
Derivation of Sorting Algorithms from a Specification

R. G. DROMEY
Computing and Information Studies, Griffith University, Nathan, QLD 4111, Australia

It is important to be able to derive different algorithms that meet a particular specification. Transformations on a
program specification provide a systematic means for such an endeavour. Different transformations on a specification
can yield new and alternative forms of invariants. These invariants, in turn, can provide the framework for the
derivation of a variety of algorithms by the use of weakest precondition techniques. To demonstrate these ideas a
number of well-known sorting algorithms are shown to be derivable from a single original program specification.

The intelligent use of equivalent forms is the touchstone of logical insight (S. K. Langer).

Received April 1986, revised September 1986

1. INTRODUCTION

We must learn to use specifications more effectively in
program development. The usual scenario for employing
them is to define a specification and then manipulate it
to aid in the development of a program. Our objective
here is to go beyond this scenario and explore the use of
a specification as a vehicle for developing a number of
alternative solutions to a problem. There are several
things that can stand in the way of such an endeavour.
Firstly, specifications are often not in a form that will
directly permit the development of even a single solu-
tion, let alone a number of alternatives. It is therefore
necessary to be able to recognise this situation when it
occurs and then be able to do something about it.

The problem of recognising that a specification is not
in a suitable form for program development has been
discussed in detail elsewhere.1 To summarise, a specifica-
tion is considered suitable for program derivation if it
satisfies the following criteria:
it is easy to make an initialization of free variables that
will establish the postcondition;
it is easy to check if the initialization has established
the postcondition.
Our primary concern here is to develop a number of
different solutions to a problem from a single base
specification. There are two ways in which manipulations
of a specification can influence the development of
different algorithmic solutions to a problem. The
differentiation is provided by the transformations that
are made on a specification, and the order in which those
transformations are made in the course of development
of a program. We will attempt to show that variability
with respect to these two factors can, in some instances
at least, lead to a rich variety of strategies for satisfying
a given base specification. This variability is possible
because a transformation on a specification translates
into, in the program domain, a set of constraints under
which a particular subset of a program's variables may
be changed. And it is the changing of particular subsets
of variables, under a particular set of constraints, which
ultimately defines the corresponding structure in a
program and the strategy or algorithm that will satisfy
the specification.

If what we are suggesting is to have any credence,
different manipulations of a single sorting specification
should lead to the derivation of a number of sorting
algorithms. In the sections that follow we shall show how
this is indeed the case.

2. TRANSFORMATIONS ON A SORTING
SPECIFICATION
A simple formulation of the sorting problem involves the
requirement of ordering a fixed set A of Nintegers using
an array a[\.. N]. The corresponding specification for this
problem, phrased in terms of a precondition Q, and a
postcondition R, may take the form:

R: (V&)(1 ^k<N^> ak ^ ak+1) A perm (a, A)

where V is the universal quantifier and perm (a, A) is a
predicate indicating that the sorted result must be a
permutation of the original fixed set of integers A.

The postcondition R is not in a form where it is possible
to make an initialisation of free variables capable of
establishing R, that can also be easily checked for success
in establishing R. However, making a state-space
extension on R, by introducing a new free variable i, we
get, by the principle of extensionality:2

<i ak+1) A perm (a, A)
A i = .

where

Because RD implies R, it follows that RD may be used as
a basis for program development.

Weakening RD by dropping the last conjunct we get
the invariant

Using Dijkstra's constructive weakest precondition
technique3 and computing

we are quickly led to the derivation of an insertion-sort
algorithm. This derivation is shown in detail elsewhere.1

It is difficult to see how we could make any useful
transformations on R or RQ that would lead to the
derivation of a selectionsort, a bubblesort, a quicksort4

or any other kind of sort. To make progress we will
re-examine the original specification R more carefully.
We have:

The following sequence of manipulations can be made on
R and its descendants. Each transformation leads to a

* For proof purposes the range of any free variables (in this case
1 ^ i =S N) introduced may also be added to specifications.

512 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

DERIVATION OF SORTING ALGORITHMS FROM A SPECIFICATION

new specification which is at least as strong as its pre-
decessor.

Transformation (I) - introduction of a new free
variable q.

R1: (V/t)(l ==: k < N => (q = k+1 => ak sg aq))

where

R*=>R

Transformation (II) - introduction of a quantifier
over q.

Rn:(yk)(\ ^k<N

where Ru => R1.
Transformation (HI) - state-space extension, introduc-

tion of a new free variable p.

where RIU=>RU.
Transformation (IV) - introduction of a quantifier

over p

RIV:(Vk)(l

where R1V => Rul.
It is also relatively easy to show that

and therefore any sorting algorithms that we develop
which satisfy R1V will also satisfy R.

There are several ways of expressing the relation R1V

with varying degrees of formality, i.e.

Q/p,q: 1 k<k
aq))

and

These specifications state that for each partition defined
byk, the elements in the left partition (i.e. a[\.. k]) are less
than or equal to the elements in the right partition (i.e.
a[k+\ ..N]). Quantification over k ensures that the
'sorted condition' expressed in ./? is still implied by the
various versions of R1V.

The postcondition R1V is sufficiently rich in its degrees
of freedom to allow manipulations that lead to the
development of a variety of different sorting algorithms.
We will focus on the last version of Riy, i.e.

Rlv:(Vk: 1 ̂ k < N: a[\ ..k] ^ a[k+\ ..N])

as the base specification from which to develop sorting
algorithms. It should be noted that Rn is also a perfectly
reasonable specification from which to develop a number
of different sorting algorithms.

Before considering the constructive development of
any particular sorting algorithm we will provide a brief
summary of the main lines of manipulation of R1V that
we will use. There are three primary transformations on
R1V that we will consider. Each of these primary
manipulations leads to a family of sorting algorithms that
share an underlying strategy. The three strategies
identified are sorting by selection, sorting by insertion,
and sorting by partitioning.

2.1 The transformation for selection

An obvious manipulation on RIV we can make is a simple
state-space extension in which the leftmost N is replaced
by a new free variable / and the accompanying
equivalence condition i = N (see Ref. 1) is appended to
give:

RD:(Vk: a[\ ..k] ^ a[k+l ..N]) Ai = N

where RD => RIV.
The first conjunct in RD is easily established by the

assignments ' / : = 1 ; a: = A' while it is much more
difficult to establish the second conjunct i = Nin concert
with the first. The condition established by the initial-
isation is therefore:

^ : (V/t: 1 a[\ ..k] ^ a[k+l ..N])

To make progress towards establishing the remaining
conjunct i = N and hence RD, i will need to be increased.
One possibility is to investigate the effect of executing the
command ' / : = / + 1' under the invariance of Px. To do
this we may compute:

which immediately tells us that the following component
is not implied by Pu i.e.

t: a[i\ ..N] is not implied by

Therefore in order to safely execute the command
' / : = / + 1' under the invariance of Pl it will be necessary
to guarantee that the sub-goal R1 is established first.
Pursuit of this goal leads to the derivation of mechanisms
that apply a strategy of locating and putting in place, first
the smallest element in the array, then the second smallest
element in the array, and so on. The particular
transformations that are made on Rt in order to derive
a refinement that will establish it determine whether we
end up with a direct selectionsort, an indirect selection-
sort, a bubblesort, or a heapsort. We will pursue these
derivations in the next major section.

2.2 The transformation for insertion

Returning to our original postcondition R1V, a second
possible state-space extension is to replace not just one
but both occurrences of iV by /, and include the
equivalence condition / = N. This yields

RD:(Vk: a[l..k] ^ a[k + l ..i] A i = N

where again Ro => R1V.
The first conjunct in RD is easily established by the

assignments ' / : = 1 ; a: = A\ while it is much more
difficult to establish the second conjunct i = N in
concert with the first. The condition established by the
initialisation is therefore:

/>:(VAr: 1 < k < i: a[\ ..k] s£ a[k+ 1../]

With this specification it is also possible to investigate
conditions under which the command '/": = / + 1' can be
executed. To do this we may compute

wp (' / : = / + ! ' , />)

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 513

CPJ 30

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

R. G. DROMEY

which tells us that
/?x: ordered (a[l../]) ^ ai+1 is not implied by Pt*

Therefore in order to safely execute the command
' / : = / + 1' under the invariance of P1 it will be necessary
to guarantee that the sub-goal Rt is established first. In
contrast to the previous development, the focus here is
not on finding the minimum, and then the second
smallest, and so on, but rather on keeping the segment
a[\../] ordered in non-descending order. The particular
transformations that are made on Rx in order to derive
a refinement that will establish it determine whether
we end up with a direct insertionsort, or an indirect
insertionsort. These derivations will also be pursued in
the next major section.

2.3 The transformation for partitioning

Both of the previous primary manipulations of the post-
condition have focused on building up the sorted or
ordered array one element at a time, from the left.
Another approach is to be more arbitrary about the order
in which the partitioning is done by allowing it to be
data-driven. The focus then is upon some arbitrary k
value in the range 1 < k < N such that the array is
partitioned into two segments a[\..k] and a[k+ 1..N]. In
other words the 'for all k' is replaced by 'for one k\ This
amounts to weakening Rlv by deleting the quantifier to
obtain:

The task is then, in the first instance, to construct a
mechanism which achieves the split into two partitions
(that is, the array a must be transformed, and a k found,
for which relation Rx is satisfied). This leaves two
sub-problems to which the same partitioning strategy can
be applied. Depending on how the specifications are
manipulated we end up with the derivation of a quicksort
algorithm based either on pivot partitioning5 or interval
partitioning.6 The partitioning algorithm needs to be
applied in such a way that it achieves partitioning for all
k in the range 1 ^ k < N in order to guarantee the
relation RD, with its quantification over k.

3. DERIVATION OF SORTING
ALGORITHMS
We will now turn to the derivation of some of the sorting
algorithms we have alluded to in the previous section.
What we will attempt to show is the underlying principles
which relate the various algorithms and also the influence
of specification manipulations in deriving these algor-
ithms. Space does not permit the complete stepwise
development of each one. Examples of detailed stepwise
development of algorithms from specifications, in the
present style, are presented elsewhere.1 Fig. 1 shows the
basic topology for the various sorting algorithms
resulting from resolution of the sub-goals in the way we
have outlined.

3.1 The selection algorithms
The first family of sorting algorithms whose derivation
we will consider are selectionsort,4 bubblesort4 and

* Ordered(a[l../]) is shorthand for (V/t: 1 ^ k < i: a[\ ..k]r^
d[k + 1 . . /]). Technically R, should have been written as ordered
(a[l. .1]) A a[\ ..i\ =£ af+1, but the intended meaning of the shorthand
should be clear.

Sub-goal
resolution

Direct selectionsort
Indirect selectionsort

Bubblesort
Heapsort

Direct insertionsort

Indirect insertionsort

Pivot partitionsort

Interval partitionsort

Figure 1. The diagram shows how, at the sub-goal level,
specification transformations separate the various sorting
algorithms into classes.

heapsort.7 The postcondition that we will use for these
derivations is:

Earlier we derived the invariant

P^.Q/k: 1 ^ k < i : a[\ ..k] a[k+ 1 ..N])

and investigated wp('i := i+ l,/\) from which we dis-
covered that the sub-goal Rlt i.e.

was not implied by Pv The point where we left off our
discussion was with the requirement that it would be
necessary to execute ' / : = / + 1' under the invariance of
Pt. This corresponds to the following basic sorting
strategy:

i: = 1; a : = A;
do iytN—

'Execute i := i+ 1 under the invariance of P^
od

We will now investigate how ' i: = i+ 1' may be executed
under the invariance of Pv

Direct selectionsort derivation

It is not easy to establish the sub-goal /?, by an
initialisation of free variables. In response to this
situation, one way to proceed is to introduce a new free
variable j into R1 along with the equivalence condition
j = N. This transformation yields:

R[:a[H^a[i+l..j\ Aj=N

where /?{:=> Rv

The first conjunct of R{ is easily established by the
initialisation '_/ := f. It is however much more difficult
to establish this conjunct in concert with the second
conjunct 7 = N\ We will therefore work with the first
conjunct of R\ as an invariant P\ and attempt to establish
the second conjunct:

Our basic sorting loop is therefore decomposed to:

/: = 1; a : = A;
d o / # # -

do j *

514 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

DERIVATION OF SORTING ALGORITHMS FROM A SPECIFICATION

'Execute j : = 7 + 1 under the invariance of P\'
od ;{R\}

od

Investigating wp('j: = j+\',P\) we find that
a[i\ ̂ a\j+1] is not necessarily implied by P{. When
a[i] =$ a\J+ 1] prevails we can simply execute '7 '- — j+ 1'»
but when a[i\ > a[j+ 1] occurs we will need to execute
swap (a(,aj+1)* together with ay-increment in order to
preserve P\. Incorporating these refinements we arrive at
a description of the main elements of a version of direct
selectionsort.

Direct selectionsort

i: = 1; a: = A;

swap (at, aj+1); j:=j+l

do y# N -*
if a4<a^
t] a* > %
fi

od; {/?}}

od

Indirect selectionsort derivation

To obtain the more often-quoted and more efficient
version of selectionsort4 it is necessary to make two
further manipulations of R\. First we introduce a new free
variable x, in place of at, and we record the identity
x = at as a conjunct to give:

R\1:x = a(A xs$ a[/+1..j] A7 = N

We can then go one step further and introduce a new free
variable m in place of / in x = at. In order to do this we
need to also add the conjunct m = i. This yields

R[n: x = am A x ^ a[« + 1. .7] A w = / A j = Nf

This relation can be weakened by dropping the conjuncts
m = / A7 = N, which leaves us with the invariant:

P\":x = am AX ^a[i+l..j\

The selectionsort derived using this new loop invariant
P\u is as follows:

Indirect selectionsort

i: = 1; a : = A;
do 1 *#-»{/»}

x,m,j:=at,i,i;

IJ x > aj+l -
fi

od; {x = am A

1,7+

a[/+ 1 ..7] A7 =

od

* Swap is a procedure which swaps its arguments,
t Strictly speaking we should add a conjunct here that indicates that

AT is a member of the elements a[i. .j\, i.e. xea[i. .j\.

Bubblesort derivation

For the derivation of a bubblesort we will again work
with the same Pl and Rr derived in section 2.1, i.e.

P1:(Vk:\^k<i: a[l ..k] ̂ a[k+\ ..N])
R1:a[i\^a[i+\..N]

Only after first establishing Rl is it possible to execute
' / : = / + 1' under the invariance of Px. Because we cannot
guarantee to establish the sub-goal Rt directly by an
initialisation of free variables, or simply by increasing /,
a state-space extension is needed. A suitable extension is
to replace both f s by 7''s and include the equivalence
condition 7 = i. This yields

where

The first conjunct is easily established by the initialisation
'7 : = N'. It may be used as an invariant P{, that will allow
7 to be decreased in order to establish j = i. We therefore
have:

The basic structure of the algorithm that follows from
this development is:

/ : = 1 ; a:=A;
Aoi^N^

j:=N;
oy# /->

' Execute j : = j — 1 under the invariance ofP\'
od;

od

Investigating wp(lj:=j— l,P\) we find that a^ < a^ is
not necessarily implied by P\. When a^_x ^ at prevails we
can safely execute ^j'. — j—Y, but when a^_x > a^ occurs
we will need to execute swap (a ^ , a^) together with the
7-decrement in order to decrease the variant function j—i
while preserving P\. Incorporating these refinements we
arrive at a description of the main elements of a version
of bubblesort.

Bubblesort

/ : = 1 ; a: = A;
do i^iV-»{/»}

j:=N;
1-»{/»}}

[] aH1 >a}-> swap (ahl, a}); j:=j-\
fi

od; {R\}

od

Heapsort

The same underlying selection strategy for sorting is
employed in heapsort7 as in the selectionsorts and
bubblesort. All three algorithms repeatedly find the
minimum in the unsorted part of the array a[i..N]. The
difference with heapsort is that it uses a more
sophisticated and more efficient method for establishing

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 515

23-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

R. G. DROMEY

To carry out the development of this algorithm the
insight is needed that a heap provides a very convenient
way of finding the minimum in the region a[i..N]. The
minimum resides at the root of the heap (i.e. at a[N]), and
only minor adjustments are needed to obtain successive
minima from a heap once it has been built. In the first
instance the data must be arranged in a heap such that

holds for all values of 7 where the indices are within the
bounds of the array. This property defines a heap with
the minimum at aN. Using the same Pl and /?, as in the
last two algorithms we are led to the following
implementation of heapsort.

Heapsort

a:=A;
buildheap (a, N);
/ : = 1;
d o / # AT->{/>}

swap (at, a N); i:=i+\;
siftleft (a, i, N)

od

where buildheap is a procedure that builds a heap with
its minimum at aN, and siftleft restores the heap property
in the array segment a[i.. N]. The procedure siftleft acts
as a selection mechanism for successively extracting the
smallest element from the contracting region a[i.. N] via
the root of the heap.

Unfortunately, there is no interesting manipulation of
the particular base specification we have used that would
lead us directly to the detailed implementation of
heapsort. To develop heapsort directly from a specifica-
tion it is necessary to start with a postcondition that
focuses on a tree-like ordering dominance. Such a
treatment is provided elsewhere by Dijkstra and van
Gasteren.8

3.2 The insertion algorithms

The two insertionsort algorithms that we will derive here
result from using two different methods for inserting an
element at a position in an ordered sequence that
preserves the order of the extended sequence. The
different methods for insertion arise directly from making
different transformations on the sub-goal that must be
established in order to extend the ordered sequence by
one element.

Direct insertionsort derivation
Earlier in section 2.2 we saw that a second basic form

of postcondition to work with was

R D : (V/fc: 1 s£ k < i: a [\ . . k] < a [k + l..i]) A i = N.

From this we were led to the invariant:

Px: Q/k: 1 ^ k < i: a[\ ..k] ^ a[k+ 1../])

Our investigation of increasing i under the invariance of
P1 led to the discovery that Rt was not implied by Px.

Rx: ordered (a[\.. i\) ^ ai+1

In establishing the sub-goal Rt the obligation is to ensure
that a[\ ..1] remains ordered. Our basic loop structure at
this stage is therefore:

i: = 1; a : = A;
do ii= N ->

''Execute i: = /' + 1 under the invariance of P^
od

As there is no guarantee of being able to establish Rl
directly we may in the first instance seek transformations
to another more useful specification. One possible
transformation is to introduce a new free variable j to
replace the first occurrence of / in R1 and include the
equivalence condition 7 = / to yield:

R\: ordered (a[l. .7]) < at+1 A 7 = <

where R\ => Rv
Dropping the last conjunct from R[we obtain the

invariant:

P\: ordered(a[l..J\) ^ ai+l.

Carrying out the necessary loop development using a
weakest precondition computation with P\ we obtain an
implementation of direct insertionsort.

Direct insertionsort

do / # W-»{/>}
j:=0;

j
swap(aHl,ai+l); 7: = 7 + 1

if a}+1

[] aj+

fi
od; {R[}

od
{RD}

Indirect insertionsort derivation

The more familiar implementation of an insertionsort
can be derived by starting out with a different trans-
formation onRv Thea[/+ 1] can be replaced by a 'range'
over a single element a[i+ 1.. i+ 1]. This yields:

R[: ordered(a[\ ..i\) < a[i+ 1../+ 1]

where R\ => Rv
We can strengthen the right-hand side of the relation

further by requiring that it must also be ordered, i.e.

R?: ordered(a[\ ..i\) ^ ordered(a[i+ 1..i+ 1])

where/?}1 =>/?{.
Rather than work directly with /?{' we can 'split' the

variable /1 by introducing new free variables / and j to
yield:

R\": ordered(a[1../]) < ordered(a[7+ 1../+ 1])
A / = / A 7 = i

where again R\u => /?{'.
We can go one step further and obtain

i?jv: ordered (a[l.. /] =$ ordered (a\j+ 1.. /+ 1]) A / = j

where R\v => Rt.
The first conjunct is easily established by the as-

signments / := 1; 7:= /+ 1. The second conjunct is
much harder to establish in concert with the first

516 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

DERIVATION OF SORTING ALGORITHMS FROM A SPECIFICATION

conjunct. Our primary objective now will be to establish
./?{v. For this purpose we will keep the relation

P{v: ordered(a[\../]) ^ ordered(a[j+ 1..i+ 1])

invariant while attempting to establish I =j primarily by
decreasing^ and if necessary increasing / using the forced
termination technique.9 Establishing P\v, with l=j will
be sufficient to imply that Rr holds. This will allow us to
increase i under the invariance of Pv Carrying out the
necessary loop development using weakest precondition
calculations with P\v we obtain the following implemen-
tation of an insertionsort.

Indirect insertionsort.
i; = l ; a : = A;

y { { }
if «;_! > a} -> swap(a^_x, aj);j: = j -
[]a;_! ^a}-*l:=j
fi

od; {R[v}

od

3.3 The partitioning algorithms

The two versions of quicksort that we will derive here
result from using two different methods for partitioning
a sequence. The different methods for partitioning arise
directly from making different transformations on the
sub-goal that must be established in order to extend the
number of partitions established by one.

Quicksort derivation (using pivot partitioning)

In our earlier discussion of quicksort in section 2.3 we
found that the first step was to establish the sub-goal :

for some arbitrary k value.
As it is difficult to make an initialisation of free

variables that will establish Ro directly we will choose to
split the variable k by introducing two new free variables
/ and j to obtain:

A i = k Aj = k+l

where Rl => Ro.
From Rl we can obtain:

The last conjunct of Rl1 is difficult to establish in concert
with the first two conjuncts by initialisation of free
variables. We therefore have the choice of trying to work
with this specification or of seeking other transforma-
tions. Here we will choose the latter course.

Before proceeding further we will illustrate a new
transformation which we refer to as splitting a relation.
Suppose, for example, we have the relation:

The Oj in this relation can be replaced by x to yield at < x
provided x < a} also holds. We can then write

at ^ x A x < aj => at ^ Oj

Applying a similar transformation to R\l we obtain

R l
o

u : 1 ^i<N Aa[\..i]^x
A x ^a\J..N] A i=j—\

where Rl
o
n Ro.

We are free to base our derivation upon Rln. All but the
last conjunct is easily established by the initialisation

, : =0; x:=a[l]; j:=N+\.

After adding appropriate limits we will choose as our
invariant

P:a[l..i] ^x A x^a[j..u].

This is very close to the familiar invariant that is usually
employed to develop a partitioning algorithm which
serves as the central computational element of quicksort.5

Below we provide an implementation of quicksort that
employs both binary recursion and tail recursion,10 that
is based on the specifications given and the associated
weakest precondition calculations for ' / : = j + l ' and
7 : = 7 - 1 ' -

Quicksort

quicksort (var a:n elements; l,u: integer);*
var i,j,x: integer;

i:=l-\; j:=u+\; x:=a[l];
ifi<j-l then {P}

partition:
do al+l < x -* i: = i+1 od;
do a;_j > x -*j: =j— 1 od;
if / < j— 1 then swap(ai+1, a^_j); i: = / '+1;

j:=j—\\ partition fi;
quicksort (a,l,i);
quicksort (a,j, u)

fi
end

In carrying out this derivation we chose to introduce
two new free variables i and/ We could have arrived at
essentially the same implementation by the introduction
of just one variable^ to replace k 4-1 in Ro. Although the
invariant states 'a[\ ..i] ^ x' should be maintained, the
stronger relation ai+l < x is used in the loop implemen-
tation. The reason for employing the stronger loop guard
al+l < x is to avoid the termination problems that the
weaker guard ai+l ^ x would introduce. The stronger
guard is also commonly used in most published
implementations of quicksort. The same reasoning
applies to the guard involving/

Quicksort derivation (using interval partitioning)

There is an interesting alternative to the pivot partitioning
method that we have just derived. To see how it may be
obtained we will also start out with:

Rl
o

l:\^i<NA a[\..H^a[j..N] M=j-\.

Again it is necessary to use a relation-splitting technique.
To understand how the technique is applied consider
again the relation

at < a}.
* This implementation establishes i^j—\ rather than strictly

/ =j— 1. Also other versions take more elaborate steps to choose x.
Such issues have not been of concern here. Our relations should also
indicate that x is a member of the array.

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 517

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

R.G. DROMEY

From this relation we can move to
at ^ x A x < Oj.

We can then make a further state-space extension by
replacing the x in x ^ a} by a new free variable y which
must satisfy x ^ y. We can then write:

a^xAy^ajAx < y => at ^ a,.
Applying essentially the same manipulations to JQ1 yields

j (1
A x ^ y A i =j—l.

Dropping the 'hard-to-establish' conjunct and adding
limits we arrive at the invariant

Plu :0K:i<NA a[l.. i] < x A y < a[j.. u] A x s£ y.

This invariant when used to make weakest precondition
computations for increasing / and decreasing j leads to
what is called an interval partitioning algorithm.6 An
implementation of quicksort that employs interval par-
titioning is:

quicksort! (var a:n elements; l,u: integer);
var i,j,x,y: integer;

/ : = / ; j:=u+l;
if i <j— 1 then

if at ^ â _! then swap (au a^_x) fi;
x : = a 4 ; y := a,x; j:=j-\;
intpartition: {P™}

do ai+1 < x - » • / : = / + 1 od;
do a,_i > ^ -»y : = j-1 od;
if i <y— 1 then

if ai+1 ^ ay_! then wa/?(fl (+ 1 ,flH) fi;
i,j, x,y: = i+l,j-l, max (x, al+1), min (y, a,_x);
intpartition

fi;
quicksort! (a, /, /);
quicksort! {a,j, u)

fi
end

4. CONCLUSIONS

We have used manipulations of a specification to derive
implementations for a variety of well-known sorting
algorithms. The investigation has identified specific
transformations that separate the well-known sorting
algorithms. A number of these transformations should
be applicable to other problems. The techniques that have
been used here should also complement the more formal
techniques employed elsewhere by Darlington.11

The primary objective of this exercise has been to show
the potential that specification manipulations have for

guiding and exploring different possible solutions to
problems. If the family of techniques that we have used
here are more widely applicable they raise the prospects
of a reasonably systematic strategy for exploring different
solutions to well-specified problems. It is hoped that this
demonstration may be sufficient to convince others to
explore approaches along these lines.

There are several broad observations to come out of
this investigation. The first is that we need to go beyond
the strategy of simply taking a postcondition and
weakening it directly in some simple way.3 What the
present discussion shows is that it is sometimes neces-
sary to go through a considerable strengthening of a
specification by introducing new free variables and
accompanying conditions before arriving at a form
suitable for weakening to obtain an invariant. The
process of strengthening a specification is really one of
enriching it so that subsequently there are more
alternatives to explore when applying weakest precon-
dition techniques.

The second important thing to observe is that weakest
precondition calculations may serve as a tool for guiding
and ordering the decomposition of a problem. They can
do this by identifying parts of a specification that may
not be satisfied under the influence of a change in certain
variables. What the present examples show is that
weakest precondition investigations can identify larger
and more complex components of a program as well as
the simple components of a loop body that they are
usually used to identify. The refinement process that the
weakest precondition investigations propagate is accom-
panied by the stepwise introduction of new free variables
which in turn need to be changed under some invariant
condition. Different choices made in taking these steps
lead naturally to the derivation of different algorithms.
There is some pedagogical merit in explaining the
differences among sorting algorithms in these terms even
though the algorithms were obviously not originally
derived in this way. Discovering new and different
solutions to problems remains a central and difficult
concern for computing science. Techniques that have any
potential for showing some ' systematic' light in the right
direction therefore need to be investigated or at least put
to the test.

Acknowledgements

I would like to thank Martin Bunder, Barbara Davidson
and Michael Shepanski for helpful discussions, and
David Gries for pointing out reference 11. I would also
like to thank the anonymous referee for the constructive
comments given.

REFERENCES
1. R. G. Dromey, 'Systematic program development'. IEEE

Trans, on Software Eng. (in press).
2. P. Suppes, Introduction to Logic. Van Nostrand, Princeton,

NJ . (1957).
3. E. W. Dijkstra, A Discipline of Programming. Prentice-

Hall, Englewood Cliffs, NJ . (1976).
4. N. Wirth, Algorithms + Data Structures = Programs.

Prentice-Hall, Englewood Cliffs, NJ. (1976).
5. C. A. R. Hoare, Quicksort. The Computer Journal 5(1),

10-15(1962).
6. M. van Emden, Increasing the efficiency of Quicksort.

Comm. ACM 13, 563-567 (1970).

7. J. Williams, Heapsort (Algorithm 232). Comm. ACM 7(6),
347-348 (1964).

8. E. W. Dijkstra and A. J. van Gasteren, An introduction to
three algorithms for sorting in situ. Inf. Proc. Letts. 15(3),
129-134(1982).

9. R. G. Dromey, Forced termination of loops. Software -
Practice and Experience 15, 29-40 (1985).

10. E. C. Hehner, do considered od. Ada Informatica 11,
287-304 (1979).

11. J.Darlington, A synthesis of several sorting algorithms.
Ada Informatica 11, 1-30 (1978).

518 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/512/327599 by guest on 10 April 2024

