
Lexicographic Listing and Ranking of r-ary Trees

M. C. ER*
Department of Computer Science, University of Western Australia, Nedlands, WA 6009, Australia

This paper presents three simple and efficient algorithms for generating, ranking and unranking t-ary trees in a
lexicographic order. The simplest idea of encoding a t-ary tree with n nodes as a bit-string of length t*n is exploited to
its full advantages. It is proved that the lexicographic order in the set of t-ary trees with n nodes is preserved in the set
of bit-strings of length t*n, using the above encoding scheme. Thus by generating all bit-strings in the lexicographic
order, a simple decoding algorithm can convert them to t-ary trees in the same order. Finally, the theoretical basis for
ranking a lexicographic listing of bit-strings is discussed, and the ranking and the unranking algorithms are derived.

Received December 1985, revised September 1986

1. INTRODUCTION
In recent years the interest in the lexicographic generation
of regular trees has been shifted from binary trees to Nary
trees. Ruskey1 presented one of the earliest algorithms
for generating /-ary trees in a lexicographic order. He
encoded a /-ary tree as a string of digits, each digit
representing the level of a leaf. Thus by manipulating a
string of leaf levels, all /-ary trees could be generated.
Trojanowski2 established a one-to-one mapping between
a set of /-ary trees and a set of stack-generatable
permutations. Thus by enumerating a set of stack-
generatable permutations, all /-ary trees could also be
generated. Liu3 used a permutation of the multiset
{1,2, ...,ri\l~l to encode a Nary tree with n nodes. Thus
the problem of generating all /-ary trees is reduced to the
problem of generating all permutations of the multiset
subject to certain constraints. It is well known that a
representation has tremendous influence on the com-
plexity and the efficiency of an algorithm that manipu-
lates it. Due to the utilisation of these complex encoding
schemes for representing /-ary trees, their algorithms for
generating /-ary trees are unnecessarily complex; so are
their ranking and unranking algorithms.

In a recent paper, Er4 proposed a method for encoding
a binary tree as a binary string, and demonstrated that
simple and efficient algorithms for generating, ranking
and unranking binary trees could be constructed. In this
paper we extend the results to t-ary trees. More
specifically, we shall show that a /-ary tree can be encoded
as a binary string, and that simple and efficient algorithms
for generating, ranking and unranking /-ary trees can be
constructed.

2. DEFINITIONS AND NOTATIONS
Throughout this paper, we consider only the class of
rooted, ordered and regular /-ary trees. A tree is said to
be rooted if it has a single root; it is said to be regular if
every internal node has / children; and ordered if the
subtrees of each internal node can be identified. When we
say a /-ary tree, we mean a rooted, ordered and regular
/-ary tree.

Let T(t, ri) be a set of /-ary trees with n nodes. Further,
let Tt denote the ith subtree of Te T(t, ri). To generate
members of T{t,ri) systematically, first of all it is
necessary to specify the lexicographic order.

* Now at: Dept. of Maths, and Computing Sciences, St. Francis
Xavier University, Antigonish, Nova Scotia, Canada B2G ICO.

Definition of lexicographic order

Given two /-ary trees, T and T, we say that T < T if
(a) T is empty and T is not empty, or
(b) both Tand T are not empty, and for some 1 ^ / < /:

(i) 2J = T}, f o r . / = 1 , 2 , i - l , and
(ii) Tt < Tt. •
Let |J(/,n)l denote the number of distinct /-ary trees

with n nodes. Further, let Ct „ be the generalized Catalan
number.5 Then the following lemma is immediate.

(tn\

\\n)

Lemma 1

for / ^ 2 and 0 0. •
A /-ary tree T with n nodes can be converted to an

extended /-ary tree T with n internal nodes (see Ref. 6 for
an extended binary tree), which is also a full t-ary tree,
by replacing all empty nodes of T by «(/— 1)+ 1 leaves.
Let T(t, ri) be a set of extended /-ary trees with n internal
nodes. It is obvious that T{t,ri) and T(t,n) are in
one-to-one correspondence^

An extended /-ary tree T can be encoded as a binary
bit-string as follows. An internal node and a leaf are
represented as a one anda zero, respectively, by the
pre-order traversal of T. The resulting bit-string
comprises (tn +1) bits. Because of the nature of pre-order
traversal, the last bit of such a bit-string is always a zero.
It can therefore be ignored without affecting the
representation. The reason for deleting the last zero is to
facilitate the following definitions.

Let B = (b1b2b3... btn) be a bit-string. B is said to have
the t-dominating property if the number of zeros is always
less than or equal to / times the number of ones while
scanning from bl to btn. Furthermore, B is said to be
t-feasible if the number of zeros is equal to / times the
number of ones, and B satisfies the /-dominating
property. Finally, let B[t,n) be a set of bit-strings of
length tn, such that they are all /-feasible.

3. ENCODING AND DECODING
ALGORITHMS
Since an extended /-ary tree can be encoded as a bit-string,
T{t, ri) and B(t, ri) are related in some ways. Furthermore,
T{t,ri) and T(t,ri) are in one-to-one correspondence;

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 569

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/569/327640 by guest on 10 April 2024

M. C. ER

hence T(t, ri) and B(t, ri) are also related. Thus if a node
of Te T(t, ri) is encoded as a one and an empty subtree
of T is encoded as a zero, then T can be encoded as a
bit-string directly. The details are presented in the
following encoding algorithm.

procedure Encode(T: treeptr);
vary: integer;
begin

if T = nil then
£[/] := '0 '

else begin

f o r 7 : = 1 to z do
Encode(T~ .son\J\);

end
end {Encode};

Note that / is initialised to zero to start with. The zero
in B[t*n+ 1] may be omitted.

The above algorithm clearly suggests the following
theorem.

Theorem 1
The encoding of Te T{t, ri) as a bit-string always yields
a /-feasible bit-string B e B(t, ri).

Proof
The encoded bit-string of T is a trace of the pre-order
traversal of T. As a node is always visited first before its
children, which may or may not be empty, the resulting
bit-string B satisfies the /-dominating property and is
always /-feasible if the last empty subtree visited is
omitted. •

Conversely, a Z-ary tree T can be constructed from a
bit-string B directly. The detailed decoding algorithm is
given below.

function Decode: treeptr;
vary': integer;

T: treeptr;
begin

i:=i+l;
if (B[i\ = '0') or (1 > t*ri) then

Decode: = nil
else begin

new(T);
fory: = 1 to / do

T".son\J\: = Decode;
Decode := T;
end;

end {Decode};

Again, 1 is initialised to zero.
The above encoding and decoding algorithms clearly

demonstrate the deep connection between T(t,n) and
B{t, ri). The relationship between them can be formalized
in the following theorem.

Theorem 2

The mapping between T(t,ri) and B(t,n) is one to one.

Proof

The one-to-one correspondence is implied by the
algorithms for encoding a Te T(t, ri) and for decoding a
B e B(t, ri). Let B, B' e B(t, ri) be the encoded T,T e T(t, ri),
respectively. As the pre-order traversal of a z-ary tree is
deterministic, each node is visited in a predetermined
manner. Hence, if B = B', then T = T. The converse is
also true. •

Notice that the encoding and the decoding algorithms
described above visit/construct each node of Te T{t, ri)
once and only once, therefore the running times of both
algorithms are O(n).

4. LISTING ALGORITHM

In the previous section, the one-to-one correspondence
between T(t, ri) and B(t, ri) is established. Thus, instead of
generating all members of T(t,n) in the lexicographic
order, we may simply enumerate all members of B{t, ri)
in the same order. A question that naturally arises is
whether or not the same lexicographic order can be
preserved in T(t,n) and B{t,ri), when the one-to-one
correspondence between them is established. The result
is summarised in the following important theorem.

Theorem 3

Let T,TeT(t,ri)andB,B'eB(t,ri). SupposeBandB'are
the encoded bit-strings of T and T, respectively. Then
5 < £ ' i f and only if T< T.

Proof

We prove this theorem in two steps.
(i) T < T implies B < B'.
T < T implies that, by the pre-order traversal, the «th

(say) node of T is empty and the zth node of T is not
empty, while nodes 1 to (/—I) are the same. By the
encoding algorithm, the first (/— 1) bits of B and B' are
the same. As bt of B is 0 and b't of B' is 1, thus B < B'.

(ii) B < B' implies T <T.
The converse can also be proved readily. B < B'

implies that there exists ay, 1 ^y" < tn, such that bj < b'j
and b(= b't for 1 ̂ J'^y— 1. As B and B' are binary
bit-strings, it follows that b} = 0 and b'} = 1. By the
decoding algorithm, theyth nodes of T and T are empty
and non-empty, respectively, while nodes 1 to (y— 1) are
the same. Therefore, T <T. •

This theorem explicitly states that the one-to-one
mapping between T(t,ri) and B(t,ri) preserves the
lexicographic order of T(t, ri) in B{t, ri). Therefore we need
only to generate B{t,ri) in the lexicographic order; the
conversion from bit-strings to z-ary trees can be trivially
carried out by the decoding algorithm. The details of the
generating algorithm for listing B(t,n) in the lexico-
graphic order are given below.

procedure Listing(a, z: integer);
var i: integer;
begin

if (a = 0) and (z = 0) then PrintBitString
else begin

i:= tm(n-a)-z+l;
if z < > 0 then begin

570 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/569/327640 by guest on 10 April 2024

LEXICOGRAPHIC LISTING AND RANKING OF i-ARY TREES

Listing{a, z -1) ;
end;

if a < > 0 then begin
B[i]:='V;
Listing(a — 1, z +1 — 1);
end

end
end {Listing};

If the above algorithm is activated as Listing (n, 0), then
B(t,ri) will be generated. This generating algorithm can
be proved correct as follows, (i) We show that exactly
n ones and n(t — 1) zeros are generated per bit-string. Note
that a is decremented by 1 when a one is generated. It
follows that n ones will be generated per bit-string.
Furthermore, the value of z is incremented by (/ — 1) when
a one is subtracted from a. As z is decremented by one
when a zero is generated, exactly n(t— 1) zeros will be
generated per bit-string - since the initial value of z is
zero, (ii) We show that the bit-strings so generated are
/-feasible. It is important to note that (/— 1) zeros cannot
be generated before a one is generated. More generally,
additional (/—I) zeros cannot be generated before an
additional one is generated. Consequently, the bit-strings
so generated are /-feasible, as the initial values of a and
z are n and 0, respectively, (iii) We show that the
successive bit-strings so generated are in the lexicographic
order. It is apparent from the algorithm that for any i,
1 < i < tn, bt is assigned a zero before a one whenever
possible. Thus the successive bit-strings generated are in
the lexicographic order. Hence the correctness of the
algorithm is established.

5. RANKING ALGORITHM
A bit-string BeB(t,n) is a string of binary digits; it can
also be interpreted as a binary number. This makes the
association between a /-ary tree and a number obvious.
However, using this method the set of numbers that
B(t, n) maps to is not consecutive. It is desirable to map
B(t, n) to a set of consecutive natural numbers so that a
list of /-ary trees with n nodes in the lexicographic order
can be ranked accordingly.

Let R be a ranking function which maps B(t,n) to
Z = {1,2, ...,Ct,nh s u c h t h a t B<B' if and only if
R(B) < R(B'), where B, B' e B{t, ri). By Theorem 3, T(t, n)
is also ranked in the same order. So the remaining
problem is to derive R.

First of all, we derive some auxiliary functions to assist
the final derivation R. Letf(i) be the number of ones in
between bf and btn of B inclusively. Further, let V(i) be
the number of bit-strings that are /-feasible, such that
they all have the same prefix b1b2...6^ as B has, with
bt = 0. Then V(i) is given by the following important
theorem.

Theorem 4

Proof

V(j) is equal to the number of permutations of X0 ones
and (in — i—flf)) zeros in between bi+l and btn inclusively,

such that the resulting bit-strings are /-feasible. The
number of all possible permutations of J{i) ones and
{tn — i—flj)) zeros is

tn-i

However, the above number of permutations also
includes bit-strings that do not satisfy the /-dominating
property. By the reflection principle,7 the number of such
bit-strings is

•Hence the theorem is correct.

Theorem 5

Proof

For each bt of B, such that bt = 1, B is preceded by other
bit-strings having the prefix b1b2...bt_x0, where
blb2... bt_x are identical with the first (/—I) bits of B. By
Theorem 4, the total number of bit-strings preceding B
is

((i I tn —

Hence the position index R(B) of B in the lexicographic
listing of B(t, n) is

1 + •
Corollary 1

Proof

AsJ{l) = n, therefore

V(\) = 0.

= o. •
Equipped with Theorem 5, the ranking algorithm can

be implemented easily, and is detailed below.

function Rank(B: bitstring): integer;
var i, j , index: integer;
begin

j:=n-\;
i :=2 ;
index: = 1;
while j > 0 do begin

if B[i\ = ' 1' then begin
index: = index+ C(t*n — /, j — 1)

jj
end;

i:= i+l;
end;

Rank:= index;
end {Rank};

THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987 571

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/569/327640 by guest on 10 April 2024

M. C. ER

Note that the equation of Theorem 4 can be simplified
as follows:

tn-i\

A0)
tn-i

1 M
tn-i

A0-V'
Indeed, this simplified form is used in the ranking
algorithm. Note that in the ranking algorithm,

C(t*n-iJ-l) =

and the initial values of /, j and index are based on
Theorem 5 and Corollary 1.

6. UNRANKING ALGORITHM
Let R~* be the unranking function which maps
Z = {1,2,..., Ct „} to B(t, ri). Clearly R'1 is the inverse of
R. So, given a position index, we want to compute its
corresponding bit-string in the lexicographic listing of
B(t, ri). The following implementation does just that.

procedure Unrank(index: integer);
var i,j, x: integer;
begin

j:=n;

while j > 0 do begin
x: = C(t*n-i,j- \)*{t*{n-j)- /+1) divy;
if index > x then begin

: = ' 1 ' ;

index: = index — x;
end

else £ [/] : = ' 0 ' ;
/ : = / + l ;
end;

fori':= / to t*n do B[i\:= ' 0 ' :
end {Unrank};

The correctness of the unranking algorithm may be
proved as follows. First of all, it compares the position
index with V(i). If index > V(i), bl should be assigned a
one in order that the given position index will fall within
the range covered by the subset of B{t, ri) having the same
prefix b1b2... bt_t in the lexicographic listing. The total
number of ones to be assigned to B is reduced by 1, and
the value of the position index is reduced by V{i).
Conversely, if index < V(i), bt should be assigned a zero,
as V{i) indicates the number of /-feasible bit-strings
having the prefix blb2...bt_t0 By induction, the
unranking algorithm is correct.

7. CONCLUDING REMARKS

Representation plays an important role in complex
problem solving, as well as in designing efficient
algorithms. Some representations lend a hand to simple
and transparent solutions, but some do not. This paper
shows that the simplest idea of representing a binary tree
as a bit-string4 can be extended to a ;-ary tree. The
resulting generating, ranking and unranking algorithms
for r-ary trees are also very simple and efficient.

REFERENCES
1. F. Ruskey, Generating f-ary trees lexicographically. SI AM

Journal on Computing 7, 424-439 (1978).
2. A. E. Trojanowski, Ranking and listing algorithms for

A>ary trees. SI AM Journal on Computing 7,492-509 (1978).
3. C. L. Liu, Generation of/c-ary trees. Proc. 5th Colloque de

Lille-Les Arbres en Algebre et en Progranimation (1980).
4. M. C. Er, Enumerating ordered trees lexicographically.

The Computer Journal 28 (5), 538-542 (1985).

5. A. D. Sands, On generalised Catalan numbers. Discrete
Mathematics 21, 219-221 (1978).

6. D. E. Knuth, The Art of Computer Programming, vol. 1.
Addison-Wesley, Reading, Massachusetts (1973).

7. W. Feller, An Introduction to Probability Theory and its
Applications, vol. 1, third edition. Wiley, New York 1968.

572 THE COMPUTER JOURNAL, VOL. 30, NO. 6, 1987

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/30/6/569/327640 by guest on 10 April 2024

