

and Distributed Computing*

F. W. BURTON

Department of Computer Science, 3160 MEB, University of Utah, Salt Lake City, Utah 84112

There are at least two approaches to the design of languages for parallel computing. One approach is to use functional
or relational languages which are easy to read, write, transform and verify. The more conventional approach is to use
procedural languages which give a programmer a high degree of control over the run-time behaviour of a program.
There is a need to reconcile these two approaches in a language which permits both simplicity and efficiency.

We propose a small and simple set of annotations (or pragmas) to control the run-time behaviour of a functional
program. The annotations allow a programmer to use three forms of parameter passing. The parameter-passing
mechanisms correspond to passing by name, value and need in a sequential language. In addition, in a distributed system
a programmer can specify that work should be done on the current processor, an arbitrary processor, or a particular

processor such as the one containing a specific data item.

The annotations cannot affect the meaning (result) of a functional program, except for causing non-termination in
some cases (which we view as an extreme form of inefficiency). This separation of meaning from control allows a

program to be both simple and efficient.

Since non-determinism appears to be unavoidable without significant loss of efficiency in a concurrent system, the
interaction of the proposed annotations with non-determinism is briefly considered.

The run-time behaviour of an annotated functional program is similar to that of procedural programs using message
passing, semaphores or rendezvous to control communication and synchronisation.

Received January 1986, revised July 1986

1. INTRODUCTION

Functional languages have simple semantics.®® Func-
tional programs are easier than imperative programs to
manipulate in program transformations?? and correct-
ness proofs.®! In addition, functional programs can be
simpler to write, understand and maintain.?-4'-57 Func-
tional programs, written in LISP and similar languages,
have been used by researchers working in the area of
artificial intelligence for many years. As software costs
increasingly dominate hardware costs, the case for using
functional languages is becoming stronger.

With the advent of VLSI, large-scale concurrency is
becoming increasingly attractive. One approach to
concurrency is to introduce user-defined tasks and
features such as semaphores, messages or rendezvous into
a language so that concurrency can be explicitly
controlled. Another approach is to let computer systems
discover opportunities for parallelism in-high level
functional or relational languages.

The advocates of the first approach use the need for
efficiency to make the case for explicit programmer
control of parallelism. Advocates of the second approach
argue that concurrent computation is even more complex
than sequential computation, so the difficulty of
producing reliable software is greatly increased when
explicit control of concurrency is involved.

Both cases are strong. It has been argued that as
computing costs drop, the need for efficiency will also
drop. (It was also argued in the 1940s that the world
would never need more than a few computers, and in the
1950s that nuclear power would make electricity so cheap
that it would not be necessary to meter it.) Certainly,

* This material is based upon work supported by the National
Science Foundation under grant no. ECS-8312748 and grant no.
DMC-8514946.

efficiency will become less critical in many existing
applications. However, as computing costs drop, larger
problems can be solved. Applications which are not being
considered today will be possible in the future. With large
problems, asymptotic efficiency will become more
important. With many problems, including NP-hard
problems, we can never have as much computing power
as we would like. However, efficient use of increasing
computational power will make it easier to solve larger
problems exactly and to produce better approximations
to problems which cannot be solved exactly.

One way to reconcile these two approaches is to
provide annotations in a functional language,?-4¢.48 g0
that the logic of the program is largely separated from the
control of its evaluation. We will examine a set of
annotations to control the distributed evaluation of a
functional program on a network of processors. These
annotations will more or less include those reported in
Ref. 10, and additional annotations to control com-
munication, synchronisation and placement of work.
With these annotations it is possible to produce a collec-
tion of communicating processes. The annotations will
not obscure the clarity of an unannotated functional
program nor alter its semantics, but may alter the elapsed
time, total work, amount of storage and amount of com-
munication required to evaluate the program. (In cases
where a program would terminate under normal order
reduction, we will regard non-termination as an extreme
form of inefficiency.) With reasonable defaults, the
annotations will be required in only a few unusual
situations. In these cases, annotations can often be
packaged in library functions (e.g. to buffer lists for
consumer/producer parallelism).

The proposed annotations are suitable for a broad
class of parallel machines, but are primarily intended for
a system of loosely coupled processors such as the Cosmic

THE COMPUTER JOURNAL, VOL. 30, NO. S, 1987 437

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

F. W. BURTON

Cube,*® viewed as a virtual tree machine.!! However,
annotated functional programs could also run on
data-flow? 23:3% and similar machines,?! and most other
parallel machines. With some of these machines not all
the annotations would be meaningful.

This work compliments the work of others, which
is directed more at the constant factor sources of in-
efficiency in functional languages. For example, various
researchers are looking at the problem of efficiently
compiling functional programs on conventional
machines.? 15,35, 36,42,52_ Qther researchers are exploring
the use of more appropriate computer architectures for
sequential functional language evaluation 17:47.93,58 and
parallel functional language evaluation? 3,21, 23, 28,30,44,54
This work also compliments work by others concerned
with other aspects of functional language design, such as
data typing and modularity.?: %®.

In Section 2 we shall consider the sequential evaluation
of functional programs. This will be extended to parallel
evaluation in Section 3 and distributed evaluation in
Section 4. The approach in these sections will be informal,
with various examples. Non-determinism will be consid-
ered in Section 5. A more formal approach to the material
in Sections 2 to 5 can be found in Section 6.
Implementation considerations are briefly discussed in
Section 7. Section 8 is the conclusion.

2. SEQUENTIAL EVALUATION
2.1. Reduction order

Call by need (or lazy evaluation)?*: 2% 32, 39,35, 80 hag been
advocated as an optimal evaluation strategy for
functional programs on a sequential processor. Except
for some special cases with higher-order functions (which
are not a problem, because these cases can be avoided
without serious inconvenience) and a constant factor
overhead (which can often be eliminated by a compiler
optimisation,*® call by need is optimal with respect to
evaluation time. Unfortunately, call by need is not
optimal with respect to space.

For example, suppose tail recursion can run in
constant space and that storage can be reclaimed as soon
as it is no longer referenced. In this case the function
Sfactorial given in Fig. 1 will run in constant space if
parameters are passed by value. (The function definition
symbolis * < =’ and the boolean test for equalityis ‘ =".)
On the other hand, if call by need is used the evaluation
of f'will not result in the first argument, #, being evaluated
until it is required at the bottom level of recursion. Call
by need will require O(n) storage.

There are many examples of programs which will run
in constant space if call by value parameter passing is
used, but will require storage proportional to their
execution times if call by need is used. As David Turner
has noted, ¢ In a language with lazy evaluation it is in
general rather difficult either to predict or to control the
space behaviour of programs’.3®

There are times when call by value is not the best
strategy. For example, consider the list-processing
functions in Fig. 2. (The primitive list-processing
functions first, rest and cons satisfy the usual list axioms:

first(cons(a, b)y<=a
rest(cons(a, b)) < =b.)

Sfactorial(n) < = f(1, n)
where f{i, m) < =if m = 0 then i else f{m*i, m—1)

Figure 1. A function to compute n factorial.

count(i, j) < =
if i = j then nil
else cons(i, count(i+1, j))

map(f,a) < =
if a = nil then nil

else cons(f{ first(a)), map(f, rest(a)))
sum(a) < = tailsum(0, a)
where tailsum(n, a) < =
ifa = nil then n
else tailsum(n + first(a), rest(a))

Fig. 2. Useful list-processing functions.

One way to compute

SfD+AD+...4+fn)

is by using the expression sum(map(f, count(1, n))).
However, if parameter passing is by value, then lists of
O(n) length are required to store intermediate results. On
the other hand, if cons is lazy, so cons(a, b) will return
a result without evaluating a or b, then this computation
will run in constant space. For example, the evaluation
of sum(map(square, count(1, 3))) will proceed as follows
(with some steps skipped):

sum(map(square, count(l, 3)))
< = sum(map(square(cons(1, count(l1 + 1, 3)))))
< = sum(cons(square(1), map(square, count(1 + 1, 3))))
< = tailsum(0, cons(square(1), map(square,
count(1+1, 3))))
< = tailsum(0+ square(1l), map(square, count(1+1, 3)))
< = tailsum(1, map(square, cons(2, count(2+ 1, 3))))
< = tailsum(1, cons(square(2), map(square,
count(2+1, 3))
< = tailsum(1 + square(2), map(square, count(2+1, 3)))
< = tailsum(5, map(square, cons(3, count(3+1, 3))))
< = tailsum(5, cons(square(3), map(square,
count(3+1, 3))))
< = tailsum(5+ square(3), map(square, count(3+1, 3)))
< = tailsum(14, map(square, nil))
< = tailsum(14, nil)
<= 14

If call by need were used, instead of call by value with lazy
data constructors, then we would have had the same
problem as in our previous example.

Hope’ provides the programmer with both a lazy cons
and an ordinary (eager) cons. We shall take all data
constructors to be lazy and assume for the moment that
call by value is the standard parameter-passing mechan-
ism. From now on we shall use °:’ as a right-associative
lazy cons operator. Eager pseudo-constructors can easily
be written in terms of the lazy constructors. For example,
the following function:

eager_cons(a, b) <=a:b

438 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

FUNCTIONAL PROGRAMMING FOR CONCURRENT AND DISTRIBUTED COMPUTING

acts like an eager list constructor, since its arguments are
passed by value.

One further point needs to be clarified here. Each time
first(a: b) is computed, a is re-valuated. That is, graph
reduction is not used. This enables us to discard and
recompute a large object, when desired, to save space.
For example, consider fla) < = prod(a)/sum(a), where
prod is a tail-recursive function to compute the product
of the elements in a list. Now f{count(1, n)) will run in
constant space, but will generate the list count(1, n) twice
(except for the first element which is generated only once).
On the other hand, if we wanted to compute
flimap(g, count(1, n)) without recomputing the (possibly
expensive to compute) list map (g, count(1, n)) we can do
so by computing

flexpand(map(g, count(1, n))))
where expand(a) < =
if a = nil then nil
else eager_cons(first(a), expand(rest(a))).

This gives the programmer explicit control over
time—space trade-offs.

It is useful to have parameter passing by name as well
as value available. (In fact, in Ref. 10 lazy data
constructors are considered to be specific cases of
higher-order functions having parameters passed by
name.) Many of the disadvantages of call by name found
in procedural languages such as Algol do not apply to a
functional language, where the value of an expression
can never change. In a sequential functional language
system we have found no need for call by need if both
call by name and call by value are provided. If call by need
and call by value were provided it would not be possible
to discard and recompute expressions such as the one
considered above.

We shall take call by value to be the default
parameter-passing mechanism for parameters which are
not functions, and call by name to be the default for
functions. (See Section 6.1.2 for a discussion of the
consequences of passing a function by name.) Parameters
may be annotated with name or value to override the
default. For example, we can define

conditional_or(a, name b) < =
if a = true then true else b.

Similarly we can define partially eager pseudo-construc-
tors such as

left_eager_cons(a, name b) < = a:b

which will evaluate its first argument but not its second.
(An alternative approach would be to make call by
value the default only in cases where a function could be
shown to be strict.?8:43.4¢ This would preserve normal
order semantics.)
A more detailed discussion of the mixing of call by
name and call by value may be found in Ref. 10.

2.2. Calls by opportunity

Schwarz has suggested call by opportunity*® as a method
for evaluating applications of functions such a
fla) <= prod(a)/sum(a) in constant space without re-
evaluating list elements. Basically, with call by oppor-
tunity, sum and prod run concurrently. Each time a list

element is computed, both consumers consume it before
the next element is generated.

This method will fail in the case of two producers and
two consumers where the consumers consume in an
incompatible manner (For example, one consumer might
consume the first-produced list more quickly than the
second, while the other consumer might do the opposite.)
This forces the consumers out of synchronisation, since
they cannot synchronise with both producers at the same
time.

Hughes has proposed annotations for a call by need
interpreter to solve the same problem in much the same
way, but at a lower level.4® Basically, with Hughes’
method an annotated producer is not allowed to produce
a value until it has been demanded twice.

In most cases it is easy to transform (as opposed to
annotate) a program to achieve the effect of call by
opportunity if the evaluation mechanism discussed above
is used. For example, we can rewrite f as follows:

fla) < =tail_fla, 1, 0)
where 1ail_fla, p, s) <=
if @ = nil then p/s
else tail_flrest(a), p*x, s+ x)
where x < = first(a)

This solution will not work with a call by need evaluator,
since the evaluation of p and s will not be done until p/s
is computed.

This particular transformation follows a common
pattern which can largely be captured in a higher-order
function. Let us first consider the simpler function reduce
shown in Fig. 3. We could redefine sum as

sum(a) < = reduce(plus, 0, a)

and still get the same constant space behaviour as with
the definition of sum in Fig. 2. (The function plus is the
prefix form of the infix * +’ operator.) Similarly,

prod(a) < = reduce(times, 1, a)

defines the function prod whose existence was assumed
above. An efficient function for reversing a list is

reverse(a) < = reduce(eager_cons, nil, a).

Use of functions such as reduce to encapsulate common
forms of recursion has been widely advocated.® 7+ 4!
Suppose we wish to compute:

x, < = reduce(g,, n,, a),
X, < = reduce(g,, n,, a),
X3 < = reduce(g,, n,, a),
x; < = reduce(g,, n,, a).
Using multiple_reduce which is defined in Fig. 3, we could

perform these four reductions with call by opportunity
space requirements by computing

X1 Xg: X5 X nil <= multiple_reduce(g,: g,:85:8,: nil,
n,:n,:ny:n,: nil, a).
(We assume that the x’s are each given the value of the

corresponding element of the structure returned by
multiple_reduce). We can now redefine f by

fla) <=p/s
where p:s:nil <=
multiple_reduce(prod: sum: nil, 1: 0: nil, a).

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 439

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

F. W. BURTON

reduce(f, n, a) < =
if a = nil then n
else reduce(f, f{first(a), n), rest(a))
multiple_reduce(f_list, n_list, a) < =
if a = nil then n_list

else multiple_reduce(f_list, funmap(f_list, n_list,
Sirst(a)), rest(a))

where funmap(f_list, n_list, x) < =
if f_list = nil then nil
else eager_cons((first(f_list))(x, first(n_list)),
Sunmap(rest(f_list), rest(n_list), x))

Figure 3. More list-processing functions.

factorial(n) < = prod(1, n)
where prod(i, j) < =
ifi=jtheni
else prod(i, mid) x prod(mid+1, j)
where mid < = (i+)) div 2
Fig. 4. A parallel factorial function.

This particular transformation will not work in every
case where the use of call by opportunity might be
desirable, but it will work with many. In other cases,
problem-specific transformations may be required.
Annotations cannot replace program transformation.
(An annotated bubble sort will never be a quicksort.)
However, the use of annotations make transformations
such as the one above possible.

3. PARALLEL EVALUATION
3.1. Demand-driven evaluation

One of the primary advantages of functional programs
is that they have a high potential for parallelism. The
absence of side-effects means that independent sub-
expressions may be evaluated in any order, or in parallel.

In Ref. 10 it was proposed that a function should be
able to evaluate all its value parameters in parallel. For
example, Fig. 4 shows a divide and conquer parallel
factorial function. If both arguments of the infix multiply
function are evaluated in parallel, then the evaluation of
Jfactorial(n) will result in a binary tree of tasks of depth
O(log n) so, with enough processors, factorial(n) can be
computed in O(log n) time. This same approach can be
used to obtain a high degree of parallelism in many other
algorithms.

The annotations given in the previous section can be
used to inhibit parallelism when desired. For example,
suppose we wish to compute f{x) * g(y) by evaluating f{x)
before g(y). (This might be useful if both computations
produce large intermediate results.) We can force
sequentiality by writing

sequential_times(f(x), g(»))
where sequential_times(u, name v) < = u*v.

This forces f{x) to be evaluated before the body of
sequential_times is evaluated, since u is passed by value,
and prohibits g(y) from being evaluated at the same time,
since v is passed by name.

3.2. Data-driven evaluation

Additional parallelism is possible if the evaluation of f{x)
can start before the evaluation of x has finished. For
example, consider the evaluation of the expression

Jg(x), g(), g(2)) where fla, b, c) <= h(a, b)+h(b, c)
+h(a, c)

on two processors. Once any two of the parameters to f
have been evaluated, the evaluation of one of the
applications of 4 may be initiated. The data-flow or
data-driven approach to parallelism® permits any
computation to proceed as soon as the necessary data is
available.

This second form of parallelism seems to be
particularly important in supporting consumer/producer
parallelism. For example, in computing sum(map(square,
count(l, n))), sum, map and count may all run in parallel.
On the other hand, increased storage requirements come
with the increased parallelism. For example, if count gets
too far ahead of sum then O(n) storage may be required
to compute sum(map(square, count(l, n))). Concurrent
programmers using procedural languages have used
bounded buffers for years in order to combine modest
storage requirements with consumer/producer parallel-
ism. What is required is some means of controlling syn-
chronisation.

In a procedural programming language, incorrect
synchronisation will often lead to an incorrect result.
In a functional language, annotations controlling syn-
chronisation may affect time and space requirements, but
should not affect the eventual result produced by a
program.

Our solution is to have one form of parameter passing
that requires the evaluation of an argument to terminate
before the function is applied, and another form that
supports data-driven evaluation. As in Ref. 10, the
default call by value parameter-passing mechanism will
not initiate the evaluation of a function application until
after the evaluations of all value parameters have
terminated. We shall use the key word speculation to
denote data-driven parameter passing. We shall associate
call-by-name semantics with this new mechanism. For
example,

Sunny_or(x, y)

where funny_or(a, speculation b) < =if a then true
else b

will always return the result true whatever the value of
x is true, even if the evaluation of y fails to terminate. On
the other hand, if there are enough processors, x and y
may be evaluated in parallel.

The use of functions such as funny_or allows us to
achieve the effect of OR parallelism'®- ** in a functional
language. We can speculate that certain results are likely
to be required, to take full advantage of available
processors. If the results are required we win, and speed
the computation. If the results are not required we lose,
and may do some unnecessary work. We should expect
that speculative work would not be done unless either

440 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

FUNCTIONAL PROGRAMMING FOR CONCURRENT AND DISTRIBUTED COMPUTING

there are processors that would otherwise be idle or the
work is found to be necessary (e.g. after x has been found
to be false). The use of priorities, as proposed in Refs. 12
and 13, would be useful in controlling which of several
speculative computations should be run in preference to
others in situations where there are enough processors to
run some but not all.

Call by speculation is basically a parallel version of call
by need that allows a parameter to be evaluated before
it is needed if there are enough processors available. The
speculation is similar to the FUTURE annotation of
Multilist** and EAGER in Ref. 27. However, call by
speculation preserves call by name semantics without
requiring a ‘fair’ scheduler which would tend to result in
excessive storage requirements®. 1!

3.3. Buffers

As mentioned earlier, data constructors are lazy. For
example, neither a nor b will be evaluated when a: b is
evaluated. We will allow data structures to contain
expressions in the process of being evaluated, as well as
unevaluated expressions. We can now define

speculative_cons(speculation a, speculation b) < = a: b.

When speculative_cons(a, b) is evaluated, the evaluations
of a and b will be initiated, but a result may be returned
before either of these evaluations terminates. However,
if first(speculative_cons(a, b)) is evaluated, no result may
be returned until the evaluation of a has terminated (as
would also be the case if first(a: b) were evaluated), and
similarly for rest and b.

Let us take a minute to review the three types of list
(pseudo-)constructors defined so far. The lazy construc-
tor, ‘:°, will return a result immediately. The result will
contain unevaluated expressions as components unless
its arguments have been previously evaluated. The eager
list pseudo-constructor, eager_cons, will have evaluated
its arguments and will return a structure with evaluated
components only after their evaluations terminate.
Finally, speculative_cons will initiate the evaluation of its
components but will return a result without waiting for
the evaluations to terminate. This final behaviour will
form the basis of the implementation of buffers.

To implement buffers, we really need
buffer_cons(speculation a, name b) < =a:b
which initiates the evaluation of its first argument but not
its second (rather like the left_eager_cons considered
earlier). Fig. 5 gives the implementation of a function,
buffer, which will transform a lazy list into a buffered list.
If x is a lazy list, then buffer(x) will initiate the evaluation
of the first item in the list, but will not do anything to the
remainder of the list. However, computing rest(buffer(x))
will cause buffer(rest(x)) to be computed. This will initiate
the evaluation of the second item in the list. We note that

buffer(a) < =
if a = nil then nil
else buffer_cons(first(a), buffer(rest(a)))

where buffer_cons(speculation x, name b) < = x:b
Figure 5. A list-buffering function.

when buffers are used, we speculate that the next item in
the buffer will eventually be required.

To get buffering, and hence consumer/producer par-
allelism, in an expression such as reduce(f, i, map(g, a))
it is necessary only to change it to reduce(f, i, buffer
(map(g, a))). We may regard buffer(...) as a user-defined
annotation.

The approach can easily be generalised to buffers of
size greater than one.

Data structures that can be partially used while they
are still being constructed have been advocated by
others.! 24 In data-flow computing, lists (which are often
called streams) are often implemented in this way.
Streams may be the only data structure permitting this
type of pipelined, or consumer/producer, parallelism.
We are pleased to have a single mechanism which will
degenerate to call by need on a single processor and will
permit buffering on a parallel system. If data constructors
are viewed as higher-order functions as in Ref. 10, we do
not even need to specify that a list constructor can return
a result containing values still in the process of being
evaluated. This follows directly from the higher-order
function defining the list constructor. Of course, we
would expect list constructors to be implemented as
primitives, as an optimisation for efficiency. We would
also expect that a standard library would contain
functions such as buffer, so that a programmer would
rarely need to use the speculation annotation directly.

3.4. Arbitrary process communication

In procedural programming languages, arbitrary comm-
unication topologies may be constructed with processes
communicating via buffered channels. In a functional
language, arbitrary communication topologies may be
constructed by using mutual recursion, with processes
replaced by functions and channels replaced by buffered
lists.

Let us suppose that process P sends messages to @ and
R using channels P_to_Q and P_to_R and returns a result
for the overall computation on the channel RESULT.
Similarly, processes @ and R send messages on channels
Q_to_P, Q_to_R, R_to_P and R_to_Q.

The function, p, corresponding to process P, may
return a list of three lists as a result. These will
correspond to the three output channels used by P. Let
us suppose that the first list in p’s result is the overall
result, the second list corresponds to the channel to Q,
and the third list corresponds to the channel to R. To
make things more readable, we can define the following
functions to select the appropriate components:

result(a) < = first(a),
p_to_q(a) < = first(rest(a)),
p_to_r(a) < = first(rest(rest(a))).

Functions ¢ and r will correspond to processes Q and R
respectively. These will also return lists of lists, like p. We
can now describe this computation functionally by the
expression:

result(a)
where a < = p(q_to_p(b), r_to_p(c))
and b < = g(p_to_q(a), r_to_g(c))
and ¢ < = r(p_to_r(a), q_to_r(b)).

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 441

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

F. W. BURTON

4. DISTRIBUTED EVALUATION

When evaluating a functional program on a distributed
system, both data and work must be sensibly located if
the time spent on communication is not to dominate the
time spent on computation. An example is given in Ref.
10 of an O(n) time-sequential algorithm which requires
O(n?) communication when inappropriately evaluated on
a network of processors. In general, it is not possible to
determine automatically when work may be sent
advantageously to another processor.

There are basically two types of distributed systems
that should be considered. The first type of system
consists of a number of identical nodes (e.g. the cosmic
cube).? Some nodes may be closer to a given node than
others, or all nodes may be equally accessible from any
given node. With this type of system, multiple processors
are used to increase the raw computing power of the
system. The programmer does not consider which
processor does what, but may require that certain sets of
computations be performed on the same processor in
order to reduce communication costs. The second type of
system consists of a number of nodes serving different
purposes. This type of system might be embedded in a
physical system requiring real-time control; the different
nodes might be attached to different external sources of
input, for example. The programmer may require that
certain computations be performed on particular pro-
cessors. Both types of systems can be handed within a
common framework. Two annotations are required.

One annotation, anywhere, indicates that a sub-
expression may be evaluated on an arbitrary processor to
be chosen by the language implementation. In effect,
whenever a programmer indicates that an expression
may be evaluated on an arbitrary processor, a new virtual
processor is created. The system is responsible for
mapping virtual processors on to physical processors.
This permits work to be distributed among the available
processors without the programmer knowing how many
processors are available or knowing how they are
configured. Of course, in the degenerate case of a single
processor, all work is performed on that processor.

In a shared-memory system, the anywhere annotation
would have no significance. Parallel tasks can result from
evaluating value parameters in parallel. However, a
system should not be expected to decide when it is
desirable to ship a task to another processor. It is easy
to construct examples where communication costs will
dominate computation costs if the wrong decision is
made.’® We have found it convenient to annotate
expressions. However, the anywhere annotation could be
given another location in the syntax without changing
the power of the notation.

Fig. 6 shows the factorial program from Fig. 4
annotated to run on a network of processors. (It may be
a bit silly to use more than one processor to compute
factorial(n) for any n that will not cause overflow.
However, this approach will work with many divide and
conquer algorithms. We prefer to illustrate the approach
with a simple example.)

The other annotation, at, specifies that a sub-
expression must be evaluated at the node where a
particular data item is located. This makes it possible to
move work to where large data structures reside. In the
case of a system of processors of the second type

Sfactorial(n) < = prod(1, n)
where prod(i, j)) < =
ifi=jtheni

else (prod(i, midyanywhere) * (prod
(mid+1, j)anywhere)

where mid < = (i+)) div 2
Figure 6. A distributed factorial function.

described above, a dummy data item, of type void, may
be associated with each processor. By requiring that work
be performed where a particular data item is located, it
is possible to control directly which processor does what.
For example, if processor_8b is a data item of type void
that is located on a particular processor (and may be
passed to the program as a parameter) then preprocess
(input_stream_8b) at processor_8b will compute prepro-
cess(input_stream_8b) on the desired processor.

We shall call the computation involved in evaluating
an argument passed by value or speculation an
evaluation. Clearly an evaluation may include sub-
evaluation. For example, the evaluation of b*b—4 *a*c
will include sub-evaluationsof b*b,4*a*cand 4 *xa. An
evaluation excluding all sub-evaluations will be called a
task. (We do not mean to imply anything about the
granularity of parallelism in an implementation. We are
using the term ‘task’ to describe a conceptual unit of
work. A physical task in an implementation may
correspond to many conceptual tasks.) For example, the
task evaluating b*b—4+*a=*c would conceptually pro-
duce two new tasks to evaluate b*b and 4 *a*c. When
both of these tasks had terminated, the original task
would compute the difference between their results,
report its result to its parent, and then terminate.

Each task will run on a particular processor. Usually
this will be the processor where the task’s parent is
running. When a task terminates, it will leave its result
on the processor where it ran, so each data item will be
associated with a particular processor. The only tasks
which will not run on the same processor as their parents
are tasks evaluating expressions annotated with anywhere
or at. The expression

e anywhere,

where eis any expression, may run on any processor. This
gives the system the freedom to distribute work to other
processors. The expression

e ate,,

where e and e, are any expressions, will evaluate e on the
processor on which e, resides. When a parameter is
passed by name it is not moved. Both e anywhere and e
at e, have the value ¢, so ‘anywhere’ and ‘at e,” may both
be considered annotations which do not change the
meaning of a program.

In Section 3 we saw how consumer/producer
parallelism could be performed using the expression

reduce({, i, buffer(map(g, a))).

We will generalise this example to provide for distributed
consumer /producer parallelism. To perform all applica-

442 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

FUNCTIONAL PROGRAMMING FOR CONCURRENT AND DISTRIBUTED COMPUTING

tions of f on one processor while allowing all applications
of g to be performed on another, we write

pipe_reduce(f, i, buffer(map(g, a)))
where
pipe_reduce(f, n, a)< =

if a = nil then n

else pipe_reduce(f, ffirst(a), n), (rest(a) at a)).

One of the advantages to buffer, introduced in Section
3.3, was that it encapsulated all the details of buffering
in a function that can be viewed as a non-primitive
annotation (since buffer(x) differs from x only in terms of
evaluation strategy). We can do the same with distributed
consumer/producer parallelism. The function

pipe(a) < = fix(buffer(a) anywhere)
where fix(a) < = first(a): fix(rest(a) at a)

will do the job. Notice that the parameter to fix at the
highest level of recursion is placed on an arbitrary
processor, and that the at keeps parameters to fix on the
same processor at lower levels of recursion. When we
compute rest(pipe(a)) the computation proceeds as
follows:

< = rest(fix(buffer(a)))

< = rest(fix(buffer_cons(first(a), buffer(rest(a)))))
< = rest(...: fix(buffer(rest(a))))

< = fix(buffer(rest(a))).

since the argument to fix is always evaluated on the virtual
processor created by the anywhere, and since buffer
always initiates the speculative evaluation of the next list
element, all elements of a piped list are evaluated on the
new virtual processor. We can now get the desired
distributed consumer/producer parallelism by writing

reduce(f, i, pipe(map(g, a))).

A distributed network of processes communicating via
message passing can be established using pipe and the
approach outlined in Section 3.4. The at and anywhere
annotations may also be used to implement a rendezvous
like communication and synchronisation structure. We
will think of b as the state of a process with which we want
to rendezvous. Let us start by considering the expression
g(a, b) at b. This will send a copy of a to the processor
on which b is located, and compute the value of g(a, b)
there. Let us now assume that g returns a pair of values.
One value is the ‘result’ of the rendezvous and the other
is a ‘new state’ of the process. (To avoid introducing new
notation, we will use ‘:” as a pairing operation as well as
a list operation). The function g could have the form

g(data, oldstate) < =
g— cons(result(data, oldstate), new_state(data, oldstate))
where g_cons(a, speculation b) < = a:b.

Notice that the ‘result’ of the rendezvous must be
computed before the rendezvous (computation of g) may
terminate. However, the ‘new state’ is speculatively
initiated, so need not be computed before the rendezvous
ends. The ‘new state’ may be computed on one processor

while in parallel the result of the rendezvous is used on
another processor. Of course, on the next rendezvous the
‘new state’ should be used rather than b.

An annotation similar to the proposed anywhere
annotation was introduced in Ref. 10. However, without
an at annotation only simple divide and conquer type
distributed evaluation was possible. Hudak and Smith?’
have proposed an annotation for placing work on specific
processors in a network of processors.

5. NON-DETERMINISM

In conventional languages for parallel programming,
non-determinism has been found to be unavoidable. If
functional languages are to be used for parallel
programming, it seems that some form of non-
determinism will be required.

Several non-deterministic constructs for use in func-
tional languages have been proposed.28.33.34.45 For
example, amb*® may non-deterministically return either
of its two arguments subject to the restriction that its
result will not be undefined unless both of its arguments
are undefined.

Before proceeding, we should note that amb and the
other non-deterministic constructs cited above (frons,?®
or®® and interleave)** do not preserve referential trans-
parency (the property that an expression always has the
same value in the same environment). This means that
our annotations become more than annotations when
one of these constructs is added to a functional language.
For example, consider the function

) <=x=x.

This function will aways return true unless its argument
is undefined (or is of a type for which the equality test
is not defined). On the other hand

finame x) < =x = x.

may return either true or false when applied to amb(a, b),
since the argument will be evaluated twice and need not
produce the same result both times.

One solution to this problem is given in Ref. 14.
However, we shall use the amb construct in this paper,
since it is more likely to be familiar to the reader.

There is an obvious problem with using a function such
as amb in the context of a lazy interpreter. If @ and b are
two lists, what is the value of amb(a, b)? It can be argued
that the list constructor is not strict, so once either list is
known to be not completely undefined it may be returned
(e.g. the list 1:1could be returned). With our an-
notations, we can control when decisions are made. For
example, if we want to return a list only if it is fully
defined, then we could write amb(expand(a), expand(b)),
where expand is as given in Section 2.1.

Now let us consider the problem of non-deter-
ministically merging two lists. The question is, when do
we decide from which list we shall select the next element?
Usually, we shall want to select the next element from a
list as soon as the value of the first element of that list
is available. We can write a function, interleave, to do this
type of non-deterministic merging as follows:

interleave(speculation a, speculation b) < =
amb(

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 443

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

F. W. BURTON

if a = nil then b
else left_eager_cons(first(a), interleave(rest(a), b)),
if b = nil then a
else left_eager_cons(first(b), interleave(rest(b), a)))

(The function left_eager_cons is defined in Section 2.1.)
Notice that interleave uses call by speculation parameter
passing, so it can return a value before anything is known
about one of the parameters provided enough is known
about the other. The use of left_eager_cons prevents
either of the two alternative computations from
terminating before the value of the next element is
actually available. (If we used the ordinary lazy cons, ‘:’,
we would be selecting the next element from a particular
list as soon as we knew that the list was not nil.)

There is one minor problem concerning the efficiency
of interleave under certain circumstances. Suppose a large
amount of work must be done in computing each list
element (which would argue in favour of our approach
of not selecting an element until its value is available). We
might often end up computing first(a) and first(b) in
parallel. The work on the element which was not selected
would be discarded. We can solve this problem by using

merge(a, b) < = interleave(buffer(a), buffer(b)).

The first element of a buffered list is always computed
speculatively. Hence if first(b) is not selected, at least the
work that has gone into computing first(b) will be work
toward computing the first element of the list b, which is
passed on to the next lower level of recursion.

6. FORMAL DETAILS
6.1. Speculative computations

In this subsection we shall consider an abstract
interpreter for annotated A-expressions. We shall start by
considering how our annotated functional programs
relate to annotated A-expressions.

The translation of a functional program without
annotations to the A-calculus is straightforward. We shall
use an annotated A-calculus having three forms of
application corresponding to parameter passing by name,
value and speculation. We shall use an explicit apply
operator, @, so that we have something on which to hang
our annotations. The abstract syntax of our expressions
is as follows:

Cexp):: = vary| A var)y . {exp) | @ n<exp) {exp}|
@y exp) (exp) | @sexp) {exp).

Since our functional notation annotates formal
parameters and our A-notation annotates applications,
an extra level of abstraction is introduced in the
translation. The functional expressions

/ name v.e,

/ value v.e, and

2 speculation v.e
translate to

Av.e,

yu.@, (yv.e)v, and
Av.@g(Av.e)v

444 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

respectively. All other applications introduced in trans-
lating from the functional notation to the A-notation
should be @ 5’s.

For the moment, let us forget about @g. Fig. 7 shows
an abstract interpreter from Ref. 10 (with some minor
notational changes) for evaluating functional programs
with the annotations considered in Section 2. (Note: in
Ref. 10 @, and @; were used for @y and @,
respectively). In the interpreter, I is the identity function,
v stands for an arbitrary variable, and e, e, and e, stand
for arbitrary expressions. The function beta does beta
substitution. The result of beta(lv.e,, €,) is e, with e,
substituted for every free occurrence of v in e,. It is clear
that the functions reduce, value and make_ab always
convert a A-expression into an equivalent one in the
syntactic A-calculus sense, with the different @s consid-
ered to be equivalent. (This is easy to prove by induction
on the size of an expression, given that beta(e,, e,) is
always equivalent to @e, e,).

The value of a functional program, p, is reduce(p). In
our meta notation, we assume that all parameters are
passed by value and that the A-expressions are data
objects. In a sequential implementation, parameters are

reduce(v) < =v
reduce(lv . e) < = lv.reduce(e)

reduce(@ ye,e,) < = combine(make_ab(e,), e,, reduce,
reduce, @)

reduce(@ e,e,) < = combine(make_ab(e,), value(e,),
reduce, reduce, @)

value(v) < =v
value(lv .e) < = Av.value(e)

value(@ ye,e,) < = combine(make_ab(e,), e,, value, 1,

@n)

value(@ye,e,) < = combine(make_ab(e,), value(e,),
value, 1, @)

make_ab(v) <=v
make_ab(Av.e) <= Av.e

make_ab(@ ye,e,) < = combine(make_ab(e,), e,,
make_ab, 1, @)

make_ab(@ye,e,) < = combine(make_ab(e,, value(e,)
make_ab, 1, @)

>

combine (e,, e,, f,, f,, apply) < =
if is_ab(e,) then f,(beta(e,, ¢,))

else apply f,(e,) f(e,)

is_ab(v) < = false
is_ab(v.e) < = true
is_ab(@ ye,e,) < = false
is_ab(@ye,e,) <= false

Figure 7. Mixed-order reduction of annotated 1-expressions.

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

FUNCTIONAL PROGRAMMING FOR CONCURRENT AND DISTRIBUTED COMPUTING

reduce(@ ge,e,) < = combine(make_ab(e,), % e,, reduce,
reduce, @)

reduce(# e) < = reduce(value(e))

value(@ge,e,) < = combine(make_ab(e,), # e,, value, 1,
s)
value(#e) < = value(e)

make_ab(@ge,e,) < = combine(make_ab(e,), # e,,
make_ab, 1, @g)

make_ab(4 e) < = value(e)
ie_ab(@ge,e,) < = false
is_ab(# e) Can not occur.

Figure 8. Reduction rules for speculative computations.

evaluated from left to right. In a parallel implementation,
parallelism is produced by evaluating make_ab(e,) and
value (e,) in parallel when applying reduce, value or
make_ab to an expression of the form @ e, e,.

The reader is referred to Ref. 10 for further informa-
tion about this abstract interpreter and its evaluation. We
note that many practical implementation details are not
included in our abstract interpreter. For example
value(value(e)) is always equal to value(e). We would
expect each expression to include a bit indicating whether
it had already been evaluated by value. If e has been
evaluated, value(e) can return e immediately.

In order to describe how speculative computations are
performed, we need to extend the abstract syntax for
J-expressions and to add some new equations to the
abstract interpreter. We start by extending our syntax to

{exp)::= #{exp) | as before.

An expression of the form #e denotes an expression
whose value has been speculatively initiate but not yet
required. Expressions of this form may be generated only
as intermediate results in the evaluation process. (We
would expect a process to compute and save value(e) to
be produced whenever an expression of the form #e is
created. Any use of # e must start with the computation
of value(4 e), which is equal to value(e). This value should
be computed only once. Our equations do not show these
details.) The equations defining the behaviour of the
abstract interpreter for A-expressions of the form @ge, e,
and #e are given in Fig. 8. The rule for make_ab(4 e)
makes use of the fact that make_ab(value(e)) = value(e),
which can easily be proved by induction on the size of e.

Let us consider how this abstract interpreter can be
used to analyse the behaviour of a program.

6.1.1. Lists

List constructors and selectors can be defined in a number
of ways in the A-calculus. While an efficient implement-
ation is almost certain to implement list constructors and
selectors as primitives, it is useful to consider how the
/~calculus version would behave. (We would expect any
correct implementation to behave in the same way).

The A-calculus definitions of cons, first and rest given
in Ref. 10 are:

cons<=Ja.lb.lz.@y@yzab
first <=Jx.@yxAa.’b.a
rest <= Ax.@pyxAa.2b.b

Lemma 1
value(@y @y consta#b)<=2z. @y @yzHa#b.

Proof

The proof is straightforward, using the questions in Figs
7 and 8 as rewrite rules. Details are left to the reader. [

Lemma 2

value(@ y @ speculative_cons a b) will evaluate via
value(@y @y cons#a#b)todz. @y @y zH+a#b. given
that

speculative_cons < = la.lb.@s @s(la.Ab. @y @ 5
consab)ab,

Proof

The proof is straightforward. Details are left to the
reader. |
Theorem 1

value(first(x) where x < = speculative_cons(a, b)) <=
value(a) even if b is L.

Proof

The proof is straightforward. Details are left to the
reader. a
Corollary

value(rest(x) where x <= speculative_cons(a, b)) < =
value(b).

Other types of list constructors have a different
behaviour. For example, first(eager_cons(a, L)) will
always be L, since combine(..., value(L), ...) must have
the value L. In Ref. 16itis observed that there are various
types of lazy lists. By using annotations, it is possible to
use several types of lazy lists within a single program. For
example, leaf_eager_cons is a list constructor that is strict
in its first argument but not its second. By introducing
the speculation annotation, and the list constructors that
can be constructed using it, we are able to define lists with
lazy list semantics that also facilitate parallelism, as seen
in the buffer example in Section 3.3.

6.1.2. Differences between speculation and name

Due to interactions with call by value, the semantics of
speculation and name are slightly different.

If we compare the equations for the two mechanisms,
we see that call by speculation generates the expression
e, where call by name uses e,. The difference lies in how
these two expressions are treated later.

There are two places where #e and e are treated
differently. Since reduce(value(e)) = reduce(e), where

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 445

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

F. W. BURTON

=is used to mean that two A-calculus expressions
are identical, the only interesting difference is in the
treatment of make_ab. It is not the case that make_ab(e)
is always the same as value(e). (Although wvalue(e)
= value(make_ab(e))).

Consider the function

f=la.)b.@yic.ab

Clearly make_ab(f) < = f, while
value(f) < = value(la.\b.@y Ac.a b)
<=2la.\b.a.

Hence

value(@s2g- @y @ng X Lf)

< = value(x).
On the other hand

value(@n 8- @y @ng x Lf)
<=1,
since value(Ll) is L.

In general, it is better not to pass a function by value
or speculation, since this will eliminate much of the
built-in evaluation control. The problem is that often we
do not want functions reduced before they are applied to
their arguments. There are exceptions. For example, if we
pass the function Aa. Ab first(a: b) by value, it will simplify
to la.Ab.a, which may save some work if the
corresponding formal parameter is applied many times.
Hughes has argued that one of the primary advantages
to functional programming is the modularity which
results when programs are constructed by combining
functions using programmer-defined higher-order
functions.*! Passing functions by value can be used to
simplify functional expressions, if care is used.

6.2. Distributed computation

We shall assume that we have an unbounded number of
virtual processors, and that each use of anywhere places
work on a new virtual processor. Of course, an
implementation must be responsible for mapping virtual
processors on to physical processors.

Each expression will be associated with a particular
virtual processor. (We would expect the root of the
representation of that expression to reside on the
corresponding actual processor, and would expect any
application of reduce, value or make_ab to that expression
to be performed on the same processor.) In order to
describe which virtual processor is associated with a
particular expression we shall insert a superscript before
the first symbol of the expression giving the name of the
virtual processor. If i is a virtual processor name then ‘e
is (a copy of) expression e on processor i.

Fig. 9 shows how the evaluation of a distributed
annotated A-expression without ats or anywheres should
be performed. For example, the rule for @y and value
says that the root of the operator should be moved to the
processor associated with the application before make_ab
is applied to it. The operand (which is probably
represented by an off-processor pointer) should not be
moved.

In computing beta(*iv.%e,, %¢,), %e, is substituted for

reduce(*v) <=1
reduce(*)v . %) < = Jv.reduce(le)

reduce('@ y’e,%,) < = combine(make_ab(‘e,), %e,,
reduce, reduce, @ 5)

reduce(* @ ,2e,%e,) < = combine(make_ab(‘e,), value(te,),
reduce, reduce, @y)

reduce(* @ %,%¢;) < = combine(mmake_ab(le,), ' # ‘e,,
reduce, reduce, @g)

reduce(’ % %e) < = reduce('e,) where %e, = value(%e)

value(lv) < =1
value(*Av . 2e) < = 1Av.value(*e)

value('@ y%e,%e,) < = combine(make_ab(‘e,), 2e,, value,

I’ @N)

value(*@ %e,%e,) < = combine(make_ab('e,), value(‘e,),
value, I, @y)

value(*@ s%,%e,) < = combine(make_ab(*e,), * 4 'e,,
value, 1, @5)

value(* # 2e) < = 'e, where %e, = value(%e)

make_ab(*v) < =

* make_ab(*Av.%) < =Av.%

make_ab(* @ y2e,%e,) < = combine(make_ab(le,), %e,,
make-ab, I, @ y)

make_ab(* @ 2e,%,) < = combine(make_ab(le,),
value(‘e,), make_ab, 1, @)

make_ab(*@g%e,%e,) < = combine(make_ab(le,), * % 'e,,
make_ab, 1, @)

make_ab(? 4 %¢) < = le, where %, = value(®e)

combine(le,, %e,, f1, f3, apply) < =
if is_ab(le,) then f,(beta(le,, %e,))

else ‘apply f,(*e,) f,(%e,)

is_ab ignores location.

Figure 9. Reduction rules annotated to show placement of work
and results.

all free occurrences of v in 2e, (with suitable name changes
to avoid name conflicts, as is usual with beta substitution)
and then the root of the result is moved to virtual
processor 1. That is, the result of beta substitution is
always associated with the processor that initiates the
beta substitution. For example.

beta(*iv.?v,%) = e
and
beta(lv. 2@y *v'v, %e) = '@ yoe’e.

We can now consider how expressions of the form e
anywhere and e, at e, should be represented in our
A-notation.

We shall again extend our abstract syntax to include
two additional forms.

446 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

FUNCTIONAL PROGRAMMING FOR CONCURRENT AND DISTRIBUTED COMPUTING

{exp)::= as before | anywhere{exp) | at{exp)>{exp).

The forms e anywhere and e, at e, translate to anywhere
e and at e,e,. The new reduction rules for these new
syntactic forms are given in Fig. 10. The processor name
n is used to indicate a new virtual processor. In
interpreting these equations, n should be assigned the
name of a not previously used virtual processor.

reduce(*anywhere %¢) < = reduce(™e)
reduce(*at %e,%,) < = reduce(3e,)
value(*anywhere %e) < = value("e)
value(*at %e %¢,) < = value(®e,)
make_ab(*anywhere %¢) < = make_ab("e)
make_ab('at %e,%e,) < = make_ab(%e,)

Figure 10. Reduction rules for moving work.

We can use these equations to study where work and
data values are located in a distributed computation.

Theorem 2

If on processor 1 the value of first(u:v) is computed, the
result will be the value of # computed on processor 1.

Proof

Let us rewrite the above expression in terms of the
annotated A-calculus. We will use the superscript ? to
indicate that a particular computation is on an arbitrary
processor. (I.e. the ? means we do not care where the
expression is located. All ?s need not stand for the same
processor).

value(first(u: v))

< = value(C*@ 5 Ax. '@ n"x"2a."Ab . %Az
@n@n"2'u")

< = combine(make_ab(*Ax.’@ 5 "'x"Aa."2b. "), "1z
: ?@N?@N?z?u?v, value, I’ @N)

< = combine(*Ax.’@ 5 'x"Aa."Ab."a, "2z
@@ N2, value, 1, @)

< = value(beta(*2x."@ x’x2a."2b."a, "Az
. ?@N?@N?z?u?v))

< = value(C\@x22."@ @ "2u2a . "2b . "a)

< = combine(make_ab(*)z.’@ 5@ 5 "zu), "Aa.?Ab . a,
value 1, @ y)

< = value(beta(*Az. ’@,'@ '2"u', "Aa. '2b . "a))

< = value(*@ 5@ 5 "Aa."Ab . "a"u")

< = combine(make_ab(*@ y1a.’Ab . "a’u), v, value, 1,
@)

where make_ab(*@ 5’ Aa.’Ab."a’u)

< = combine(make_ab(*Aa . 2b.’a), 'u, make_ab, 1, @)

< =make_ab(beta(* a.’Ab."a, "u))

< = make_ab(*Ab . "u)

1b.

so first(u:v)
< = combine(*’b.’u, 'v, value, I, @)
< = value(beta(*2b . u,"v))

< = value(‘u).]

Corollary

If on processor 1 the value of rest(u:v) is computed, the
result will be the value of v computed on processor 1.

Proof
The above proof with slight modification will apply to
this result. O

We note that if the evaluation of u were speculatively
initiated on processor 2, first(4 u:v) would evaluate on
processor 1 to value(* # %), which in turn evaluates as le
where %e = value(®u), so u is actually evaluated on
processor 2 as we would expect. Similarly, if ¥ contains
an at annotation (as in our pipe example in Section 4) the
evaluation of ¥ may move work off the current processor.

6.3. Non-determinism

Let Amb be the function corresponding to amb in our
meta notation. We can define the behaviour of amb in the
context of an annotated functional program very simply
by using Amb. (The function amb is defined by McCarthy
in Ref. 45.))

Let us again extend our annotated A-notation to

{exp)::= as before | amb<{exp){exp>

with the obvious translation from annotated functional
programs to annotated A-expressions. The new rules we
require are:

reduce(*amb®e,’e,) < = Amb(reduce(le,), reduce(e,)y
value(*ambZe,%e,) < = Amb(value(e,), value(te,))

make_ab(*amb®e,%,) < = Amb(make_ab(’e,),
make_ab(le,)).

7. IMPLEMENTATION NOTES

In this section we shall very briefly consider several
implementation issues.

7.1. Combinator reduction

We are planning to implement an annotated functional
language using combinator reduction.8: 3% 56 The transla*
tion of annotated A-expressions to annotated combina-
tory expressions described in Ref. 10 carried over to call
by speculation. We shall introduce two new combinators,
at and anywhere, having the obvious meaning.

7.2. Speculative computation

There are a couple of issues relating to the evaluation of
speculative results which warrant attention.

When a speculative computation is initiated, a cell
where the result is to be placed should be created and
immediately returned as a result. There should be a

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 447

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

F. W. BURTON

semaphore associated with this cell. When a value is
placed in the cell, a signal should be sent. Any process
using the result of a speculative computation should use
the semaphore to avoid accessing the value before it is
ready.

The fact that a speculative computation may be
discarded means that some speculative computations
may never need to be evaluated. For this reason we
should prefer speculative work not to compete with other
computations in gaining access to processors. Further-
more, we must require that speculative work does not
prevent any other work from terminating, since non-
terminating speculative work may be discarded.

For these reasons we propose to class work as
mandatory or speculative. All work generated by a
speculation including computations internal to a specu-
lative computation is speculative until it is found to be
needed, at which time it becomes mandatory. All other
computation is mandatory. Speculative work should only
be run when a processor would otherwise be idle.

Grit and Page?® have proposed an algorithm for
aborting speculative work when it is found to be no
longer required. The method will meet our needs. In
addition, a simple modification will lead to an algorithm
for upgrading speculative work to mandatory work when
this is necessary.

7.3. Recursion

When a functional program that does not contain
recursive equations is evaluated, no cyclic structure
result. It is easy to add recursion without introducing
cycles.

In our examples we have allowed recursion in where
clauses. In terms of the A-calculus, we will take the
statement

e, where x < =¢,,

where x is a variable and e, and e, are arbitrary
expressions, to mean

(A value x.¢e)) (Yix.ey)
where
Y = ih . ((Ax.h(zz) (Az . h(zz))).

(We take f{z) < = e to be equivalent to f< = Ax.e.
and also allow let x < = e, in e, to mean the same thing
as e, where x <=e¢, Some languages require the
programmer to use let rec rather than let if recursion is
desired).

The reader is referred to Refs 20, 50 and 55 for further
information as to how the Y combinator implements
recursion by computing the least fixed point of a function.
We note that if x does not occur in e, (Yix.e,) quickly
reduces to e,.

(In the interest of efficiency, we would expect Y to be
implemented as a primitive. We should also expect a
compiler to replace (YAx.e,) with e, when x does not
occur in e,).

There is no significant problem in allowing annotations
in recursive definitions. If anno stands for name,
speculation or value (with no annotation implying value
as usual) then

e, where anno x < = e,

translates to

(4 anno x.e)) (Yix.ey).

Parameters within Y are passed by name. That is,
Y = 1 name A.((A name x.Ah(xx)) (A name x.(xx))).

Clearly, this implementation of recursion does not
introduce cyclic structures.

This acyclic implementation works fine for recursive
functions. The one time we need cycles is when we are
recursively defining data objects. Whenever an expression
of the form Ye is passed by value or speculation the
following should happen.

(1) A new cell where the result of the evaluation of Ye
is to be placed should be allocated, as with a speculative
computation.

(2) The application of e to this new cell should be
speculatively initiated. When a result is returned, it
should be placed in the cell.

(3) The cell allocated above is now substituted for the
original expression, Ye, and the computation proceeds as
normal.

We note that the evaluation of an expression such as

ones where ones < = eager_cons(1, ones)
will deadlock. On the other hand,
ones where ones < = speculative_cons(1, ones)

will return a cyclic data structure. Deadlock will occur
only in those cases where an acyclic implementation
would result in non-termination.

7.4. Distributed evaluation

The equations in Section 6 indicate that work should be
transferred between processors a cell at a time, where a
cell corresponds to an expression excluding sub-
expressions. In fact, an expression and all sub-expressions
which are not contained either in an operand of an @ ys,
or in an at or anywhere sub-expression, can be moved at
the same time. This should be done both to avoid the very
high overheads associated with transferring one cell at a
time, and to avoid repeating the transfers every time an
expression is used.

7.5. Process management

By using a virtual tree machine approach to scheduling
processes,? 11 per-processor storage requirements for a
parallel or distributed system can be kept close to the
single processor requirements. The basic idea is that once
all processors have sufficient work, they each go into a
sequential mode of operation, reverting to a parallel
mode only when it is necessary to generate more work for
other machines. In effect, this leads to a dynamic process
granularity.

8. CONCLUSION

We have seen that a few simple annotations are sufficient
to give a programmer a considerable degree of control
over the run-time behaviour of a functional program.
This makes it possible to write programs which are
efficient with respect to space and communication
requirements as well as time.

448 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

FUNCTIONAL PROGRAMMING FOR CONCURRENT AND DISTRIBUTED COMPUTING

In most cases, annotations are unnecessary. Reason-
able defaults ensure that the best evaluation strategy is
selected in most situations. Where annotations are
required, they are easy to use and understand. It is
possible to encapsulate annotations in functions to
produce additional mechanisms for controlling evalu-
ation. For example, buffer (a), as defined in Section 3, and
pipe(a), as defined in Section 4, are both equivalent to a.
We can therefore think of buffer(...) and pipe(...) as
user-defined annotations.

We believe that use of the proposed annotations makes

REFERENCES

1. Arvind and R. E. Thomas, I-structures: an Efficient Data
Structure for Functional Languages. Report MIT/LCS/TM-
178, Laboratory for Computer Science, Massachusetts
Institute of Technology (1980, revised 1981).

2. Arvind, D. E. Culler, R. A.lannucci, V. Kathail, K.
Pingali and R. E. Thomas, The Tagged Token Dataflow
Architecture. Laboratory for Computer Science, Massa-
chusetts Institute of Technology (1983).

3. Arvind, M. L. Dertouzos and R. A.lannucci, 4 Mulri-
processor Emulation Facility, Technical Report 302,
Laboratory for Computer Science, Massachusetts Institute
of Technology (1983).

4. Arvind, Sharing of Computations in Functional Language
Implementations. Laboratory for Computer Science, Mass-
achusetts Institute of Technology (1984).

5. L. Augustsson, A compiler for lazy ML. Conf. Rec. 1984
ACM Symp. on LISP and Functional Programming, Austin,
Texas, 218-227 (1984).

6. J. Backus, Can programming be liberated from the von
Neumann style? A functional style and its algebra of
programs. Comm. of the ACM 21, (8) 613-641 (1978).

7. R. M. Burstall, D. B. MacQueen and D.T. Sannella,
HOPE: an Experimental Applicative Language. Report
CSR-62-80, University of Edinburgh Department of
Computer Science, (1980).

8. F. W. Burton and M. R. Sleep, Executing functional
programs on a virtual tree machine. Proc. 1981 Conf.
Functional Programming Languages and Computer Archi-
tecture, Portsmouth, New Hampshire, 1987-194 (1981).

9. F. W. Burton, A linear space translation of functional
programs to Turner combinators. Information Processing
Letters, 14, (5) 201-204 (1982).

10. F. W. Burton, Annotations to control parallelism and
reduction order in the distributed evaluation of functional
programs. Transactions on Progress in Language and
Systems 6, (2) 159-174 (1984).

11. F. W. Burton and M. M. Huntbach, Virtual tree machines.
IEEE Trans. on Computers, C-33, (3) 278-280 (1984).

12. F. W. Burton, Speculative computation, parallelism, and
functional programming. JEEE Trans. on Computers, C-34,
(12) 1190-1193 (1985).

13. F. W. Burton, Controlling speculative computation in a
parallel functional programming language. Proc. Fifth
International Conference on Distributed Computing Sys-
tems, Denver, Colorado, May 1985, pp. 453-458.

14. F. W. Burton, Nondeterminism with referential transpar-
ency in functional programming languages (submitted for
publication).

15. L. Cardelli, Compiling a functional language. Conf. Rec.
1984 ACM Symp. on LISP and Functional Programming,
Austin, Texas, August 1984, pp. 208-217.

16. R. Cartwright and J. Donahue, The semantics of lazy (and
industrious) evaluation. Proc. 1982 ACM Symposium on
LISP and Functional Programming, Pittsburgh, Penn., Aug.
1982, pp. 253-264.

it possible to combine the simplicity and sound
mathematical foundation of functional programming
with the control and asymptotic efficiency of procedural
programming.

Acknowledgement

The author would like to thank V.J. Rayward-Smith
and G. P. McKeown for their many helpful comments
on an earlier draft of this paper.

17. T.J. W. Clarke, P.J.S. Gladstone, C. D. McLean and
A. C. Norman, SKIM - The S. K. I. reduction machine.
Proc. 1980 LISP Conf., Stanford, California, Aug. 1980,
pp. 128-135.

18. J. S. Conery and D. F. Kibler, Parallel interpretation of
logic programs. Proc. 1981 Conf. Functional Programming
Languages and Computer Architecture, Portsmouth, New
Hampshire, Oct. 1981, pp. 163~170.

19. J. S. Conery, The AND/OR process model for parallel
interpretation of logic programs. Ph.D. dissertation,
Technical Report 204, Department of Computer Science,
University of California at Irvine (1983).

20. H. B. Curry and R. Feys, Combinatory Logic, Vol. 1,
North-Holland, Amsterdam (1958).

21. J. Darlington and M. Reeve, ALICE: a multi-processor
reduction machine for the parallel evaluation of applicative
languages. Proc. 1981 Conf. Functional Programming
Languages and Computer Architecture, Portsmouth, New
Hampshire, Oct. 1981, pp. 65-75.

22. J. Darlington, Program transformation. In Functional
Programming and Its Applications, edited J. Darlington,
P. Henderson and D. A.Turner, 193-215. Cambridge
University Press (1982).

23. J. B. Dennis, Data flow supercomputers, Computer 13 (11)
48-56 (1980).

24. J. B. Dennis, An operational semantics for a language with
early completion data structures. Proc. Internat. Colloqui-
um on Foundations of Programming Concepts, Peniscola,
Spain, Apr. 1981, pp. 260~267.

25. D. P. Friedman and D. S. Wise, Cons should not evaluate
its arguments, 3rd Int. Coll. Automata Languages and
Programming, Edinburgh, Scotland, 1976, pp. 257-284.

26. D. P. Friedman and D. S. Wise, An indeterminate con-
structor for applicative programming, Conf. Rec. 7th ACM
Symp on Prin. of Prog. Lang., 1980, pp. 245-250.

27. R. P. Gabriel and J. McCarthy, Conf. Rec. 1984 ACM
Symp. on LISP and Functional Programming, Austin,
Texas, August 1984, p. 2544.

28. D. H. Grit and R. L. Page, A multiprocessor model for
parallel evaluation of applicative programs. Journal of
digital Systems 4, (2) 135-151 (1980).

29. D. H. Grit and R. L. Page, Deleting irrelevant tasks in an
expression-oriented multiprocessor system. Transactions
on the Progress in Language and Systems 3 (1) 49-59
(1981).

30. J. R. Gurd, C. C. Kirkham and I. Watson, The Manches-
ter prototype dataflow computer. Comm. of the ACM 28,
(1) 34-52 (1985).

31. R. H. Halstead, Jr, Multilisp: a language for concurrent
symbolic computation. Transactions on Progress in Lang-
uages and Systems 7, (4) 501-538 (1985).

32. P. Henderson and J. M. Morris, A lazy evaluator. Conf.
Rec. 3rd ACM Symp. on Prin. of Prog. Lang., Atlanta, Ga.,
Jan. 1976, pp. 95-103.

33. P. Henderson, Functional Programming: Application and

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 449

21

CPJ 30

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

34.

35.

36.

37.

38.

39.

41.

42.

43.

45.

F. W. BURTON

Implementation. Prentice-Hall, Englewood Cliffs, N.J.
(1980).

P. Henderson, Purely functional operating systems. In
Functional Programming and Its Applications, edited
J. Darlington, P. Henderson and D. A. Turner, pp. 177-
192. Cambridge University Press (1982).

P. Hudak and D. Kranz, A combinator based compiler for
functional languages. Conf. Rec. 11th ACM Symp. on Prin.
Programming Languages, Salt Lake City, Utah, Jan. 1984,
pp. 121-132.

P. Hudak and B. Goldberg, Experiments in diffused
combinator reduction. Conf. Rec. 1984 ACM Symp. on
LIS P and Functional Programming, Austin, Texas, August
1984, pp. 167~-176.

P. Hudak and L. Smith, Para-functional programming: a
paradigm for programming multiprocessor systems (draft),
Department of Computer Science, Yale University, New
Haven, CT (1985).

P. Hudak and J. Young, Higher-order strictness analysis in
untyped lambda calculus. Conf. Rec. 13th ACM Symp. on
Prin. Programming Languages, St Petersburg Beach,
Florida, Jan. 1986, pp. 97-109.

R. J. M. Hughes, Super combinators: a new implementa-
tion method for applicative programs. Proc. 1982 ACM
Symposium on LISP and Functional Programming, Pitts-
burgh, Penn., Aug. 1982, pp. 1-10.

. R. J .M. Hughes, Parallel Functional Languages Use Less

Space. Programming Research Group, Oxford University
(1984).

R. J. M. Hughes, Why Functional Programming Matters,
Programming Methodology Group memo PMG-40, De-
partment of Computer Science, Chalmers University of
Technology and University of Gothenburg (1984).

T. Johnson, Efficient evaluation of lazy evaluation. Proc.
ACM Symp. Compiler Construction, Montreal, Canada,
June 1984, pp. 58-69.

G. Lindstrom, Static evaluation of functional programs, to
appear in Proc. 1986 ACM SIGPLAN Notices Symposium
on Compiler Construction.

. G. A. Mago, A network of microprocessors to execute

reduction languages. Int. J. Comput. Inform. Sci. 8, (5, 6)
349-385, 435471 (1979).

J. McCarthy, A basic mathematical theory of computation.
In Computer Programming and Formal Systems, edited
P. Braffort and D. Hirschberg, pp. 33-70. North-Holland,
Amsterdam (1963).

46.

47.

48.

49.

50.

51.

52.

53

54.

55.

56.

57

58.

59.

60.

450 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

A. Mycroft, The Theory and Practice of Transforming Call
by need into Call by value. Internal Report CSR 88-81,
Department of Computer Science, University of Edinburgh
(1981).

W. Myers, Lisp machines displayed at AI conference.
Computer 15 (11), 79-82 (1982).

J. Schwarz, Using annotations to make recursive equations
behave. IEEE Trans. on Software Eng. SE-8 (1), 21-33
(1982).

C. L. Seitz, The cosmic cube. Comm. of the ACM 28 (1)
22-33 (1985).

J.E. Stoy, Denotational Semantics: The Scott-Strachey
Approach to Programming Language Theory, Cambridge,
Mass. (1977).

J.E. Stoy, Some mathematical aspects of functional
programming. In Functional Programming and Its Applica-
tions, edited J. Darlington, P. Henderson and D. A.
Turner, pp. 217-252. Cambridge University Press (1982).
W.R. Stoye, T.J. W. Clarke and A.C. Norman, Some
practical methods for rapid combinator reduction. Conf.
Rec. 1984 ACM Symp. on LISP and Functional Program-
ming, Austin, Texas, August 1984, pp. 159-166.

L.J. Thomas, Untitled Letter Circulated to Various Inter-
ested Researchers. Burroughs Corporation, Austin Re-
search Center (1984).

P.C. Treleaven, D. R. Brownbridge and R. C. Hopkins,
Data-driven and demand-driven computer architecture.
Computing Surveys 14, (1) 93~143 (1982).

D.A. Turner, A new implementation technique for
applicative languages. Software — Practice & Experience 9,
31-49 (1979).

D. A. Turner, Another algorithm for bracket abstraction.
Journal of Symbolic Logic 44 (2), 267-270 (1979).

D. A. Turner, Recursion equations as a programming
language. In Functional Programming and Its Applications,
edited J. Darlington, P. Henderson and D. A. Turner, pp.
1-28. Cambridge University Press (1982).

D. A. Turner, Combinator reduction machines. Proc.
Internat. Workshop on High Level Computer Architecture,
Los Angeles, May 1984.

D. A. Turner, Functional programs as executable speci-
fications. In Mathematical Logic and Programming
Languages, edited C. A. R. Hoare and J. Shepherdson,
pp. 29-54. Prentice-Hall, Englewood Cliffs, N.J. (1985).
C.P. Wadsworth, Semantics and Pragmatics of the
Lambda-Calculus. Oxford University Press. (1971).

¥20¢2 Iudy 60 U0 1sanb Aq £1899¢//€1/S/0€/8101e/|UlWwoo/wo0 dno-ojwapeoe//:sdiy woli papeojumoq

