
Short Notes

Editor's Note

The following paper, 'Optimising Self Repli-
cating Programs', would appear on the surface
to be a contribution not to be taken too
seriously. This is misleading. There is a serious
point concerning the need always to analyse
fully the logic behind what we are doing. I
wish, however, to correct the author on one
aspect of the paper; in his references he
mentions a page in The Computer Journal, vol.
29, no. 6. This particular page is not in the
main body of the Journal but is in the Annual
Index. The author should note that it is
Editorial Board policy not to include in the
main body of the Journal pages of the kind to
which both he and I refer. Whether or not the
reference to vol. 20, no. 4 implies the existence
of'virtual journals' and/or 'virtual papers' I
must leave to readers to decide: it is
presumably a page fault.

Optimising self-replicating programs

Received January

Introduction

A major and proper concern in computer
science is the efficiency of programs, and
more generally the weighted efficiency of the
combined development cycle and run time.
The weighting depends on the expected
development-time to life-time ratio of the fully
developed program: if it is to be run once, the
development time takes on a higher weight; if
it can be run many times (or marketed widely)
then run time acquires a higher weighting. The
conventional wisdom is that judicious use of
software tools can drastically reduce the
relative cost of software development. This
article disputes this position by exhibiting a
counter-example.

Definitions

A self-replicating program is defined as a fixed
point of the program development cycle.
Typically, executing a compiled self-repli-
cating program produces output equal to the
program itself. Sometimes, the fixed point is
not achieved immediately, but the develop-
ment sequence must be iterated; in this case we
call the program a /c-step self-replicating
program, where k compile-execute steps are
required. In general, replication can occur with
non-unit period (i.e. within a non-singleton set
of mutually self-replicating programs); how-
ever, we shall not explore such possibilities
here. Autonomously self-replicating programs
are termed' viruses '• and, although the subject
of much recreational literature,1 are a serious
security issue.18

The existence of self-replicating programs is
established by the Kleene recursion
theorem.8'7 Self-replicating programs were
first discussed by John von Neumann1' and
caused much discussion, notably the so-called
Rosen Paradox.8 Put briefly, the Rosen
Paradox claims that a program certainly
cannot be specified until the range of its output
is known, but for a self-replicating program

* For example the PDP11-style instruction
'mo v 0 1 ' when executed makes a copy of itself
in the following word, which will then be
executed, and so on.

the program is in its own range. Thus a
self-replicating program cannot be specified.
Strachey11 has given the specification for an
impossible program (by taking the domain of
the program to include itself),* though
Maurer4 claims no impossibility arises for
finite programs.

The proof of the possibility of self-
replicating programs assumes an admissible
encoding of programs;3 however, in this paper
we are concerned with self-replication without
encoding (i.e. identity encoding). It is easily
shown that coding is a critical problem, as
follows. The General Purpose Macrogenerator
(GPM) is clearly Turing complete, so by the
recursion theorem we may certainly devise a
self-replicating GPM program up to encoding.
Now, any non-trivial self-replicating GPM
program must output the symbol '§ ' (in order
to commence a macro definition or invo-
cation). This symbol must therefore occur in
the program in quoted form (e.g. '<§> ') .
Since the program is self-replicating, occur-
rence in the input requires occurrence in the
output (of the preceding program execution).
However, to obtain the necessary quote
symbols they must be quoted, so the input
contains more quotes than the output. Such a
program could not be self-replicating. There-
fore Turing completeness is an insufficient
condition to permit self-replication. In general,
a self-replicating programming notation re-
quires not only names for certain objects, but
names for program code to compute those
names and it is this that the GPM lacks. The
lambda calculus supports the self-replicating
'Xx(xx)Xx(xx)' that reduces to itself without
the use of quotation mechanisms, but it should
be noted that any well-formed formula of
A-calculus can be the result of reduction, and
therefore A-calculus meets the criterion just
mentioned (not only having names for objects
but also being able to name expressions
reducing to those objects).

Since the GPM is a conventional macro
processor non-macro text is processed literally,
so non-macro 'programs' self-replicate in a
purely trivial sense. The recursion theorem
also affirms the possibility of self-replicating
universal programs; bearing this in mind will
naturally exclude trivial self-replicating pro-
grams from further consideration.

Optimising self-replicating programs

Given a k step self-replicating program P, a
k+l step self-replicating program can be
constructed directly. The k+l step program
merely outputs the text of the k step program.
If k > 1, the k + l step program may take
liberties with program layout, since these will
be absorbed in the second compilation step. In
the present paper we are concerned with
optimising self-replicating programs, so we
shall search for ways to reduce k. The first
example, due to Thomson,1' is of a 2-step
self-replicating program and is shown below.

* The fact that Strachey actually exhibits
the 'impossible' program means that it is not
the program itself that is impossible. If the
program was run it would crash and there is
nothing paradoxical about that. The real issue
is that the program fallaciously purports to
compute a function that is non-computable.

Despite the somewhat arbitrary appearance of
this code, self-replicating programs may be de-
veloped systematically from first principles12.
char s [] = {

'\t',
'0',
V,

'\n\
(215 or so lines omitted)
V,
0

The string s is a
representation of the body
of this program from '0'
to the end

V
main()

int i ;
pr int f ("char \ ts [] ={\n');
for(i =0 ; s [i] ; i + +)

printf(*\t56d, \n* , s [i]) ;
printf('%s", s) ;

The first step in the program towards
self-replicating converts the explicit character
constants ('\t', '0', etc.) into decimal values.
In support of the 'software tools approach' it
can be argued that since the second-step
self-replicating program is approximately four
times longer than the first there is a significant
economy to be had in writing the smaller
version and using the initial compile-execute
step for its expansion. (A slightly longer initial
program could have been written to avoid this,
though its greater length would encourage the
program developer to use a software tool in
order to generate the character constant table,
thus keeping the number of steps the same!)
Without loss of generality we base our analysis
on time complexity. Conservative estimates of
the development time are: lOmin (600 sec)
writing;* 1 min (60 sec) compiling; say,
0.1 sec running (proportional to the length of
the program). Since this is a 2-step self-
replicating program, achieving the fixed point
takes time totalling 720.2 sec, iterated perhaps
ten times for debugging (7202 sec), neglecting
intermediate editing time.

The following program is an example of a
1-step self-replicating program. (Purely for
clarity of presentation it is only 1-step up to
white-space encoding-it is in fact typeset
below as a 2-step self-replicating program.)

char q= ' " ' , *s =
"char q = '%c', »s = %c%s%c; main() \

{ p r i n t f (s , q, q, s, q) ; }';
main() { p r i n t f (s , q, q, s, q) ; }

This program is a third shorter, and similar
analysis to that given above shows obtaining
self-replication requires 2401 seconds (now
conservatively allowing for ten iterations for
debugging, even though the program is
simpler). Clearly, omission of the first soft-
ware-tools cycle has saved 7202 — 2401 =
4801 sec, a significant 66% saving.

* Ten minutes when copied from Thom-
son's paper; it may have taken him longer to
write.

THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987 475

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/5/475/366866 by guest on 10 April 2024

SHORT NOTES

Nevertheless, we may make greater savings
by eliminating the execution step, as follows.
The following program is a J-step self-
replicating program:

"s . c", l i n e 1: syntax e r r o r
Compiling this program immediately ob-

tains the fixed point. Eliminating the execution
step has obtained a factor of around four in
further time savings. Notice that in the
language C (in which you can see the program
above is written) there are no facilities to
obtain the name of the program, and it has to
be written in explicitly. Similar problems arise
in the Prolog 1-step self-replicating program,
'x :- l i s t i n g (x) . ' . Many interpreted
languages provide explicit features that permit
more general programs, a feature that may be
readily exploited in natural language (e.g.
Smullyan8). For example, in the UNIX* shell
we may write ' c a t $0'. In passing, note that
' c a t $0; e x i t ; ' can be prefixed to any shell
program to cause it (together with the prefix)
to self-replicate. The ' e x i t ' command in the
prefix is required to ensure the composite
program only self-replicates.f Text formatters
(normally directly interpreted) raise further
issues for self-replication that I shall address
shortly.

The final example, shown below, is a O-step
self-replicating program.

This program does not require writing,
compiling nor executing (in short, no reliance
on software tools). It self-replicates directly.
Of course, you have to be careful which
software system is not used; for example, in
Pascal it causes syntax errors (in C it causes
load-time errors). The program works best in
Algol-60. As promised in the introduction, this
program is efficient without using software
tools. Indeed, the program may be used any
number of times and yet only replicate itself
precisely once.

Self-replicating papers

It is interesting to note that the last program
is 2-step self-replicating for most text for-

* UNIX is both a trademark and footnote of
AT & T Bell Laboratories.

t Note that the shell examples are only
weakly self-replicating (i.e. only if they
terminate successfully will they have self-
replicated). If the program code is located by
pathname search, then ' $0 ' is not necessarily
the name of the program code file. To
overcome this problem, the program could be
written, ' c a t ' w h i c h $(V ', though there
are still the possibilities that the output from
which is not unique, and that the program
may not have been invoked from the shell (in
which case '$0 ' is arbitrary).

matters, since any output (and therefore the
least fixed point) is normally a positive
multiple of whole pages. We call such a text
(program) a 2-step self-replicating paper, and
in the general case, a &-step self-replicating
paper. A 1-step self-replicating paper may be
found in Thimbleby,14 and we note that there
is a significant literature of fc-step (k > 1)
self-replicating papers with which the reader is
probably already well enough acquainted.
Self-replicating papers should be carefully
distinguished from self-referencing6'16 and
self-satisfied (tautologous) papers.

A small conjecture

I finish this paper offering a conjecture:
non-trivial, non-encoded* self-replicating
papers cannot be written in nroff. If proved,
this would undermine Reid's otherwise valid
criticism of nroff.6

H. THIMBLEBY
Department of Computer Science,
University of York,
York YO1 5DD

References

1. A. K. Dewdney, Computer recreations.
Scientific American 250 (5), 15-19; 252
(3), 14-19 (1984, 1985).

2. S. C. Kleene, Introduction to Melamath-
matics. Van Nostrand, Reinhold (1952).

3. C. Y. Lee, A Turing machine which prints
its own code script. Proceedings of the
Symposium on Mathematical Theory of
Automata, pp. 155-164. Polytechnic
Press, Polytechnic Institute of Brooklyn
(1962).

4. W. D. Maurer, Correspondence. Com-
puter Journal, 8 (4), 330 (1966).

5. J. Morton, On recursive reference. Cog-
nition 4 (4), 309 (1976).

6. B. K. Reid, The Scribe document speci-
fication language and its compiler. Inter-
national Conference on Research and
Trends in Document Preparation Systems,
pp. 59-62. Swiss Institutes of Technology,
Lausanne (1981).

7. H. Rogers, Jr., Theory of Recursive Func-
tions and Effective Computability. Mc-
Graw-Hill, New York (1967).

8. R. Rosen, On a logical paradox implicit

* Non-encoded requires not changing
quote/escape symbols nor using the trans-
literate (' . t r ') command. Encoded self-
replicating papers in nroff are trivial, as the
earlier discussion on self-replication in GPM
intimated.

in the notion of self-reproducing auto-
mata. Bulletin of Mathematical Biophysics
21, 387 (1959).

9. R. M. Smullyan, What Is The Name Of
This Booki Prentice-Hall, Englewood
Cliffs, NJ. (1978).

10. C. Strachey, A general purpose macro-
generator. Computer Journal 8 (3),
225-241 (1966).

11. C. Strachey, An impossible program.
Computer Journal 7 (4), 313 (1965).

12. J. W. Thatcher, The Construction of a
self-describing Turing machine. Pro-
ceedings of the Symposium on Math-
ematical Theory of Automata, pp. 165-171.
Polytechnic Press, Polytechnic Institute of
Brooklyn (1962).

13. H. W. Thimbleby, Computer Journal, 20
(4), 386-400 (1977).

14. H. W. Thimbleby,* Computer Journal, 29
(6), x (1986).

15. H. W. Thimbleby, Optimising Self-Repli-
cating Programs. Computer Journal, this
issue.

16. K. Thomson, Reflections on trusting
trust. Communications ACM 27 (8),
761-763 (1984).

17. J. von Neumann, The general and logical
theory of automata. In Cerebral Mech-
anisms in Behaviour. Proceedings of 1948
Hixon Symposium, edited L. A. Jeffress,
pp. l^U. Wiley, New York (1951).

18. I. H. Witten, Computer (in)security (In-
filtrating open systems). Department of
Computer Science, Research Report no.
86/249/23, University of Calgary (1986).

Editor's Note (author's version)

In order to ensure the timely publication of
this important paper, I have taken the very
unusual step of publishing it together with
referee's comments.

'The paper "Optimising self-replicating
programs" by H. Thimbleby addresses an
important issue that deserves wider appreci-
ation. The paper is both good and original,
but unfortunately the good parts are not
original and the original parts are not good
(cf. S. Gorn's Compendium of Rarely Used
Cliches). This should not be seen to detract
from the basic argument, for the same
observation applies to the previous sentence
also. I recommend the paper be published
promptly, but only once.'

* The actual printed paper is anonymous,
but I can now admit I submitted it as a 2-step
self-replicating paper (the version printed is
one page longer than my original). Owing to
an unexplained time anomaly, a corrected
version was printed earlier.13

476 THE COMPUTER JOURNAL, VOL. 30, NO. 5, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/5/475/366866 by guest on 10 April 2024

