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In this paper we present a simple model for the performance evaluation of Distributed Database Management Systems
(DDBMS). We first define a transaction-processing model. Then we provide a set of expressions to evaluate the impact
of various factors on the performance. The performance is evaluated in terms of transaction response time. Finally we
compare the pre-compilation and the interpretation approaches using these expressions.
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1. INTRODUCTION
The growing number of mature database applications as
well as the rapidly developing telecommunication
technology have created a situation of increasing demand
for integration of data resources residing at different
nodes of a computer network as well as integration of the
existing information systems. The distributed database
management (DDBMS) technology is emerging as a
result of the above requirements.

The reasons that have motivated the development of
DDBMS are several, both organizational and technical.
From an organisational point of view there was the need
for: (1) major flexibility in reflecting the structure of large,
geographically dispersed organisations; (2) integration
of pre-existing databases; (3) local autonomy, responsi-
bility and ownership; (4) graceful growth of systems.
From a technical point of view the potential advantages
offered by a DDBMS were: (1) improved performance,
since it is possible to increase the locality of references
and exploit parallelism during the execution of database
operations; (2) reliability and availability, since it is
possible to replicate data; if a node crashes, the other
nodes can continue to operate normally, making
available copies of data.

In particular, the need to interconnect pre-existing
databases has been demonstrated in many large
organisations, which gather and maintain semantically
related data stored in different DBMSs. It is therefore
important to provide a uniform and integrated access to
the various databases, since users cannot be expected to
learn and use many different DBMSs.

An important requirement of DDBMS concerns the
performance. In fact, if distributed database technology
is to be viable,12 the DDBMS must be built with careful
attention to reasonable performances for typical user
operations. It is therefore important to provide a model
to evaluate the factors that most affect the DDBMS
performance.

1.1 Previous Related Work

No methodology exists that addresses the problem of
evaluating the performance of a DDBS in all its
aspects, such as the one defined for centralised DBS.4-20

Instead, various aspects have been evaluated in isolation,
that is, making simplified assumptions on the overall

DDBMS functioning. In particular, an area which has
received much attention concerns evaluation of concur-
rency control mechanisms for centralised and distributed
database systems.1- '.10,13,14,17,20,25,27 H e r e w e s u r v e y

briefly some of the studies that have focused on
distributed database systems.

Ries17 compared four concurrency control algorithms,
two based on centralised control and two based on
distributed control. The centralised methods were
variations of centralised two-phase locking; the differ-
ence in the two algorithms was essentially concerning
transaction scheduling. The distributed control methods
differed in the way they solved the deadlock. In one, a
deadlock detection algorithm was invoked periodically,
in the other the 'wound-wait' model was adopted, which
prevents deadlock situations. The simulation model used
involved about twenty input parameters that described the
database, the transactions, the sites and the network.
Performance measures included I/O utilisation and
average response time. The simulation results indicated
that choice of the best algorithm in terms of the overall
database system performance is application-dependent.
However, the results indicated that when most trans-
actions can be handled locally the distributed control
leads to better performance, while if most transactions
are non-local centralised control performs better.

Lin and Nolte14 have first evaluated the two-phase
locking in a centralised DBMS. In the simulation model,
the application environment is characterised by the trans-
action size, and the system environment is characterised
by the number of transactions running concurrently
and the total number of lockable units. Performance
measures include the probability of a lock involved in a
conflict (PC) and deadlock (PD) respectively and the
average waiting delay (WT). The simulation results
indicated that the system behaved quite similarly for
different access distribution; PC, PD, WT all increased
more than linearly with the multiprogramming level and
the transaction size. Lin and Nolte have also studied, for
two-phase locking in a DDBMS, how the communication
delay affects the blocking delay and system performance.
The results showed that the communication delay has
little effect on the probability of conflict and deadlock of
lock requests.

Garcia-Molina10 compared two concurrency control
algorithms, one based on centralized control and the
other on distributed control. The distributed algorithm
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was the majority consensus algorithm due to Thomas26;
the other one the centralised locking algorithm. He
analysed and compared these two algorithms in the case
of completely duplicated databases. Garcia-Molina used
a simple model for the transactions in which read-sets
and write-sets are predeclared and each transaction
consisted of only a read phase, a processing phase and
a write phase. Performance measures include CPU and
I/O utilisation, average response time of updates and the
number of messages sent per update. Garcia-Molina's
results indicated that the centralised locking algorithm
performs considerably better than the decentralised one,
except in cases of extreme I/O utilisation.

Other studies that have been reported are based on
direct measurement of existing DDBMS prototypes.5'23

In the work reported in Ref. 5, the performance analysis
is described for a simplified model of the heterogeneous
distributed system ADDS. ADDS6 is an experimental
heterogeneous distributed database system designed to
provide a uniform interface to various pre-existing
heterogeneous databases that are distributed among the
various nodes of a computer network. The simplified
model of this system, consisting of two remote sites, was
evaluated by conducting 4,555 tests requesting data from
IMS databases and receiving data as CMS files. The
results showed that transmission time is the most
significant factor in system response when large data files
are transmitted through the network. In most cases, the
transmission time accounted for 80-90% of the system
response time. The work reported in Ref. 23 describes
some results obtained by means of benchmarks on
various configurations of the distributed INGRES.22 The
benchmarks were run on a VAX 11 /780 along with 0, 1
or 2 VAX 11/750. All configurations used the local
network Ethernet. The major conclusion drawn was that
the factor that most affects the performance is the
parallelism within the query execution. It is therefore
important that the query strategy takes into account the
processing speed at the various nodes, so that the load
is equally distributed among the participant sites and the
maximum parallelism is achieved. The authors also
concluded that in a local network environment the
network transmission time was not bearing on the
performance in a considerable way.

1.2 Structure of the Paper
The remainder of this paper is organised as follows. In
Section 2 we describe a transaction-processing model in
a DDBMS. At a more general level the transaction
processing can be decomposed in three steps:15 prepara-
tion, execution and commit. For each step the main tasks
are analysed from the point of view of the performance.
An important issue also discussed concerns pre-
compilation and interpretation, which are two different
approaches to the preparation phase.

Using the analysis done in Section 2, a set of
expressions have been derived in Section 3 to provide an
estimate of the DDBMS response time when executing a
transaction. These expressions provide a more precise
idea of the factors that affect the system performance
when executing a transaction. In Section 4 we discuss the
impact of pre-compilation and interpretation and we
compare the two approaches. Other results are presented
in Ref. 2.

2. TRANSACTION PROCESSING MODEL

In both centralised and distributed DBMSs a transaction
is defined as a set of data access and manipulation
statements with the atomicity property.11 The atomicity
property ensures that either all updates are executed or
none.

At the more general level the transaction processing
can be divided into three phases:
- preparation step: during this step each query statement

contained in the transaction is processed and the
strategy for the query execution is generated;

- execution step: during this step the actual query
execution takes place;

- commit step: during this step a decision is reached
among the participating sites as to whether or not the
transaction must be committed; if the transaction is
committed, the transaction updates are installed
permanently in the various local databases.

An important activity performed during the execution of
the previous steps is the concurrency control. The goal
of the concurrency control mechanism is to synchronise
concurrent accesses to data. This prevents anomalies such
as lost updates or dirty reads.

2.1 Preparation Phase

2.1.1 Pre-compilation and interpretation

A first important distinction for the preparation phase is
pre-compilation versus interpretation.

Pre-compilation means that the query statements
contained within the transaction are processed before the
actual execution takes place. At the end of the
compilation, an access module for the transaction is
generated and stored in system catalogues.8 The access
module produced by the query compilation can be
optimised and generally runs much faster, because the
bindings represented in the access module bypass several
levels of interpretation and authorisation that must be
applied to the original query. Users may compile the
transactions during periods of low system usage, and
later execute the access modules any number of times.
Because the majority of applications usually execute the
same application programs repeatedly, the impact on the
performance of the preparation phase is amortised over
many executions. However, query compilation means
that there may be a significant gap between the times of
binding and execution. During this interval the charac-
teristics of data might have changed, and thus the original
execution strategy might have become inefficient. A
system supporting pre-compilation is system R*}2lf>

Interpretation means, instead, that each query state-
ment is received from the application program as a string
at run time, and is then parsed, validated and executed.
In this case the preparation phase is not really separated
from the execution phase. The preparation phase must be
repeated each time the transaction is executed. As pointed
out in Ref. 24, this phase has a significant impact on
system performance. However, late binding allows the
most updated information to be used in making the
optimisation decisions. A system supporting interpret-
ation is distributed INGRES.22

2.1.2 Steps during preparation phase

The input for this phase is a transaction. The statements
contained within the transaction are expressed in terms
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of the global query language. The data objects referenced
by the statements are those denned in the Global Schema
(GS).

In the following discussion we use the term Master Site
to indicate the site where the query has been submitted,
while the term Apprentice Site indicates a site storing a
portion of the data referenced in the query.

The following steps are executed at the Master Site for
each query statement within the transaction.

(1) Parsing. The query is parsed by a conventional
parser. Parsing verifies that the query has correct syntax.
The parser output is an internal parse tree that is
augmented and modified by later steps. Usually the
parsing phase does not require catalogue accesses.

(2) Catalogue lookup. During this phase information
about the global schema is brought from system
catalogues. In particular, in this step information is
retrieved describing the mapping between the global
schema and the various local schemas. Also information
is retrieved which allows determination of the location of
each data object referenced in the query. Here an
important issue for the performance is represented by the
catalogue architecture. In fact, if the global schema is not
replicated at each site, several remote accesses may be
necessary.

(3) Execution plan generation. If the query references
more than one local database, the query is fragmented
into subqueries that refer only to local schemas; then a
distributed processing strategy is determined. The output
of this step is a schedule for the execution of subqueries.
The schedule defines which subqueries can be executed in
parallel and which subqueries must precede others, as
well as the relationships among the intermediate results.
This step requires remote accesses to the sites involved in
the query, to gather information such as data sizes or
available access mechanisms. This information is not
likely to be replicated for reasons of autonomy. However,
cache mechanisms may be used.

(4) Plan distribution. At this step the Master Site sends
to each apprentice one or more subqueries. The plan
distribution involves remote communication.

At each Apprentice Site the following steps are
executed.

(1) Parsing.
(2) Authorisation checking. For each object referenced

in the subquery, the apprentice checks the authorisation
table to determine whether the user issuing the query has
the appropriate access privileges. This step involves
accessing the system catalogue.

(3) Local optimisation. The subquery is optimised
considering the local DBMS specifics. This step necessi-
tates accessing system catalogues to gather information
about access paths and data statistics.

(4) Code generation for subquery execution (only for
pre-compilation). In this step a routine is generated that
implements the strategy chosen by the optimiser. This
routine will be loaded and executed at run-time. This is
a step which is not executed in a system which interprets
the query after the execution strategy has been
determined.

(5) Dependency recording {only for pre-compilation).
The access module at each participant site depends upon
the continued existence and validity of database objects
stored at that site. These dependencies are stored in
system catalogues at that site. These catalogues are

searched whenever the definition of a table or an access
path is changed. Access modules dependent upon these
changed objects are then invalidated. The next time an
invalid access module is invoked, re-compilation is
automatically executed. Recording of these dependencies
requiring catalogue accesses.

Steps 2, 3, 4 and 5 are executed at the Master Site also
if this site stores data referenced in the query.

When transactions are pre-compiled, an access module
is stored in system catalogues at the master sites as well
as at the apprentices at the end of the transaction
compilation. The access module is retrieved at run-time
to execute the transaction. This step is omitted when
queries are interpreted.

2.2 Execution Phase

At transaction execution time, the following activities are
executed.

(1) Access Module Retrieval. The access module for
the transaction is retrieved from the system catalogues.
This step is executed only when queries are compiled. As
we pointed out before, for interpreted queries the
preparation and execution phases are not separated. Also
a check is performed to verify that the access module is
valid. If the access module is not valid, the transaction
is recompiled.

(2) Then for each query statement contained within
the transaction the following steps are executed.

(i) Subquery Execution. In this step the various
subqueries are executed. The execution schedule defined
during the preparation phase is used to coordinate
subquery execution. The query master site sends to the
various apprentices the control messages needed to
coordinate the query execution. Also each apprentice has
to load the access module if the statement being executed
is the first. For the subsequent statements it is not
necessary to load the access module since it is already in
memory. The main impact on the performance during
this step is represented by the communication delays.
Data movements among sites are in fact needed to
execute joins and to gather the final data at the query
master site. However, the impact of I/O and CPU
processing may not be negligible. It has been shown that,
given the frequency with which these operations are
requested in a 'typical' query that joins two tables at
different sites, CPU and I/O delays can both dominate
message delays.18

(ii) Result Integration. At the query master site, the
results are gathered and presented to the user. Again this
involves I/O overhead due to temporary storage of data.

2.3 Commit Phase

We describe here the various steps for the basic 2-phase
commitment (2PC) protocol.11 However, many other
variations of such protocols have been defined.9'1S21 In
the basic version there is a site which has the role of
coordinator, while the other sites are indicated as
participants. The basic idea of the 2PC is to determine a
unique decision for all the participants with respect to
committing or aborting all the local subtransactions. The
protocol consists of two phases. The goal of the first
phase is to reach a common decision; the goal of the
second one is to implement this decision.
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(1) Phase One. During the first phase, the coordinator
asks all the participants to prepare for commitment; each
participant answers READY if it is ready to commit.
Before sending the first 'prepare for commitment'
message, the coordinator records on stable storage a log
record, in which the identifiers of all the participants are
recorded. The coordinator also activates a timeout
mechanism, which will interrupt the coordinator after a
given time interval has expired. When a participant
answers READY, it ensures that it will be able to commit
the local subtransactions even if failures occur at its site.
In practice, this means that each participant has to record
on stable storage two items, as follows.
- All the information required for locally committing

the subtransactions. This means that all the log records
of the subtransactions must be recorded on stable
storage.

- The fact that this subtransaction has been declared
ready to commit. This means that a log record of type
'ready' must be recorded on stable storage.

The coordinator decides whether to commit or abort the
transaction as a result of the answers which it has received
from the participants. If all participants have answered
READY, it decides to commit the transaction. If instead
some participant has answered ABORT or has not yet
answered when the timeout expires, it decides to abort
the transaction.

(2) Phase Two. The coordinator begins the second
phase of the 2PC by recording on stable storage its
decision. This corresponds to writing a ' globaLcommit'
or 'globaLabort' record in the log. The fact that the
coordinator records its decision on stable storage means
that the distributed transaction will eventually be
committed or aborted, in spite of failures. Then the
coordinator informs all participants of its decision, by
sending them a command message.

All the participants write a commit or abort record in
the log, based on the command message received from
the coordinator. From this moment, the local recovery
procedure is capable of ensuring that the effect of the
subtransaction will not be lost.

Finally, all participants send a final acknowledgement
(ACK) message to the coordinator, and perform the
actions required for committing or aborting the
subtransaction. When the coordinator has received an
ACK message from all participants, he writes a log
record, called 'complete' record. After having written
this record, the coordinator can forget the outcome of the
transaction; thus all records related to this transaction
can be taken offline after the next checkpoint.

The commit phase involves exchanging control
messages among sites to reach the final agreement. Such
messages are rather short, and the main overhead here is
due to message initiation. Also a considerable amount of
local processing may be required to execute actions such
as transaction update logging.

3. ANALYSIS OF PERFORMANCE
In this section we present an analysis of the performance
for a DDBMS that processes transactions according to
the model described in the previous section. In the present
analysis we evaluate the performance in terms of response
time for transactions. The response time of a transaction

is defined as the difference between the time of transaction
end and the time of transaction initiation.

To keep the analysis fairly simple, we make the
following assumptions.

The Global schema is replicated. This means that to
retrieve information contained in this schema only local
accesses are needed.

The query execution strategy is rather simple. In
particular no distributed joins are executed. The various
subqueries are executed in parallel at the participant sites
and the results of subqueries are assembled at the query
master site. Joins are executed at the master site. An
extension of the model is planned to take into account
different join strategies.

No cache mechanism is used. This hypothesis is
expounded in a forthcoming paper.3

For the network we have considered two cases: (1) it
is possible to send messages in parallel on the network;
(2) it is not possible to send messages in parallel and
therefore only one site at a time can transmit messages.

We have assumed three different message sizes: short
(up to 200 bytes) - this type of message is used to send
control information such as in the commit phase; medium
(700-1000 bytes) - this type of message is used to send
information such as catalogue information or query
execution plans; long (more than 1000 bytes) - this type
of message is used in general to transmit data in response
to the user queries.

We assume that the statements within a single
transaction are processed and executed in serial order.
That is, given a transaction, the system processes a
statement at the time from that transaction.

We assume that the catalogues are stored in the
database as normal data. For instance in a relational
DBMS, catalogue tables would be stored as relations.

In the evaluation that we present in the next
subsections, we don't take into account the impact of the
concurrency control mechanisms. In Subsection 4.6 the
effect of the concurrency control on the overall
performance is discussed.

We assume that the processing speeds and I/O access
times are equal for all the sites.

3.1. Model Parameters

In this section we describe the parameters that we use in
the analysis.

N number of statements within a transaction
N' average number of statements effectively

executed at a transaction run {N' ^ N)
ND average number of data objects referenced by

a statement
NS average number of remote sites storing data

objects referenced by a statement
NRD average number of remote data objects; by

remote data object we mean one stored at a
site different from the master site

NRPS average number of remote data objects per
site; NRPS = NRD/NS

NSU number of sites where the transaction per-
forms updates

VDU number of data pages updated per site by the
transaction. A page is the unit of data
transferring when executing an I/O operation
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VDA

VDT

be
is

PS
I/O
TP
TDQ

TLQ
TCG
ST

TB
7T(JC)

TS

TM

average number of data pages accessed for a
subquery execution
average volume of data transmitted as
subquery result; this volume is expressed in
bytes
probability that a transaction must
re-compiled on line; this parameter
significant only for the compilation case,
average page size in bytes
page access time
execution time for parsing a query
execution time for distributed query
optimisation
execution time for local query optimisation
execution time for code generation
startup time for sending a message; this time
is independent of message size
transmission time per byte
transmission time for an x bytes message;
TT(x) = ST+TB*x
transmission time for a short message
TS = ST+TB* 200
transmission time for a medium

= ST+TB* 1000
message

3.2 Estimation of the Preparation Phase
3.2.1 Compilation

Given a transaction T containing a number N of data
access and manipulation statements, the response time
for the preparation phase when queries are compiled is
given by:

T(ETPP) = N* T(PP)+ T(SAM)

where T(PP) is the response time for the preparation of
a single statement and T(SAM) is the time to store the
access module for the transaction.

The response time for the preparation phase of a
statement is calculated as follows:

T(PP) = T (parsing)
+
+
+
+
+
+

where

T (local catalogue lookup)
T (remote catalogue lookup)
T (generation of the execution plan)
T (plan distribution)
MAX {7j = T (work at remote apprentice i)}
(receiving answers from apprentices)

(1)

T (local catalogue lookup) = ND * I/O

We suppose that for each data object referenced by the
statement, a disk access is performed to collect
information about that object. Actually some of the
catalogue pages might be present in the system buffers.
In such a case the number of disk accesses is lower.

T (remote catalogue lookup) = T (to send a number
NS of short messages)

-I- T (local catalogue lookup at each remote site)
+ T (to send a number NS of medium messages)
Here we distinguish between two cases:
(1) Parallel transmission of messages

T (remote catalogue lookup) = TS+NRPS*
I/O + TM

(2) Non-parallel transmission of messages

T (remote catalogue lookup) = NS*TS
+NRPS*l/O+NS*TM
T (plan distribution) = T (time to send NS medium
messages)
Again we distinguish between cases:

(1) Parallel transmission of messages
T (plan distribution) = TM

(2) Non-parallel transmission of messages
T(plan distribution) = NS*TM

Since the work at apprentices is carried out in parallel
and all sites have the same processing speed the
expression

MAX {Ti:Ti = T (work at remote apprentice i)}
can be approximated by the expression

T (work at remote apprentice i), where
T (work at remote apprentice i) = T (parsing)

+ T (local catalogue lookup for authorisa-
tion)

+ T (local catalogue lookup for local
optimisation)

-I- T (local optimisation)
-I- T (code generation)
+ T (local catalogue access for dependency

recording)
We obtain

T (work at remote apprentice i) = TP+TLQ + TCG
+ 3*NRPS*1/O
T (receiving answers from the apprentices) = T
(to receive NS short messages)

Here we distinguish two cases:
(1) Parallel transmission of messages

T (receiving answers) = TS
(2) Non-parallel transmission of messages

T (receiving answers) = NS * TS
Substituting the previous expressions into the expres-

sion (1) we obtain the following expression for the
execution of the preparation time.

(1) Parallel transmission of messages
T(PP) = 2*TP+TDQ + TLQ + TCG

+ I/O * (ND+4 * NRPS) + 2 * TS
+ 2*TM

(2) Non-parallel transmission of messages
T(PP) = 2*TP+TDQ + TLQ + TCG

+ I/O • (ND+4 * NRPS)+2* NS*TS
+2*NS+TM

The time for storing the access modules can be
approximated as the time for executing an I/O operation,
therefore

T(SAM) = I/O.
This activity is carried in parallel at the master and
apprentices.

3.2.2 Interpretation

The response time for the preparation phase in case of
interpretation is given by:

T(ETPP) = N'* T(PP)
For interpretation the preparation phase must be carried
only for the statements which are effectively executed
when the transaction is run. The average number of
statements executed is indicated in our model by N' (see
Subsection 3.1). In addition, the activity of code
generation is not executed and the access modules and
dependencies are not recorded.
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We obtain the following expression for T(PP):
(1) Parallel transmission of messages

T(PP) = 2*TP+ TDQ + TLQ
+ I/O * (ND'+ 2 * NRPS) + 2*TS
+ 2*TM

(2) Non-parallel transmission of messages
T(PP) = 2*TP+ TDQ + TLQ

+ I/O * (ND + 2 * NRPS) + 2 * NS * TS
+2*NS*TM

3.3 Estimation of the Execution Phase

3.3.1 Compilation

The response time for the execution phase of a
transaction Twhen queries are compiled is given by:

T(ETEP) = T(AMR) + N'* T(EP) (2)

where T(AMR) is the time needed to retrieve the access
module at the master site and T(EP) is the time for
executing a single statement.

T(AMR) = I/O.
The execution time for a statement is calculated as

follows:
T(EP) = T (send messages to participant to activate

subquery execution)
+ MAX {71:7;= T (work at remote appren-

tice i)}
+ T (receiving results)
+ T (result integration)

where
r(send messages to activate subquery execution) = T (to
send a number NS of short messages)

Here we distinguish between two cases:
(1) Parallel transmission of messages

T (to send a number NS of short messages) = TS
(2) Non-parallel transmission of messages

T (to send a number NS of short
messages) = NS*TS

Since the work at apprentices is carried out in parallel
and all sites have the same processing speed the
expression

MAX{Tt: 7] = T(work at remote apprentice i)}
can be approximated by the expression
T {work at remote apprentice i) where
T (work at remote apprentice i)

= T (access module retrieval)
+ T (query execution)

= l/O * (I + VDA)
if this statement is the first being executed of transaction
T; else:
T (work at remote apprentice i) = r (query execution)

= I/O * VDA
T (receiving results) = T (receiving VDT bytes on
the network from NS sites)

Here we distinguish between two cases:
(1) Parallel transmission of messages

T (receiving results) = TT(VDT)
(2) Non-parallel transmission of messages

T (receiving results) = NS * TT{VDT)
T(result integration) = I /O• \NS*{VDT/PS)\\

Substituting the previous expressions into expression

t \x\ indicates the smallest integer greater than or equal to x.

(2) we obtain the following expression for the response
time of the execution phase.

(1) Parallel transmission of messages
T(ETEP)

= I/O *(2 + N'* VDA + N'*\NS*( VDT/PS)})
+ N'*TT(VDT) + N'*TS

(2) Non-parallel transmission of messages
T(ETEP)

= I/O * (2 + N * VDA +N'*\NS*( VDT/PS)])
+ NS*N'* TT(VDT) + NS*N'*TS

3.3.2 Interpretation

The execution time for a statement in the case of
interpretation is evaluated as in the case of compilation.
The only difference is that the access modules are not
retrieved from system catalogues. Therefore there will be
less catalogue accesses.

We obtain the following expression for T{ETEP):
(1) Parallel transmission of messages
T(ETEP) = I/O * (JV * VDA + N'*\NS*( VDT/PS)])

+N * TT(VDT) + N * TS
(2) Non-parallel transmission of messages
T(ETEP) = I/O * (JV • VDA + N'*\NS*( VD T/PS)])

+NS*N'*TT(VDT) + NS*N'*TS

3.4. Estimation of the Commit Phase

In this subsection we evaluate the execution time for the
commit phase in a situation where there are no crashes.
Given a transaction T, the execution time for the commit
phase is evaluated as follows:
T(CP) = T (store a log record containing subordinate
names)

+ T (send a READY message)
+ T (remote subordinate work phase I)
+ T (receiving answers from subordinates)
+ T (record on stable storage decision about

transaction)
+ T (send decision to subordinates)
+ T (remote subordinate work phase II)
+ T (receiving acknowledgements from

subordinates)
+ J(store a 'complete' on stable storage)

where
T (remote subordinate work phase I) = T
on log transaction updates) + T (write a
record) = I/O *(VDU+\)
T (remote subordinate work phase II) = T (write a
'commit' record) = I/O

Substituting the previous expressions into expression
(3), we obtain the following expression for the execution
time of the commit phase:

(1) Parallel transmission of messages
T(CP) = I/O *( VD U+4)+4 • TS

(2) Non-parallel transmission of messages
T(CP) = I/O*(VDU+4) + 4*NSU* TS

(3)

(record
'ready'

3.5 Estimate of Transaction Response Time

Given a transaction T containing a number N of data
access and manipulation statements, such that a number
N'(N < N) of statements are executed at transaction
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run-time, the transaction response time is given by the
following expressions:

(1) Compilation
T(ETT) = T(ETEP) + T(CP) with probability

? = (!-/>)
(q is the probability that the transaction does not have

to be re-compiled)
T{ETT) = T(ETPP)+T(ETEP) + T(CP) with

probability p
(p is the probability that the transaction has to be

re-compiled)
We obtain the following average value for T(ETT),

that we indicate as T(ETT):
T(ETT) = T(ETEP) + T(CP) +p * (ETPP)

Parallel transmission of messages
T(ETT) = I/O *[N'*( VDA + \NS * (VDT/PS)])

+ VDU+6+p + N*(ND + 4*NRPS)*p]
+ TS*[4 + N' + 2*p*N]
+ TT(VDT)*N'
+ TM*[2*p*N]
+ p*N*[2*TP+TDQ + TLQ + TCG]

Non-parallel transmission of messages

T(ETT) = I/O * [N' * (VDA + \NS * (VDT/PS)])
+ VDU+6+p + N*(ND + 4*NRPS)*p)
+ TS*[4*NSU+N'*NS+2*p*N*NS]
+ TT(VDT)*N'*NS
+ TM*[2*p*N*NS]
+ p*N*[2*TP+TDQ+TLQ + TCG]

(2) Interpretation
T(ETT) = T(ETPP)+T(ETEP)+T(CP)

Substituting the expressions we have obtained in
the previous subsections we obtain the following
expressions:

Parallel transmission of messages
T(ETT) = I/O * [N'*(VDA+ \NS*(VDT/PS)]+ ND

+ 2*NRPS)
+ VDU+4]
+ TS*(3*N' + 4)
+ TT(VDT)*N'
+ TM*2*N'
+ N' * [2 * TP+ TDQ + TLQ]

Non-parallel transmission of messages
T(ETT) = I/O * [AT * (VDA +\NS * (VDT/PS)] + ND

+ 2*NRPS)
+ VDU+4]
+ TS*(3*N'*NS+4*NSU)
+ TT(VDT)*N'*NS
+ TM*2*N'*NS
+ N'*[2*TP+ TDQ + TLQ]

4. RESULTS

Using the expressions derived in the previous section, we
have evaluated the transaction response time in various
cases to compare the pre-compilation approach versus
the interpretation. In all the evaluations presented in the
present paper we have considered the case of parallel
transmission of messages.

In all the evaluations performed we have used the
following values for I/O and network parameters:15

- I/O = 23.48, milliseconds/IO
This value is typical of an IBM 3380 disk drive; this
time includes initiation, seek, latency and transfer time.

- PS = 4096 bytes

- ST = 11.54 milliseconds/message
- TB = 0.16 milliseconds/byte
These values for ST and TB are typical of a 50
kilobit/second communication line.

It is more difficult to determine average times for query
parsing, optimisation, and code generation, because such
times depend on the query being processed. In the present
work we have assumed the following average values
(milliseconds): TP 15; TDQ 70; TLQ 50; TCG 17
milliseconds.

To compare the compilation approach versus the
interpretation, we have estimated the transaction res-
ponse time for different values of the number of
statements contained within the transaction. We have
considered three cases regarding the size the data accessed
(VDA) and transmitted per statement (VDT):

Case I, low values for VA, low values for VDT:
VDA = 1 page and VDT = 4096 bytes.

Case II, high values for VDA, high values for VDT:
VDA = 10 pages and VDT = 40,960 bytes.

Case III, high values for VDA, low values for VDT:
VDA = 10 pages and VDT = 4096 bytes.

For the compilation case we have assumed three
different values for the probability of re-compilation:
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VDT = 4096 W = N

Figure 1. Low values for VDA, low values for VDT.

p = 0.0, 0.4, 0.8. The value p = 0.0 means that the
transaction is never re-compiled on-line. In this case the
re-compilation takes place off-line and therefore it does
not impact on the transaction response time.

Finally we have considered two cases concerning the
values of N and N'.

Case (a) N' = N (figs. 1, 2, 3): in this case all the
statements within the program are executed.

Case (b) N' = \N/2] (figs. 4, 5, 6): in this case about
half of the statements within the program are executed.
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The results reported in figs. 1, 2 and 3 show that when
N = N' pre-compilation and interpretation have the same
performance when p = 0.8. The difference between the
execution time for pre-compilation (p = 0.0 and p = 0.4)
increases with the number of statements within the
transaction. However, when statements involve large
amounts of data transmitted (fig. 2) the difference in
performance is less marked. For instance, in the case of
N = 10 and VDT = 40,960 we obtain:
(J(£Tr(interpr.) - r(£"7T(pre-comp.

(p = 0.0)))/J(£7T(interpr.)) = 9.2%
However, when VDT = 4096 we obtain:
(r(£Tr(interpr.) - r(£7T(pre-comp.

(p = 0.0)))/r(£rr(intepr.)) = 45%
The results reported in figs. 4, 5 and 6 show that when

TV" = \N/2] pre-compilation and interpretation have
about the same performance when/? = 0.4. The difference
the previous case (N' = N) can be explained by observing
that when a transaction is re-compiled, all the statements
within the transaction are re-compiled again. In the
interpretation case, instead, only the statements which
are executed go through the preparation phase.

Therefore we conclude that the pre-compilation
performs better than the interpretation if (1) the
probability of re-compilation is less than p = 0.8 for
N' = N (p = 0.4 for N' = \N/2\) and (2) the transaction
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