
The 'Window' Terminal

J. PARKER*, A. KENNARD AND D. KING
Centre for Computing and Computer Science, The University of Birmingham, Edgbaston, Birmingham B15 2TT

A program ROM has been developed for the BBC microcomputer, which makes it function as a powerful window
management terminal, with a high resolution display, mouse and programmable keyboard. The BBC Window terminal
ROM provides a cheap alternative to the more expensive windowing workstations that provide the same resolution and
facilities. It also enables windowing interfaces to be attached to existing computer hardware without having to port the
software to the new workstation environment - a fast and cheap method for improved man-machine interface. All
window management operations are handled locally, with control information being passed between the terminal and the
host computer via an RS232 interface line.

Received May 1986, revised September 1986

1. INTRODUCTION
The system of windows and menus displaying informa-
tion on a screen as sheets of paper has been explored in
various systems in recent years, e.g. Smalltalk,1 Interlisp-
D2 and Mesa.3 Such systems provide the graphical means
of sectioning data and activities according to their subject
matter. Their ability to stack screen areas like sheets of
paper enables a screen to present more information (by
implication) than can actually be displayed on the
screen, and allows the user to view information from a
number of different sources at the same time. However,
these systems demand expensive raster-scan graphical
displays to provide the high resolution required by
windowing.

The family of home computers provides suitable
graphical facilities for windowing at a fraction of the cost
of the larger workstations which have been traditionally
used for this application. However, microcomputer-
based windowing systems have tended to be limited by
their inferior processing power.

By using the microcomputer as a window-management
terminal attached to a more powerful host, it can behave
and look like the more expensive windowing work-
stations, and retain the original processing power of the
host.

Such an approach has been taken by the Blit terminal,4

which acts as a down-loadable window manager for UNIX
systems. Motivated by these developments, a similar
system has been designed for the widely used BBC
microcomputer, which unlike the Blit can be used with
several host machines (e.g. Multics, 4.2 Berkeley UNIX,
UNIX version 7, and Tops 20). It supports many different
types of user and application interfaces (e.g. tiled or
overlapping windows), and has proved to be highly
effective in applications such as representation of
multiple processes in UNIX and an Interactive Program-
ming Support Environment.5-6

the lesser aim of providing a cheap Windowing Work-
station interface for UNIX.

Universe is an attempt at providing an ideal
program-development environment, incorporating er-
gonomic aids such as structured editing, animated de-
bugging and methodology support. Our main aim was
to make Universe simple and easy to understand and use
for both novice and expert programmers alike. To do
this, we needed a good physical environment to provide
the right kind of switching between programming tasks,
without losing context - hence windows.

The system is organised into documents, such as a
program, or output from a program, which the user may
look at through windows. Each window has a title line
that describes its contents, and a size icon, enabling
windowing positioning to be change at will.

Universe does not have a command language, a
programmer simply points at the operation that is
required. Work is selected by pointing to a workspace
document, which contains particular Universe language
procedures and definitions for one program. Program
code is simply typed in (being immediately parsed by the
structured editor), or inspected/edited by simply pointing
to the appropriate command and code.

3. FUNCTIONAL CHARACTERISTICS AND
PRINCIPLES

The window-management terminal is fully supported,
with a high-resolution display, mouse control device and
keyboard. Window-management operations are handled
locally, with control information being passed between
the terminal and the host computer via a V24 (RS232)*
interface line (see Fig. 1). The user interacts with the
system using either a mouse, which directs the cursor
movements and selects items from the menus, or the
keyboard, used for entering text.

2. THE WINDOW TERMINAL AND
UNIVERSE

The Window terminal was specifically developed for use
with the Universe Programming Environment,5'6 with

* To whom correspondence should be addressed.

3.1 The window display

The high-resolution display may be thought of as a desk
on which document sheets (windows) are laid out. It is

* The window terminal actually supports an RS432 interface, which
is compatible with the RS232 protocol.

558 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

T H E ' W I N D O W T E R M I N A L

do not need to be modified in any way to be compatible
with the windowing terminal. This is because the system
provides full terminal emulation of the A D M 3 A family
of devices in each window.

Position and size of each individual window as well
as overlapping hierarchy may be changed, either by
program or mouse control.

3.2 Window types

The window terminal can be programmed to suppor t the
emulation of any windowing hierarchy, be it a tiled,
overlapping or pull-down menu-type interface. Full
control is obtained through the use of the window-type
command (see Section 4.3).

3.3 The mouse

The movement of the mouse is accessible by p rogram and
may easily be converted to a corresponding movement of
the cursor on the display. The mouse is therefore an ideal
input device for randomly accessed da ta on the display.

One method of entering commands via the mouse is by
positioning the cursor over an area of the screen defined,
to the terminal, as a menu bar (Fig. 3.1) and pressing the
mouse but ton. This pulls down a small rectangular area
presenting a collection of commands (Fig. 3.2). If the
menu but ton is released within the area of a command
field, that command is selected and the corresponding
action is started. Releasing the bu t ton outside the menu
area makes the menu disappear without initiating any
action.

Windows can also be defined under mouse control ,
by pinning one corner (pressing a mouse but ton) and
dragging the mouse to the location of its diagonal corner
(see Fig. 4).

Figure 2. The desk top.

T H E C O M P U T E R J O U R N A L , VOL. 30, N O . 6, 1987 559

Raw data
stream BBC lindo» S C R E E N BBC lindo»
/ lenirai

KEYBOARD
MOUSE

I s 1
H-

Mi S t r e u - d m d t r
slreoi with window
specific inforniti

Character streams - no
windw specific i n f i m l i o n
Figure 1. Communicating with the window terminal.

therefore important that corresponding windows can
overlap and be active at the same time, and a specific
background colour is used (black points on a white
background) to strengthen the impression of a real
three-dimensional desktop (Fig. 2).

U p to fifteen windows can be displayed concurrently,
the most recently displayed overlaying earlier instances.
Each window may be used to display output from a
program running on the host. It is an important feature
of the window-management system that these programs

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

J. P A R K E R , A. K E N N A R D A N D D . K I N G

Figure 3.1. Mouse cursor positioned on pull-down menu bar.

Figure 3.2. Mouse button press reveals contents of the menu.

3.4 Definable character fonts

Since windowing systems can simultaneously display a
n u m b e r of information sources, a range of character
fonts m a y be required to represent them (mathematical
equa t ions , foreign languages, etc.). The terminal supports
96 user-definable characters , 15 user-definable display
masks (reverse video, underlining, half intensity, etc.),
and a definable cursor mask.

4. T H E H O S T C O N T R O L

The BBC microcomputer communicates, via a V24
(RS232) interface lead, with a host system which provides
all the necessary computing power of a workstation.
The connection provides fast two-way communication
between the machines. Packets of control information
synchronise the graphics display with the remote station,
ensuring first that the information from the host is

560 T H E C O M P U T E R J O U R N A L , VOL. 30, N O . 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

T H E ' W I N D O W T E R M I N A L

Figure 4. Dragging out a window with the mouse.

presented in the appropriate window, and secondly that
the host is aware of important changes in the window
display.

4.1 Communicating with the terminal

The window terminal program resides in R O M located
in the BBC microcomputer. The BBC can be configured
to execute the program on power-up, or alternatively, the
program can be invoked manually using a conventional
command sequence. The program is responsible for
processing the input from the keyboard, the mouse and
the host processor via the V24 (RS232) interface. The
program polls each device in turn.

Information flows between the host and the terminal
as either bytes or packets of bytes. The packets are
recognised by the host or the terminal by the first
character of the packet which is the ASCII code D L E
(Data Link Escape, Control-P). This is followed by the
control information.

Full flow control is provided by the terminal,
supporting both the X O N - X O F F and C T S - R T S
protocols.

Commands sent to the window terminal are auto­
matically filtered out and executed whenever a command
packet is identified in the input line stream. All remaining
information is sent directly to the currently active window
via the terminal emulator (which handles local control
of each window, for example cursor positioning and
underlining).

Host commands affect three different areas: the
windows, the mouse and character font loading.

4.2 Window control

Position, size and overlapping priority of each window
can be defined under program control. These attributes

are set by the host sending the following command
sequence down the line:

D L E (window-at tr ibute) <window-no> < va lue)

This command sequence would then set one window
attribute with a new value, such as the X and Y origins,
window height and width, and window type (pull-down
menu, top line protected, cursor on/off, etc.). Each of the
fifteen windows is identified by a unique number enabling
each window to have its own attr ibute setting.

Window-output selection control is provided by the
command:

D L E N <window-no> <i>

which directs the next i characters to be sent to the
identified window, with output returning to the default
window, when complete. If <i> is zero (o) the default
window is changed. For example, if window number 1
is selected as the default window (by the command
' D L E N 1 0 ') , and the command sequence ' D L E N 3 5 '
is sent. Then the next five bytes of information are sent
to window number 3, with any remaining information
being redirected to window 1 (the default).

4.3 Setting window types

Selection of a window type is provided by the command:

D L E T <window-no> <type>

which directs the identified window to be of the defined
type. <type> is made u p of bit pat terns, which if set
defines the window to be combinations of the following
types:

Bit 0: Pull down menu
Bit 1: Selection menu
Bit 2: Top line protected

T H E C O M P U T E R J O U R N A L , VOL. 30, N O . 6, 1987 561

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

J. PARKER, A. KENNARD AND D. KING

Bit 3: Bottom line protected
Bit 4: Cursor on (text cursor displayed in window)
Bit 5: No scroll
Bit 6: No cursor wrap round

Setting 'top/bottom line protected' (bit 2/3), enables
titles or footings to be set in the defined window. When
set these lines cannot be cleared or scrolled off the screen,
nor can the cursor enter them. Setting 'pull down menu'
(bit 0), hides the contents of the window behind the
menu bar (window title line). Pressing the mouse over the
menu bar reveals the contents of the window. Setting
'selection menu' (bit 1), displays the window as a
pulled-down menu. In this way many different sorts of
window type can be displayed, completely under host
control.

4.4 Mouse control
The mouse has been shown to be a more convenient input
device than the keyboard for windowing systems where
a high proportion of spatial inputs (for window ma-
nipulation) is required. It can be used to point to items
on the screen or to pull down and select items from
a menu. The terminal communicates with the host
whenever a mouse event occurs using the following
command format:

DLE <mouse-event> <window-no> <rel-X> <rel-Y>

where <mouse-event> is a letter defining the mouse event,
such as ' M ' for mouse move, ' P ' for press, or 'S ' for
select; <window-no> is the window in which the event
occurred (i.e. the window where the mouse cursor lies),
and <rel-X>, <rel-Y> are the co-ordinates of the mouse
cursor relative to the origin of the window.

The terminal recognises and supports up to eight
different types of mouse event which can be defined by
the following letters.

A When the mouse is moved or even lightly touched
after being inactive.

M When the mouse has moved to a new character
position on the display.

P When the mouse button (any of them) is pressed.
D As Move, except that the button is being held down.
R When the mouse button is released.
I When the mouse stops moving for some time.
S When a window is selected.
W When a window is user-defined.

Each mouse event can be enabled or disabled as
required by the host control device, using the command
sequence:

DLE M D <event>

to disable a specific event and

DLE M E <event>
to enable the event.

For example, the command sequence 'DLE M E P',
from the host, enables mouse-button press event, which
results in the command sequence being sent to the host
whenever the mouse button is pressed. Pressing the
mouse button in window 5, row 0, column 5, results in
the command sequence 'DLE P 5 0 5' being sent to the
host.

In order to limit the occurrence of too much in-
formation being generated by the mouse, with resulting

queue overflow, it is good practice for the host to enable
and disable mouse events as they are required.

4.5 Character font loading

The host can select an alternative character set to be
displayed in each window by sending the command
sequence:

ESCc

to select the alternative character set, and the sequence:

ESCd

to return to the standard character set.
Each character in the alternative set can be redefined

by the host, enabling down-loadable character fonts.
Individual characters in the set are specified by the
command packet:

DLE D <character>

where <character> is an ASCII character, and set by
defining the contents of the selected characters 8-bit by
8-bit character cell, using the following packet format:

DLE <line-no> <first-four-bits> <last-four-bits>

each packet defining a row in the 8 x 8 bit character cell,
with the defined bits being sent in HEX. For example
'DLE D A' selects character-cell upper-case 'A':

0 1 2 3 4 5 6 7
0
1
2
3
4
5
6
7

* *
* . . *

The command ' DLE 3 F F ' sets line 3 to be all ones
(defining a bar):

0 1 2 3 4 5 6 7
0
1 . . . * * . . .
2 . . * . . * . .
3 * * * * * * * *
4 . * * .
5 . * * * • * * .
6 . * * .
7 . * * .

In addition to alternative character set, the display
masks for the windows (grey, inverse, underline, etc.), are
programmable, allowing full user control of the display
screen.

5. INTERFACING THE TERMINAL WITH A
HOST MACHINE

Universe interfaces to the Window terminal through a set
of window primitives, which send/return the appropriate
codes to the Window terminal. Mouse events are handled
internally, via an event handler which simply updates
global variables, sending a command to be picked up by
the Universe code.

For example, window events are picked up by the input

562 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

THE 'WINDOW TERMINAL

routine 'inputO', used by the universe code. This routine
detects mouse events calling the mouse event handler.

FUNCTION input () : character;
BEGIN
c : character;
/* read raw input */
read (input_line, c);
/* filter out mouse events */
If (c = MOUSE_EVENT) /• DLE */ THEN

RETURN Wmgr_MouseEvent ();
ELSE
RETURN c;

END input();

The mouse event handler simply reads in the rest of the
command packet and takes the appropriate action.

FUNCTION Wmgr_MouseEvent() : character;
BEGIN

EVENT_TYPE, WINDOW : character;
PosX, PosY : character;
/* read raw input */
read(input_line, EVENTJTYPE);
read(input_line, WINDOW);
read(input_line, PosX);
read(input_line, PosY);
/• decode event */
CASE (EVENT_TYPE) OP
MOUSE_BUTTON_PRESS:
CursorX = PosX;
CursorY = PosY;
SelectedWindow = WINDOW;
IF (PosX = WIconX AND PosY = WIconY)

THEN /* cursor pressed on window
icon */ RETURN Wmgr_DefineWindow
(WINDOW);

ELSE

RETURN COMMAND_CURSOR_PRESS;
DEP_WINDOW:
Wmgr_Draw (WINDOW, Height (WINDOW)

Width(WINDOW), PosX, PosY);
RETURN COMMAND_WINDOW_RESIZED;

MENU_SELECT:
RETURN Wmgr_MenuManager(WINDOW,

PosX);

/*
* other events are not enabled or

required
*/

OTHERS:
RETURN input ();

END CASE;
END Wmgr_MouseEvent;

6. DISCUSSION
The Window Terminal attempts to improve upon
man-machine dialogue by facilitating the display of
material. Previous character-display windowing
systems,7-8> 9 have relied upon heavy host control of the
windows with resultant loss of performance. Our
windowing system tries to do as much as possible, locally,
before passing major changes to the host control device.
In this way the speed of screen updating is greater than
that of existing crude host-driven window systems.
Furthermore, there is no need to hold copies of each
window in memory on the host device.

An important feature of the system is full terminal
emulation of a general family of terminals in each
window (e.g. ADM3A,10 VDT-1,11 TVI912/920),12

allowing existing software to run on the Window terminal
without modification.

7. CONCLUSIONS

The BBC window-terminal ROM provides a cheap
alternative to the more expensive windowing work-
stations that provide the same resolution and facilities. It
also enables windowing interfaces to be attached to exis-
ting computer hardware without having to port the soft-
ware to the new workstation environment - a fast and
cheap method for an improved man-machine interface.

Work is currently being done to improve the UNIX
interface to make use of the windowing terminal. It is
hoped that the CWSH windowing system13 and an
interface to the SUN windowing system14 can be adapted
for use with this system.

The window-terminal ROM can be used on any BBC
Model B, BBC+, Master series microcomputers, with
32K of memory. There is no requirement for a disc drive
or other associated hardware, and in fact it makes an
alternative cheap computer terminal.

Further information concerning the window terminal
can be obtained from the authors at the above address.

Acknowledgements

The authors would like to thank Mr R. J. Pannell and
the technical staff in the Department of Computer
Science at the University of Birmingham, for their helpful
advice and assistance in the development of the window
ROM.

REFERENCES
1. A. GoldBerg, Smalltalk 80: The Language and Its

Implementation. Addison-Wesley, London (1980).
2. Richard R. Burton, R. M. Kaplan, L. M. Masinter, B. A.

Shell, A. Bell, W. Melle, D. G. Bobrow, P. Deutsch and
W. S. Haugeland, Papers on Interlisp-D. Technical Report
CIS-5 revised, Xerox PARC (1981).

3. R. E. Sweet, The Mesa Programming Environment. SIG-
PLAN Notices 20 (7) 1985.

4. R. Pike, The Blit: A Multiplexed Graphics Terminal, AT&T
Bell labs, technical journal, vol. 63, no. 8, October 1984.

5. J. M. Parker, A program development system for the
casual user. Proceedings of the 21st Annual ACM
SIGCPR/SIGMOD Conference, Minneapolis, USA, May
1985.

6. J. M. Parker, Human aspects of program development
environments. Ph.D. thesis, University of Birmingham,
UK (1986).

7. The Maryland Window System, Comp. Sci. Dept., Rep.
TR-1271, University of Maryland, USA.

8. Ken Arnold, Screen Updating and Cursor Movement

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 563

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

J. PARKER, A. KENNARD AND D. KING

Optimisation: A Library Package. The UNIX Programmer's
Guide, volume 3, release 4.1bsd, University of California
at Berkeley, October 1983. 12.

9. R. Gammil and P. Ram, VT - a virtual terminal window 13.
package for UNIX. Software Practice and Experience 14,
1197-1205(1984).

10. ADM Terminal Family, Lear Siegler Inc. 14.
11. TeleVideo Inc., 'Terminal 912/920 Operating Instruc-

tions', Tele Video Inc., Sunnyvale, CA 94086, USA
TVI920.
VDT-1, 106A Bedford Road, Wooton, Bedford, UK.
Mark Weiser, CWSH: the windowing shell of the Maryland
windowing system. Software Practice and Experience 15
515-522 (1985).
Sun Microsystems Inc., Programmer's Reference Manual
for Sun Windows (1984).

564 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/558/327627 by guest on 10 April 2024

