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This paper analyses the problem of joining two horizontally partitioned relations in a distributed database system using a
semi-join strategy. A mathematical model is developed and the problem is proved to be NP-complete with respect to the
number of fragments. Lower bounding and heuristic procedures are proposed, and the results of computational
experiments are reported. These results reveal a good performance of the heuristic procedures, and demonstrate the
benefit (in terms of communication cost savings) of using semi-join operations to reduce the size of fragments prior to
their transmission to the join site.
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1. INTRODUCTION

In recent years we have been witnessing an accelerated
rate of research, development and implementation of
distributed computer systems and distributed database
management systems (DDBMS). The benefits offered by
distributed processing include increased availability and
parallelism, reduced system and communication costs,
increased end-user involvement, and compatibility, in
many cases, with the organisational structure. To realise
the benefits offered by distributed processing, numerous
problems, technical and managerial, have to be solved.
For a discussion of those problems see Refs 25 and 5.

One of the important problems in distributed systems
is the efficient processing of queries in a relational
DDBMS,8 where data needed by the query are stored at
several sites. Particular attention has been given to the
most resource-consuming operation - the relational join.
Even with the advances in hardware technology, the
importance of optimising the join operations in a
distributed query is likely to increase due to the tendency
of more geographically dispersed organisations to
distribute their data, to store larger amounts of data
online, and to expect decision-support capabilities from
the DBMS. The problem is how to satisfy ad hoc and
routine data retrieval requests in a way that optimises a
given performance measure. Models that attempt to
characterise and solve this problem have been developed
in Refs 2, 4, 6, 10, 19, 27, 28, 32, 33 and others. Models
for special cases were introduced in Refs 7, 21 and 15.
The results derived by the query optimisation studies
differ substantially and depend on the assumptions made,
such as the objective function and parameters used by the
model. See Ref. 34 for a survey of distributed query
optimisation.

The subject of horizontal partitioning (fragmentation)
has been discussed in several papers. In this type of
partitioning, a relation is fragmented into several sets of
tuples (usually disjoint sets), each stored at a different site.
Distributed INGRES29-30 provides for fragmentation,
but the query optimisation algorithm limits fragmen-
tation to a single relation (in the context of increased
parallelism). System R*31 supports fragmentation, but
each fragment is treated as a single relation, i.e. the user
rather than the system is aware of the fragmentation. A
rigorous treatment of fragmentation is given in Ref. 24,

but the derived mathematical model represents only a
small part of the query-processing problem. An opti-
misation of set queries in fragmented database systems is
presented in Ref. 15. Yu and Chang33 propose a
procedure for processing fragments, and a mathematical
model and algorithms for semi-joining fragmented
relations without pre-assembly are presented in Ref. 27.

This paper analyses the problem of joining two
fragmented relations on a common join attribute so as to
minimise the resulting communication costs (this prob-
lem will be referred to as the '2-way join problem')- The
2-way join problem is important due to the high
frequency of such queries in actual systems, and the need
to develop specialised algorithms for the fragmented case.
Minimisation of communication cost is a valid objective
for systems that use the services of value-added networks
(e.g. Tymnet and Telenet), and for systems with a highly
congested or slow communication network.

The algorithms proposed in this paper use the semi-join
operation as a communication-cost-reduction mechan-
ism. The execution site of a semi-join operation is the site
of the fragment being restricted by the operation (we will
refer to such a case as a 'local-semi-join strategy')- In
Ref. 27 a more general semi-join strategy is analysed.
That strategy (referred to as a 'remote-semi-join
strategy') permits a semi-join to be executed at an
arbitrary site. The details of the remote-semi-join
algorithms are given in Ref. 27, where they were shown
to outperform (in terms of communication costs)
local-semi-join algorithms. Nevertheless, there are situ-
ations where a local-semi-join algorithm is preferable;
these situations may arise for the following reasons. (1)
Remote-semi-join algorithms are complex, harder to
implement, and require more computing time than
local-semi-join algorithms. (2) As was shown in Ref. 27,
the difference in the cost incurred by the two strategies
is highly dependent on the selectivity factors. In the case
of large selectivity factors, the two strategies are expected
to incur the same communication cost, thus favouring a
choice of the simpler local-semi-join algorithm. (3)
Remote-semi-joins incur a higher overhead cost than
local-semi-joins. This higher cost results from the need to
coordinate and synchronise a more complex execution
strategy. It is important to note that the overhead cost
is dependent on the synchronisation procedure and the
communication protocol used.
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TWO-WAY JOINS IN DATABASE SYSTEMS

In the remainder of this paper the term 'semi-join'
should be understood as a 'local-semi-join'. Following
the definition of the 2-way join problem, the problem is
shown to be NP-complete (with respect to the number of
fragments) and a mathematical model is developed.
Lower bounding and heuristic procedures are proposed
and the results of computational experiments are
reported.

2. RELATIONAL TERMINOLOGY AND
PROBLEM DEFINITION

The problem analysed in this paper occurs in relational
database systems. The basic relational terminology is
described using Fig. 1; more details can be found in Ref.
8 or a basic text such as Ref. 9. A relation is a simple file
(e.g. R1 is a part file), and a database is a collection of
relations. A row of a relation is a tuple, and a column is
an attribute whose values are drawn from a domain.
Projecting a relation on to an attribute results in a set of
the attribute's values (duplicates are eliminated), e.g.
projecting R2 on PART # (see Figure 1) results in the
set {10, 40}.

Rl Part # Colour Price ($)

10
20
30
40

Blue
Black
Blue
Red

120.00
115.00
110.00
125.00

R2 Part # Supplier # Qty

10
10
40
40

5
10
5
20

1000
1500
1500
2000

Rl semi-joined by R2:
Rl Part # Colour Price ($)

10
40

Blue
Red

120.00
125.00

Figure 1. A semi-join operation.

A semi-join operation between relation R1 and relation
R2 restricts Rl by values that appear in one of Rl's
attributes and in one of R2's attributes (those attributes
are the join attributes). The semi-join operation has been
established as a useful mechanism to reduce the amount
of transmitted data, when processing queries in dis-
tributed databases.2-332 Theoretical work on the semi-
join operation can be found in Ref. 4. Fig. 1 shows two
sample relations Rl and R2, and the effect of
semi-joining Rl by R2 over the join attributes
R1.PART # and R2.PART #. Note that the semi-join
is an asymmetric operator; semi-joining R2 by R1 would
have no effect on the size of R2 in the example of Fig.
1. If relation Rl is semi-joined by relation R2 we will
refer to Rl as the 'restricted relation' and to R2 as the
'restricting relation'.

A database is fragmented if one or more of its relations
are partitioned horizontally. Fig. 2 shows a fragmented
database. The figure contains the same relations as Fig.

Sitel

Rl Part # Colour Price

10
20
30
40

Blue
Black
Blue
Red

120.00
115.00
110.00
125.00

Site 2

R2, Part #

10
10

Site 3

#2,, Part #

40
40

Supplier #

5
10

Supplier #

5
20

Qty

1000
1500

Qty

1500
2000

Figure 2. A fragmented database.

1, but relation R2 has been partitioned into two
fragments, R21 and R22, which are stored at site 2 and
site 3 respectively. Suppose that R1 is to be semi-joined
by R2 over PART # . It can be done by performing two
semi-joins, one between Rl and R2t and the other
between Rl and R22. Note, however that the resulting
tuples of the two semi-join operations have to be unioned.
Moreover, every fragment of the restricting relation must
participate in a semi-join of the restricted relation (or
fragment); otherwise no tuple of the restricted relation
(or fragment) can be eliminated.

(3)

©
[ i | Fragment i (relation Rl )

( T ) Fragment i (relation R2)

(i) Transmission of join attribute i

Figure 3. Graph representation of transfers related to fragment i.

A possible solution to the 2-way join problem, e.g. Ref.
10, is to assemble one relation and duplicate it at every
fragment site of the other relation, and then carry out the
joins in parallel. For a large number of fragments,
however, this strategy may incur very high communi-
cation costs. The strategy pursued in this paper is to use
semi-join operations to reduce the size of fragments prior
to a final join at the query site.

Fig. 3 shows a sample semi-join strategy. The frag-
ments were numbered sequentially such that a frag-
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A. SEGEV

ment number is identical to the site number at which
it is stored. Fragments 1, 2 and 3 belong to relation R1,
and fragments 4, 5 and 6 belong to relation R2. Fig. 3
represents the case where a decision was made to restrict
fragments 4 and 5 by semi-join operations. As stated
earlier, a fragment chosen to be restricted must be
semi-joined by every fragment of the other relation. That
is why, in Fig. 3, join attributes 1,2 and 3 are transmitted
to sites 4 and 5. It should be emphasised that the
transmissions shown in Fig. 3 are not necessarily optimal
in this example, but are rather used to illustrate the type
of transmissions that will be used to execute a semi-join
strategy.

The following assumptions will underlie the models
developed in this paper.

Assumption 1
The routing of messages is transparent to the model. If a
message has to be sent from site a to site b, the model is
concerned with the cost of the associated transmission and not
its routing.

Assumption 2
A non-redundant materialisation of fragments is given.

Assumption 3
If a fragment is to be restricted, it will be semi-joined at this site.
The advantage of this assumption is in significantly reducing
the complexity of the resulting algorithms, and the actual
execution of the semi-join strategy. This assumption implies
that the transmission of a single join attribute constitutes a
minimum spanning tree (see Fig. 3).

3. M A T H E M A T I C A L NOTATION

Let the two relations of the 2-way join problem be R1
and R2. The following notation will be used henceforth:
51 The index set of sites among which relation R1 is

fragmented.
52 The index set of sites among which relation R2 is

fragmented.
T S1US2

{52, i e 5 1
*\Sl,ieS2

q The index of the query site
Cy The unit transmission cost between site i and site j
Ft Size of the fragment stored at site i
Dt Size of the projection of fragment i over its joint

attribute
ocj The selectivity factor for a semi-join of fragment i,

i.e. the size of the result is Ft o^.
Note. There is a one-to-one correspondence between a

site number, fragment number and join attribute number
e.g. fragment 5 is stored at site 5 and the number of its
join attribute is 5.

The plus-and-minus signs, in notation of the type
' k e S 1 + i', will be used to represent the union of set S1
and the singleton i, and the removal of element i from the
set i, respectively. If S is a set, |S| is its cardinality.

Additional notation and definitions will be introduced
as necessary.

4. T H E COMPLEXITY OF T H E 2-WAY
J O I N P R O B L E M

Although the 2-way join problem involves only two
relations it is a hard problem. To demonstrate the

JR2| The non-fragmented relation

(&J Fragments of R1 to be semi-joined

Other fragments of R 1

—• Transmission of R 2's join attribute

Figure 4. Graph representation of a solution to problem Ps

complexity of the problem, consider the following special
case. Two relations Rl and R2, are to be joined, one
fragmented and the other non-fragmented (assume that
R2 is not fragmented, thus S2 = {1}). Let us assume that
a decision has to be made on a restriction of each
fragment of R1 by a semi-join. A feasible solution to this
problem (referred to as problem Ps) is illustrated in Fig.
4. The join attribute of the non-fragmented relation R2
spans all the fragments to be semi-joined. The arcs
representing final transfers to the query site were omitted.
Letting

r I 1 ' ijif fragment i is restricted by a semi-join
otherwise

(1, ifR 2's join attribute is sent from site i to sitej
Wy = \ 0, otherwise

/y =flow variables for arc {i,j)

this special case can be formulated as the following linear
integer program:

Problem Ps

m i n { I
i e S l

subject to:

+ I E DiCyWy} (1)

Wii = Xj, jeS\ (2)

fit- I fn = xP JeS] (3)
IeSl

(4)

(5)
The first term in the objective function (1) accounts for

the cost of transmitting fragments to the query site, and
the second term accounts for the cost of transmitting
R l's join attribute to semi-join sites. Constraints (2) state
that if a fragment is restricted by a semi-join, R2's join
attribute will be transmitted to that fragment's site from
one and only one site (more than a single transfer is
superfluous). The constraints in (3) and (4) are the flow
constraints that prevent cycles (see Ref. 14) in the graph
representing the transmissions of R2's join attribute.

Theorem 1: Problem Ps is NP-complete.
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TWO-WAY JOINS IN DATABASE SYSTEMS

Proof: Rewrite the objective function (1) as:

min{ E F j C ^ E q i j t Z Z Cy

subject to:

Where Ct = (â  — 1) C^/J is the cost of adding node i to
the spanning tree, and Ci} = Dt Cit is_the cost of includ-
ing edge (i, j) in the tree. Note that Q s% 0, V i e S1.

It will be shown that if problem Ps can be solved in
polynomially bounded time, so can the problem of
the Steiner Tree in graphs, which is known to be
NP-complete.12

Consider a graph G(V, E), a set of nodes N £ V, and
an edge cost function: Cost (ei} e E) = Cy. The Steiner
Tree problem is to find a tree sub-graph G(V, E') with
a minimum sum of edge costs, such that V £ V, E' £ E,
and N £ V. Let

V0(Steiner) = {i\Xt = 1 in an optimal solution to the
Steiner problem}

VO(PS) = {i1 Xt = 1 in an optimal solution to problem Ps}

We transform an arbitrary instance of the Steiner Tree
problem into problem Ps by assigning the following node
weights

|M, ieN
1 \0, ieV-N

where M is a large negative number. Clearly, if M is large
enough, Xt will be 1, V jeN. Moreover, Xt will be 1 for
i e V — N only if that reduces the cost of spanning the
nodes in N. Hence, F0(Steiner) = VO(PS). To obtain the
optimal cost of the Steiner Tree problem M'£ieSlXi
should be subtracted from the optimal cost of Ps.

It is easy to see that problem Ps belongs to the class NP
(the corresponding decision problem can be solved
by a polynomial non-deterministic algorithm) and the
Theorem follows. Q.E.D.

5. A MATHEMATICAL MODEL OF THE
2-WAY JOIN PROBLEM
Two types of mathematical formulations of the 2-way
join problem are presented in this section. The first is a
tree-based formulation, whose main utilisation will be in
the development of a heuristic procedure. A flow-based
formulation will be used to derive a lower bound on the
value of an optimal solution to the 2-way join problem.

S.I. A tree-based formulation

We define the following decision variables to be used in
the formulation of problem PT1 below.

- I1, if fragment i is restricted by a semi-join
0, otherwise

f 1, if join attribute i is transferred from site k to
lVm = j site t

I0, otherwise

gikl = amount of flow on arc (i, k, t)

Problem PTl

min{2
(eT

+ Z Z Z DtCktWikt)
ieT fceI"i+{ T

= Xt, ieT,teYi (8)

(9)

,|r,|, ler.fcen-K/er, (10)
Vikk = 0, ieT,kert + i (11)

Xt, Wikt €{0, 1}, gm ^ 0, ig T, ke r ( + i, r e rf (12)

The first sum in the objective function (7) accounts for
the cost of transmitting fragments, possibly unrestricted,
to the query site. The triple summation in (7) accounts
for the cost of transferring join attributes to semi-join
sites. Constraints (8) say that if a fragment is to be
restricted by a semi-join, all the necessary join attributes
must be transmitted to the semi-join site. The flow
constraints (9) to (11) prevent cycles and (together with
(8)) assure a tree structure for the transfers of each join
attribute. Constraints (12) are the binary and non-
negativity constraints.

The above formulation is separable into two symmetric
sub-problems PTll and PT12. The formulation for
problem PT11 is given below. To get the formulation for
problem PT12, simply replace every SI by S2 and S2 by
SI in problem PTll. The above separability means that
the decisions on the restriction of fragments of one
relation are independent of the corresponding decisions
for the other relation.

Problem P,T i l

min{ Z ^iCf9(l —(1
ieSl

+ Z Z Z DtCktWikt} (13)
ieS2 *eSl+i (eSl

subject to:
2 Wikt = Xt, ieS2,teSl (14)

fceSl+i

Z î*;(— Z guk = Xt, ieS2, teSl (15)
fceSl+i fceSi

gikt^Wikt\Ti\, ieS2,keSl+i,teSl (16)

^i«=W/itfc = 0. ieS2,keS\+i (17)

'j, Wtt46{0, l},ftw^O, ie52,*e51+i , /e51 (18)

5.2. A flow-based formulation

The basic idea underlying the flow-based formulation is
to define, for each fragment i and fragment j e r\, a path
from node j to node i, with at most one unit of flow of
commodity j (representing the transmission of join
attribute j to a semi-join site). Let us denote that path as
path (j, i) and define the flow variables as follows:

fjikt =flow of commodity j on arc (k, t)epath(j, /').

The flow-based formulation is given as problem PT2l
below. To get the symmetric problem PT22, replace S 1 by
S2 and S2 by S1 in problem PT21.

Problem P,T 2 1

(7)

min{ Z
ieSl

+ Z Z Z DtCktWikl}
ieS2 keSi+l teSi

(19)
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A. SEGEV

subject to:

fmt~
(6.S1

teSl+j

= 0, keSl,jeS2,ieSl (20)

k=j,jeS2,ieSl (21)

= -Xt, k = i,jeS2,ieSl (22)

jeS2,ieSl,keSl+j,teSl (23)

. jeS2,ieSl,teSl+j,keSl (24)

W<fc* = 0. ieS2,keSl+i (25)

*i, »$we{0, \},fjikt>0, ieSl,jeS2,keS\+j,teSl
(26)

The formulation of Problem PT21 is valid, since the
only feasibility constraint is that if fragment i is to be
restricted (i.e. Xt = 1), then for each fragment j e I~( there
must be a path from site j to site i, representing the
transmission of join attribute j , and this is guaranteed by
constraints (20) to (23). Constraints (24) assure that the
cost of transferring join attribute j from site t to site k will
be taken into account at most once.

5.3. Equal unit transmission costs

Most of the studies in the area of Distributed Query
Optimisation assume equal unit transmission costs
(Cy = C,V i, jet),e.g.Refs 1-3,10,19and28.The2-way
join problem can easily be solved when equal unit
transmission costs are assumed. In this case the routeing
problem is eliminated, and the only decision to be made
is whether or not to restrict fragments by semi-join
operations. Algorithm 1 derives the solution to the
problem.

Algorithm 1

1. For every ieT Do:
(a) Let COSTJ = Ft Ctq = FtC

COST2 = Z Dj C}i + Fiai CiQ

= Z

If COST1 < COST2 transfer fragment i to the
query site without a semi-join. Otherwise, transfer
the \T^join attributes directly to site i, and semi-join
fragment i there.

6. LOWER BOUNDING PROCEDURES
As was proved in Section 4, the 2-way join problem is
NP-complete. It is therefore unlikely that an optimal
algorithm will be used for real-time query optimisation.
Even in the case of query compilation, the problem's
complexity will make an optimal algorithm too ex-
pensive. Consequently, it is expected that heuristic
algorithms will be used for most real-world applications.
A lower bound, when compared to the value of heuristic
solutions, provides information about the quality of the
solutions generated by the heuristic algorithms. For
example, if a heuristic's solution and the lower bound are
1 % apart, we know that the heuristic's value is at most

1 % away from the optimum, and there is probably no
sense in devoting extensive research effort to devise better
algorithms for the same model. In the absence of lower
bounds for the problem, the only way to compare the
heuristics' solutions to the optimal solution is by
complete enumeration of the solution space. Conducting
a significant empirical analysis using complete enu-
meration for sizeable problems is likely to be too costly
for most researchers. Lower bounds are also needed if
one wants to compute the optimal solution using a
branch and bound algorithm.20

The lower bounds derived in this paper are based on
a Lagrangian relaxation coupled with a subgradient
procedure (a description of the procedure is given below).
Lagrangian relaxation16 has been applied successfully in
many combinatorial optimisation problems such as
location problems,1117 the travelling salesman and
related problems,1318 and the design of computer
networks.14

A summarised description of the Lagrangian relax-
ation follows. Interested readers can consult Ref. 16 for
more details about the theory. The application of the
procedure to the 2-way join problem is detailed in the
appendix.

The general integer linear programming problem can
be written as:

(P) Min CX

subject to:

Xi integer, iel

Where X, b, c and d are vectors, A and B are matrices of
conformable dimensions, and the index set I denotes the
variables required to be integer. It is assumed that the
constraints BX > d have a special structure. We define
the Lagrangian relaxation of problem (P) relative to
AX ^ b and a conformable non-negative vector A. to be:

subject to: BX^d
Xi integer, iel

Denoting the value of an optimal solution to problem (P)
by Z(P), we have the following relation: Z(PRX) 2s Z(P).
Consequently the Lagrangian relaxation of (P) con-
stitutes a lower bound on the optimal value of (P). For
the relaxation to be useful, problem (PR\) has to be
significantly easier to solve than problem (P). For a given
Lagrangian relaxation, the tightest lower bound which
can be achieved is maxy_{Z(PRx)}. The vector A. which
achieves that maximisation is the best set of Lagrangian
multipliers.

The subgradient procedure is used to approximate the
best Lagrangian multipliers. It is an iterative procedure
which updates the vector X at each iteration based on the
value Z(PR{). The main steps of the subgradient
procedure are described below. For a detailed description
of the procedure and its theory see Refs 18, 26. The
procedure starts with an initial vector k° and the optimal
solution X° to problem (PR\°). For each iteration t, the
subgradient direction vector is calculated as <D* = b —
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TWO-WAY JOINS IN DATABASE SYSTEMS

AX*. Using a step size S1, the new vector kt+1 is given by
•v M-I •>, . « * , ^ common step size is

«_^Z(P)-Z(PRX,)

where Z{P) is an upper bound (feasible solution) on the
value of (P, ||. || denotes the norm function, and O is a
scalar which is initially equal to 2 and is updated every
k iterations.

Two lower bounds on the value of an optimal solution
to the 2-way join problem were derived through
Lagrangian relaxations of problems PT1 and PT2. The
mathematical details of the relaxations are given in
Appendix 1.

7. A HEURISTIC PROCEDURE BASED ON
PROBLEM PTl

The heuristic proposed in this section is a set selection
procedure, where the set to be selected consists of the
variables Xi that assume the value 1 in problem PTll (the
same procedure is also applied to problem PTl2)- Given
a feasible solution to problem PT11, we define the set
S = {i | Xt = 1, i e SI} associated with that solution. Also,
let Z(S) denote the value of an optimal solution to
problem PTll for a given set S. The value of Z(S) is
obtained by substituting the Xt values in problem PT11,
and solving the resulting problem which is formulated
below.

Z(S) = min{ Z FjQq
ieSl-S

2F 1 a i C 1 ( l + I Z Z D,CktWikt} (27)
ieS ieS2keSl+iteSl

subject to:

teSl+f
= 0, ieS2, teSl-S (28)

(29)Z Wm=\, ieS2,teS
keSl+i

Z gtu- Z
keSl+i fceSi

kesi

- S (30)

(31)Z
keSl+i

(32)

(33)

ieS2, keSl+i, teSl (34)

The above problem of finding Z(S) is separable over the
index i e S 2 into |S2| Minimum Spanning Tree problems.
Defining f}iU = Dt Cku each of the |S 2| sub-problems is
given by:

Z((5) =min{ Z Z $ikt
Wikti (35)

keS+iteS

subject to:
Z Wikl=\, teS

keS+i

Z g(kt- Z gitk= 1.
keS+i • ~

, keS+i,teS

(36)

(37)

(38)

(39)

(40)

After solving the Minimum Spanning Tree problems,
Z(S) is given by:

ieSl-S
Z

ie52

(41)

A greedy20 heuristic based on the foregoing analysis is
formally stated as Algorithm H1 below.

Algorithm H1 (ADD heuristic)

l.LetS=0,S=S\-S,FC= Z FtCtq.
— /. ieSl

2. For every ieS, evaluate Ci = Z(S+i) as in (41).

3. Let i be the index that achieves Min{CA.
ieS

4. IfCi ^ FC Goto Step 6. Else,
FC = = S- r.

5. If S*0 Goto Step 2.
6. Z(S) = FC, stop.

Note that when Algorithm HI terminates, the first
three elements of S are optimal, i.e., they will be selected
by any algorithm that generates optimal solutions to
problem PTll. However, Algorithm H1 may terminate
with S = 0 , while the optimal solution is to select all the
nodes. This is illustrated by example 1.

Table 1. Data for Example 1

2
5
3
3

i

n
1
2
3
4

n

0 0

3
6
3
4

i

1

3
0 0

3
3
2

2

6
3
0 0

4
2

3

3
3
4
0 0

2

4

4
2
2
2
0 0

Example 1

Consider problem Ps of Section 4. The non-fragmented
relation is stored at site n, and the fragments of the second
relation at sites 1 to 4, C( and C(j are as defined in
Theorem 1 of Section 4. The data for the example are
given in Table 1. We ignore Jhe constant term in equation

(6), i.e. Z F( Cia = 0. Applying Algorithm H1 to the
iSl

example results in the following:

Step 1: S = 0 , S = {1, 2, 3, 4}, FC = 0.
Step 2 : C 1 = l , C 2 = l , C 3 = 0, C4 = l.
Step 3: f = 3.
Step 4: C3 = FC;Z(S) = O.

It is easy to see by complete enumeration that
S = {1, 2, 3, 4} is an optimal solution with Z(S) = — 4.

8. COMPUTATIONAL RESULTS
Two lower bounding procedures and an ADD heuristic
have been proposed in this paper. Those procedures were
programmed in FORTRAN and comparative compu-
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tational experiments have been carried out. The results
of those experiments are summarised in Table 2.

The experiments were based on the following data: the
fragment size was drawn from a uniform distribution
with a range of [10, 20]; the size of the join attribute

Table 2. Performance of the ADD procedure relative to the
lower bounds

ADD/PL 1 ADD/PL 2

|T|

5
10

15

20

30

40

F1,F2 i

2,3
2,8
5,5
2,13
7,8
5,15

10,10
5,25

15,15
5,35

20,20

\v.

1.03
1.06
1.02
1.04
1.02
1.11
1.06
1.23
.18
.20
.20

Min.

1.00
1.00
1.00
1.00
1.00
1.00
1.02
1.03
1.05
1.04
1.07

Max.

1.07
1.14
1.05
1.10
1.08
1.30
1.12
1.40
1.42
1.40
1.35

Av.

1.03
1.06
1.04
1.05
1.03
1.06
1.04
1.10
1.05
1.06
1.02

Min.

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

Max.

1.07
1.12
1.10
1.12
1.09
1.13
1.09
1.20
1.12
1.10
1.07

CPU

0
0
0
0.01
0.04
0.05
0.09
0.17
0.21
0.57
0.63

(1) |T| is the total number of fragments, Fl and F2 are
number of fragments of relation 1 and 2 respectively.

(2) ADD is the value of the solution generated by the ADD
procedure.

(3) PL1 and PL2 are the values of the lower bounds
generated by applying the subgradient procedure to problems
PL1 and PLt.

(4) CPU is the average CPU time measured in IBM 3032
seconds.

ranged from 5% to 50% of the fragment size; the unit
transmission costs were uniformly distributed between 0
and 5; and the selectivity factors were drawn from a
uniform distribution with a range of [0, 1].

The results presented in Table 2 are the average value
of six problems. Table 2 shows that relaxation PL2
(derived from the flow-based formulation) produced
significantly tighter bounds than relaxation PL1 (derived
from the tree-based formulation), and the gap between
the ADD heuristic and the lower bounds is smaller when
the relations consist of about the same number of
fragments. The gap between the ADD procedure and the
optimal solution is on the average at most 4.9% and for
70% of the problems the gap is at most 5%. -

An additional set of computational experiments was
carried out to test the effectiveness of the semi-join
strategy as a function of the selectivity factors and the size
of join attributes. The effectiveness of a semi-join strategy
was evaluated by comparing its cost to the cost of a direct
join (without a restriction by semi-join operations) at the
query site. Two of the model's parameters were varied:
the selectivity factors, and the size of join attributes.

The values of the selectivity factors are likely to have
a significant effect on the cost of solutions generated by
the ADD heuristic. It is likely that, for large selectivity
factors, the semi-join operations will not significantly
reduce the size of fragments, leading to solutions with
costs close to the cost of the direct-semi-join strategy.
The communication costs of semi-join operations are
incurred by transmitting join attributes. Hence it is likely
that small (relative to the fragment size) join attributes

1.45

1.40

_ 1.35
X
g 1.30

| 1.25

£ 1.20

1.15

1.10

1.05

l.OO
0.01 0.03 0.05 0.10 0.15 0.20 0.30 0.40 0.50

Range

Figure 5. Effect of selectivity factors.

Range

Figure 6. Effect of join attribute size.

will cause the heuristic procedure to generate solutions
which include more semi-join operations than solutions
for the case of large join attributes. Consequently, one
would expect that the cost of solutions in the case of large
join attributes will be close to the cost of the
direct-semi-join strategy.

The input data that were fixed for the sensitivity
analysis experiments consisted of the number of frag-
ments of the first relation (|S1| = 15), the number of
fragments of the second relation (|S2| = 10), and the unit
transmission costs (Cy ~ C/(0, 5)). The effect of changes
in the values of the selectivity factors oq is shown in Fig.
5. Every point on the graph in Fig. 5. is the average cost
of nine sample problems. All costs were normalised by
dividing them by the value of the minimum average cost.
The selectivity factors were derived by generating
Oj ~ U(0, b), where b is the range's upper limit as
specified on the horizontal axis of the graph in Fig. 5. The
fragment size Ft was drawn from a uniform distribution
with a range of [10, 20], and the size of the join attribute
Dt was derived by generating dt ~ £/(0.02, 0.20) and
multiplying it by Ft.

The results of the experiments validated the intuitive
conjecture: for large values of the selectivity factors
(Oj6[0.b], b ^ 0.3) the values of solutions, generated by
the heuristic procedure, converged to the value of
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TWO-WAY JOINS IN DATABASE SYSTEMS

no-semi-join solution, i.e. performing a direct join at the
query site. Fig. 5 demonstrates the effectiveness of
semi-join operations when the selectivity factors are small
(up to about 50% difference in cost occurred in the
experiments).

The effect of the size of the join attribute relative to its
fragment's size is shown in Fig. 6. The input data to the
experiments were the same as for the case of Fig. 5, except
that the selectivity factors were drawn from a fixed range
(oq ~ U(0, 0.05)), and the size of join attributes (as a
fraction of the fragments' size) was drawn from a uniform
distribution with a range of [a, b], where a and b are as
specified on the horizontal axis of the graph in Fig. 6. The
behaviour of the heuristic, as exhibited by the graphs in
Fig. 6, is very similar to the case where the selectivity
factors were varied. For large size of the join attributes
(even for small size of the selectivity factors), semi-join
operations are not beneficial, and the values of heuristic
solutions converge to the value of the no-semi-join
solution.

9. SUMMARY AND FUTURE RESEARCH
This paper has analysed the 2-way join problem, and
proved its NP-completeness. Using the semi-join oper-
ation as a size-reduction operation, a mathematical
model has been developed. Lower bounding and heuristic
procedures have been proposed and the results of
computational experiments presented. Those experi-
ments have revealed good performance by the heuristic
procedure, and demonstrated the benefit of using
semi-join operations to reduce the size of fragments prior

to their transfer to the query site. It was evident from the
computational experiments that the benefit of the
semi-join strategy is strongly dependent on the size of
selectivity factors and join attributes. The experiments
showed that large selectivity factors and/or join
attributes make the semi-join strategy non-beneficial. In
an actual environment, one may experiment with
semi-join procedures and determine a threshold point
above which semi-join operations will not be performed.

The importance of fragmentation has been stressed in
Section 1. Given that type of data topology, 2-way joins
are an important component of the system, since it is
reasonable to assume that many of the queries will refer
to two relations. The number of fragments in a
fragmented database system could be large for a
geographically dispersed organisation. In that case, the
problem's complexity will render the use of optimal
procedures too costly, and good heuristic procedures will
have to be employed. The lower bounds developed in this
paper can provide a system designer with valuable help
in evaluating the performance of a particular algorithm.

The algorithms proposed in this paper follow the
local-semi-join strategy, where the execution site of a
semi-join operation is the site of the fragment being
restricted by the operation. In Ref. 27 a more general
semi-join strategy is analysed. The strategy (referred to as
a 'remote-semi-join strategy') permits a semi-join to be
executed at an arbitrary site. As discussed in Section 1,
there are cases where the less sophisticated local-semi-
joins are more useful. An interesting research project is
to model the overhead costs associated with a particular
query-optimisation algorithm.
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APPENDIX: DERIVING THE
LAGRANGIAN RELAXATIONS
This appendix describes the derivation of two Lagrangian
relaxations to the 2-way-join problem. The first re-
laxation is applied to problem PT1, and the second to
problem PT2.

LAGRANGIAN RELAXATION OF
PROBLEM PTl

It was shown in Section 5.1 that problem PT1 is separable
into two symmetric subproblems PT11 and PT12. The
following Lagrangian relaxation applies to problem PTll.
To get the relaxation for problem PT12, one has simply
to change the subscripts as discussed in Section 5.1.

Multiplying constraints (15) by a conformable vector
of Lagrangian multipliers nit, and adding them to the
objective function (13) results in the following Lag-
rangian problem.

Problem P,L\

min{ I FtCtq + I atXt +
ieSl

Z Z Z (biktWm + diktg(kl)} (Al)
ieS2 keSl+i S

subject to: (14), (16H18)
Where:

keS2

"ikt = &i Ckt

d _ u-Muc, ieS2,keSl,teSl
t, ieS2,k = i,teSl

Let Wfkt be the optimal values of variables Wikt in
problem PL1; then the optimal values of the variables gikt
are given by:

0, ifW?w = 0

gtkt={0, ifWtkt = landdikt>0 (A 2)

|, if W?kt = I and dm < 0

To get a compact formulation we define the following
variables: , .„

c _ f 0, if dm 5* 0
ntkt~[\Sl\dtkt, otherwise
hiu = blkt+nikt

Using the relationship dmgikt = h~ikt Wikt, problem PL1
reduces to the following problem:

Problem P,L\
min{

ieSl

Z 2
ieS2 keSl+i teSl

IeSl

Z hlktWlkJ (A3)

subject to: (14) and (18).
The optimal solution to problem PLl is given by

Algorithm A 1 below.

Algorithm A 1

1. For every teSl Do Steps 2 and 3.

2. For every jeS2 Calculate hjkt = Min {hm}.
fceSi+J

3. 1/(0,+ Z hjkt) > 0, then:
} S 2

Else:

Xt = 0 and Wm = 0, VjeS2 andkeSl+j

Xt=\

Wiict=\,¥jeS2

Wm = 0, ¥j e S2 andk*k~

The optimal value of (A3), as calculated by Algorithm
A1, is a lower bound on the value of an optimal solution
to problem PT1. The optimal values of the variables gm
are calculated from (A 2).

LAGRANGIAN RELAXATION OF
PROBLEM PT2

The basic idea underlying the following relaxation is to
decompose problem PT21 (and similarly problem /V22)
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into |S2|x|Sl| network flow sub-problems plus other
problems with low polynomial complexity. To get the
standard network flow problems, the coupling variables
X( should be taken care of. One alternative is to relax
constraints (21) and (22), and a second one is to 'transfer'
the X( variables from equations (21) and (22) to the
flow-conservation equations of special dummy nodes.
The second alternative is likely to produce tighter lower
bounds and is adopted here. The augmented network is
constructed as follows. For every pair of fragments, j e T
and i e 1̂  (corresponding to path(J, /)), define a dummy
node dn, and and two arcs (j, djt) and (djt, i) with zero
arc costs (see Fig. A 1). Also, replace constraints (21) and
(22) by the following set of constraints:

where:

teT teSi+j
f}m=h k=j,jeS2,ieSl (A 4)

teT f
teSi+j

= i,jeS2,ieSl (A 5)

=l-*i . ieSl,jeS2

ffmjl=\-Xt, ieSl,jeS2

Clearly, if Xt = 1, no flow will pass through node dn,
V j e S2. If Xt = 0, path(J, i) must consist of arcs (J, d}i)
and {djt, i), and the cost of flow along this path is zero.
Hence, the resulting formulation is equivalent to the
previous one.

To tighten the formulation, the following set of redun-
dant constraints is added:

Z
teSl+j

ieSl,jeS2 (A 8)

The constraints in (A 8) state that if fragment i is to be
restricted by a semi-join, the joining attribute of every
fragment of the other relation must be available at
site i.

-> path (/, 0

Figure A 1. Constructing the augmented network.

The Lagrangian relaxation of problem PT2l is achieved
by multiplying constraints (A 6) and (A 7) by vectors of
Lagrangian multipliers Xjt and /in respectively, and the
sum (over ieSl ) of constraints (24) by a vector of
non-negative multipliers 8ilk, and adding those con-
straints to the objective function (19). The relaxed
problem is stated as problem PL2 below.

Problem P,L2

min{AQ,,fi)+ Z a,X,+ Z Z S bjktWJkt
ieSl j-S2 kESl+j teSl

+ Z I Z Z dntkf)ttk} (A 9)
jeS2 ieSl tSl+)+d kSl+d

A{X,n)= Z FiCig- Z Z
ieSl jeS2 ieSl

— DC — A1 — j kt— ikt

^ JeS2,ieSl,teSl+j,keSl

.}i, jeS2,ieSl,t = djt,k = i

•t, jeS2,ieS\,t=j,k = dn

•>, otherwise

Problem PL2 is separable into two sub-problems, PL21

and PL22, as follows:

(A

(A

6)

7)

Problem *L21

min {A(A., /i)1+ Z at
teSl

Xt

subject to: (20, (23), (25), (26), (A 4), (A 5) and (A 8)

+ Z Z S b]ktWjkt} (A 10)
jeS2keSl+j teSl

subject to: (A 8), and

Xt,Wme{0,\}, jeS2,keSl+j,teSl ( A l l )

Problem PL22

Min{ Z Z Z Z djitkfjltk} (A 12)
JeS2 ieSl teSl+j+dij keSl+dij

subject to: (20), (A 4), (A 5) and

/^* - / W d w = 0, ieS\JeS2 (A 13)
Q^fjikt^ 1, ieS\,jeS2,keS\+j+d(p

teSl+di} (A 14)
Problem PL2l is separable over t e S l , and is solved
optimally by Algorithm A 2 below.

Algorithm A 2

1. For every teSl Do Steps 2 to 4.
2. (a) Let Jjt = {k\bjkt ^0,keS

(b) Let b}kt = min {bm}
keSl+l

(c) Let Bjt = Z bjkt, where the summation is under-
keJJt

stood to be co if Jjt = 0.
(d) Let Bn = Min{Bjt, bjkt}

3. Ifat1t0 set Xt = 0; Else,

1, if Z Bn + at < 0

0, otherwise

4. For every je S2 :

[I, ifkeJjt
Wm = | 1, if Jft = 0,Xt= 1, and *: = h"

\0, otherwise

Problem PL22 is a Multi-Commodity Network Flow
problem with no interaction between the commodities.
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Hence the problem is separable into |Sl|x|S2| single-
commodity network flow problems. Let Pn denote each
one of those problems and Z*(P) denote the value of an
optimal solution to a generic problem P. Then, the value
of an optimal solution to problem PL2 is given by:

) = Z*(PL21) + S S Z*(Pi()
ieSl]eS2

Solving the problems Pjt can be made more efficient by
the use of Lemma A 1.

Lemma A 1

Let SPATH(j, i) denote the problem of finding the
shortest path from node i to node j in the non-augmented
network. Then,

Z*(PiO=tain{Z*{SPATHU, 0), (**+%)}

Proof
It follows from constraints (A 4) and (A 5) and the
non-negativity of dm's that an optimal solution to

problem P}i will contain no arc entering node j or leaving
node i. That implies that exactly one arc must leave node
i and enter node j . If the path {j, d}(, i} is part of the
optimal solution to problem P}i, it must be the only path
(all other paths are excluded due to the non-negativity of
d]tk's). Since arc flows are integral and limited to one unit,
if node d}t is not on an optimal path (j, i), the optimal
path constitutes a shortest path from node j to node i.
That path does not contain cycles, since arc costs are
non-negative in the non-augmented network.

Q.E.D.

Lemma A 1 implies that we have to solve |Sl|x|S2|
Shortest Path problems instead of |Sl|x|S2| Network
Flow problems. Moreover, since those Shortest Path
problems are independent, the solution of problem P}i
can be achieved by solving |S2| shortest problems, each
from node j e S 2 to all nodes i e S1.
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