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Since software testing cannot ordinarily be expected to provide conclusive evidence that a program is correct, software
engineers have had to be satisfied with the vague notion of a set of test data being adequate for a given program. In this
paper a theoretical model is provided for the notion of adequacy. Adequacy criteria are seen as serving to distinguish a
given program from a certain class of programs. In particular, notions of distance between programs are studied, and
adequacy of a test set is taken to mean that the set successfully distinguishes the program being tested from all
programs that are sufficiently near to it, and differ in input—output behaviour from the given program. Certain points,
called critical, are identified which must occur in every adequate test set. Finally, lower bounds are obtained on the size
of test sets which are minimally adequate, in the sense that they have no adequate proper subsets.
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1. INTRODUCTION

A test-data adequacy criterion provides explicit rules for
determining when it is appropriate to end the testing
phase of software development. When defining new
adequacy criteria, it is necessary also to offer a plausible
theoretical justification for the criteria proposed. (For
example, see Refs 1, 3, 5 and 10.) Assuming, as we do
here, that the criteria are to be program-based, an
adequacy criterion may be thought of as an approxima-
tion to the unattainable ideal, whereby a set of test data
T would be regarded as adequate for a given program P
if the input—output behaviour of P on T distinguishes P
from all programs Q whose input—output behaviour is
not identical to that of P. Of course, in principle there
are many ways to effect such an approximation. A
particularly attractive way to proceed is to associate with
each program P a finite set ®(P) of programs such that
for each Q e ®(P), Q is not equivalent to P; we can think
of ®(P) as a finite approximation to the set of all
programs Q such that Q is not equivalent to P. We can
then define a set of test data T as ®-adequate for P if

(V@ e ®(P))(3re T) (P(1) # Q()).

That is, instead of distinguishing P from all inequivalent
programs, T need only distinguish P from programs in
®(P). This approach was followed in Ref. 3, where a
number of results were obtained by, in effect, taking ®(P)
to be the class of all programs Q such that Q is
inequivalent to P, and Q has program size less than that
of P, with respect to a suitable notion of size. The choice
for ®(P) in Ref. 3 was, of course, somewhat ad hoc; there
is no special reason to single out programs of size smaller
than the program being tested, except that there are only
finitely many such programs. In this paper we generalise
our notion of adequacy and consider a family of
adequacy notions all based on taking ®(P) to be the set
of programs Q inequivalent to P which are near P in some
appropriate sense. We shall not restrict ourselves to any
one notion of ‘near’, but will instead construe ‘nearness’
as referring to a measure of distance between programs
assumed to satisfy the metric space axioms.
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number N000014-85-K-0414 and by National Science Foundation
grant number DCR-85-01614. The authors wish to acknowledge with
thanks suggestions made by the referee. In particular, it was at the
referee’s suggestion that proofs of theorems were placed in an appendix.

A fundamental difficulty in the general approach
considered above arises from the fact that ®(P) may well
contain a program Q, ‘part’ of which is equivalent to P.
As we shall see, such programs Q can be used in diagonal
constructions to show that, except for very special
circumstances, no program can have a ®-adequate test
set. We deal with this problem by excluding from ®(P)
all programs Q in which P is embedded, in the sense
defined below. (This is essentially the same formal
solution to this problem used in Ref. 3.) Since the
definition of embedded involves syntactic transformations
of a program, we shall need to be very precise about our
programming language.

Thus we shall begin by specifying our programming
language. Next, we shall show how vulnerable adequacy
notions are to diagonal constructions. We shall define the
notion of a program being ‘embedded’ in another,
indicating how this notion enables us to avoid the above
difficulty. Finally, we shall turn to distance-based
adequacy notions. Although the reader of Ref. 3 will note
some similarities, we do not assume acquaintance with
that paper. Also, we assume no previous knowledge of
metric spaces.

2. THE PROGRAMMING LANGUAGE

We assume a finite number of identifiers whose range is
the integers (positive, negative or zero) as well as a finite
number of constants representing particular integers; it
is assumed that numbers encountered as input or output
values are represented by corresponding constants of the
language. Arithmetic expressions are constructed using
constants, identifiers, parentheses and the arithmetic
operators 4+, —, *, / as usual. An assignment statement
has the form:

VAR « EXP

where VAR is an identifier and EXP is an arithmetic
expression. The null statement A is the empty string and
represents a NO —OP. A predicate is to be of one of the
forms:
B, =B, B #B, B <B, B <B,,

where B, and B, may each be a constant or an identifier.
We next define program body.

(1) A is a program body.

(2) An assignment statement is a program body.
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(3) If PRED is a predicate and P and Q are program
bodies, then if PRED then P else Q end

is a program body.
(4) If PRED is a predicate and P is a program body,

then if PRED then P end

is a program body.
(5) If PRED is a predicate and P is a program body,

then while PRED do P end

is a program body.
(6) If P and Q are program bodies so is PQ.
If VAR is an identifier then

input VAR and output VAR

are called input and output statements, respectively.
Finally, an input statement followed by a program body
followed by an output statement is called a program, and
the program body in question is called the body of the
program. We shall often permit ourselves the ‘abuse of
language’ of failing to distinguish between a program
and its body. For example, we speak of the program A,
meaning a program whose body is A.

3. »-ADEQUACY

We shall write P(c) = b to mean that on input ¢, program
P halts with output b and P = Q (P is equivalent to 0
to mean that P and Q halt on the same inputs and that
P(c) = Q(c) for all such inputs c. When we write P = 0,
we mean that P and Q are syntactically identical. Now
let ® be a mapping that associates with each program P
a finite set @ (P) of programs inequivalent to P.

Definition

A set of inputs T is ®-adequate for the program P if for
every program Q € ®(P) there is a point 7€ T such that
P(1) # 0().

Thus we are taking the position that choosing an
adequacy criterion amounts to selecting a particular
mapping ®, yielding a set of inequivalent programs from
which P must be distinguished. Our first theorem shows
that care must be taken in specifying ®(P). The proofs
of all our theorems will be found in the Appendix.

Theorem 1 (Reflexivity Theorem)

If for some ¢ not in T, ®(P) contains a program Q of the
form:

input x

if x = c then y < b else R end

output y

where R = P and b # P(c), then T is not ®-adequate for
P.

The practical implications of this theorem are
important. Of course, one desires finite test sets which
do not exhaust the domain of the program being tested.
Thus it is surely intended that for a test set T for a given
program there will ordinarily be points belonging to the
domain of the program that are not in 7. However, most
reasonable criteria for the set ®(P) do not automatically
exclude programs like the program Q in the statement of
the Reflexivity Theorem. Therefore, unless we can find a
way to exclude such programs, this theorem implies that

no program can be adequately tested short of exhaustive
testing. Our method of seeking to banish such programs
will make use of the following seven reduction rules.

(1) Replace some assignment statement by A.

(2) Replace an if statement: if PRED then P else Q end
by P.

(3) Replace an if statement: if PRED then P else Q end
by Q.

(4) Replace an if statement: if PRED then P end by P.

(5) Replace an if statement: if PRED then P end by A.

(6) Replace a while statement: while PRED do P end
by P.

(7) Replace a while statement: while PRED do P end

by A.
We say that a program M reduces to N if the program
N can be obtained from M by 0 or more applications of
these reduction rules, and that M is embedded in N if N
reduces to some program which is equivalent to M.
Clearly, if M is equivalent to N, M is embedded in N, and
N is embedded in M.

This way of thinking about test-data adequacy criteria
helps elucidate a fundamental weakness of using
statement or branch coverage as such a measure. A
®-adequate criterion requires that test data be included
which distinguish a given program from a fixed set of
other inequivalent programs. Viewed another way, such
a criterion requires test data which guarantee that certain
predetermined errors are not present.” Statement and
branch testing, in contrast, do not seek to distinguish a
given program from other programs (or to detect
particular errors). They merely require that various parts
of the program be executed. The connection between this
type of code exercising and the location of errors is at best
indirect. However, since it is clear that statement and
branch coverage represent necessary conditions for
test-data adequacy (if a portion of a program has never
been executed, any incorrect code could be within that
subprogram), it is important to observe that there are
®-adequate criteria which imply branch adequacy
(which, in turn, implies statement adequacy).

Theorem 2

Let ®(P) consist of all programs inequivalent to P to
which P can be reduced using rules 2, 3, 4, 5, 6 and 7.
If T distinguishes P from ®(P), then T results in each
branch of P being traversed.

Noting that what makes the program Q in the
statement of the Reflexivity Theorem work is that P is
embedded in it, we are led to call a mapping ® protected
JSor program P, if ®(P) contains no program in which P
is embedded. Thus, if @ is protected for P, the Reflexivity
theorem is no barrier to the existence of a non-exhaustive
adequate test set for P. Note also that, since Pis obviously
embedded in any program Q such that Q = P, if ® is
protected for P, then ®(P) contains no program
equivalent to P. Thus, by confining our attention to
mappings that are protected for P, we can omit from our
definition the requirement that the set ®(P) should
contain only programs inequivalent to P. If ® is protected
for all programs P, then we say that ® is totally protected.

Theorem 3

If the mapping ® is protected for program P, there is a
finite set T which is ®-adequate for P.
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Thus, in the most general case, we view a program as
being adequately tested if the test data have distinguished
it from all programs in a predesignated set of alternative
programs. This set can be viewed as being determined by
a mapping ®. We have seen that if restrictions are not
placed on @ to prevent embedded programs, one cannot
expect to be able to ®-adequately test an arbitrary
program using less than exhaustive testing.

In the next section we examine a particular set of
mappings which, we believe, yield an interesting and
intuitively reasonable set of alternative programs.

4. METRIC SPACE ADEQUACY

A program is tested in order to find errors. Each such
error represents a way in which the program being tested
fails to perform as desired or, to put it another way, in
which it is not the program one wishes it to be. Using the
language of ®-adequacy, we may say that the hope is that
the desired correct program Q is contained in the set
®(P), where P is the program being tested. When the
error to be found is a ‘minor’ one, one will expect that
P and Q will not be very different syntactically. Usually,
when one speaks of a ‘major’ error, one can expect that
P will differ more substantially from Q. These consider-
ations suggest that we consider a hierarchy of adequacy
notions in which ®(P) consists of programs which are
syntactically different from P to a greater and greater
extent. This in turn requires us to be able to speak
quantitatively of the extent to which programs differ or,
as we shall say, of the distance between programs.

In considering what properties one would wish a
notion of distance between programs to possess, we have
been guided by the study of metric spaces in set-theoretic
topology. Thus we define a distance function between
programs to simply be one which satisfies the traditional
axioms for metric spaces. More specifically, we proceed
as follows:

By a distance function we shall mean a real valued
function p on pairs of programs, such that for all
programs P, Q and R:

(1) p(P,Q) =2 0;

2) p(P,Q)=0if and only if P = Q;

(3) p(P,Q) = p(Q, P);

(4) p(P,R) < p(P,Q)+p(Q, R).

These are the well-known axioms for a metric space; in
particular (4) is called the triangle inequality. If for each
P and each d > 0 there are only finitely many programs
O such that p(P, Q) < d, then p is called a finite distance
function; if p(P, Q) is always an integer, p is called a
discrete distance function.

We shall not use any one particular distance function,
but rather try to state our results in as general a form as
possible. One example of a finite discrete distance
function can easily be specified by using the reduction
rules which were introduced in order to define the notion
of one program being embedded in another. That is, we
can let p(P, Q) be the least integer n such that there is a

sequence: P=P1 P2 P — Q
’ s dp ’

where for i =1,2,...,n—1, either P, reduces to P,,, or
vice versa, using one application of the rules 1 to 7 above.
However, although this function p does satisfy our formal
definitions, it cannot really be regarded as satisfactory.

For example, by reduction rule 2, the program x « 0 is
at a distance 1 from the program

if PRED then x « 0 else Q end

no matter how complicated Q may be. Later we shall see
how to construct a more reasonable distance function
using a grammar for our programming language.

An example of a function that does not satisfy the
definition of a distance function is f{P, Q), defined to be
the number of points ¢ such that P(c) # Q(c) if this
number is less than some constant K, and defined to be
K otherwise. This definition fails to satisfy axiom 2, since
for any pair of (semantically) equivalent programs P and
0,f(P, Q) = 0, even though P and Q may be substantially
different syntactically. Note in addition that for a given
P and d there may be infinitely many programs Q such
that f{P,Q) < d.

A useful heuristic guide is that however distance is
measured, the function p(P, A) should serve as a program
complexity measure.!! Of course, by the triangle

inequality, p(P,0) < p(P,A)+p(Q, A).

Now, let p be a given finite distance function. Then, for
each d > 0, we let ®,(P) be the set of all programs Q such
that:

(1) p(P,Q) < d;

(2) P is not embedded in Q.

The definition implies that each @, is totally protected.
In a context where a fixed distance function may be
assumed, we shall say that a set T is d-adequate, meaning
that it is @ -adequate. Obviously if T is d-adequate and
d > e, then T is e-adequate.

It is interesting to compare the present approach to
adequacy to that arising in work on mutation
analysis.» ¢ Mutation analysis is a program-based
testing technique in which a primary underlying
assumption is that ‘competent programmers’ produce
programs which are ‘close’ to correct. Therefore, it is
argued, if the program being tested is distinguished from
all inequivalent programs which are ‘close’ to it, then the
tester can conclude that the program has been well tested.
Thus a mutation system would first generate a number
of programs, each of which differs from the original by
one simple syntactic change (similar to our reductions).
These modified programs are known as mutants. In order
to distinguish the original program from each of the
inequivalent mutants, test data must be supplied which
cause the original and mutated programs to produce
different outputs. Thus mutation adequacy is essentially
l-adequacy, for the particular distance function just
defined using our reduction rules.

Much of the appeal of the mutation concept comes
from the intuition provided by the ‘coupling effect’,*
which states that ‘test data that distinguishes all
programs differing from the correct one by only simple
errors is so sensitive that it also implicitly distinguishes
more complex errors’. Given this intuition, it seems
reasonable to restrict attention to test data which
distinguish a program from programs that are ‘near’ it.
The idea of d-adequacy generalises the mutation notion
in two significant ways: it permits one to abstract from
any one particular way of measuring the distance between
programs, and it enables one to study sequences of
adequacy notions of increasing scope. More will be said
about this below.
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5. A GRAMMAR-BASED DISTANCE
FUNCTION

We begin by specifying a context-free (i.e. BNF)
grammar for our programming language. The first two
productions listed are left indefinite to correspond to our
assumption of arbitrary finite lists of constants and
identifiers.

{constant) — c,|c,)...|cp
(identifiery — v,|v,|...|v,
{operator) - +|—|*|/
{relation) - = | # | < | <
{expression) — c,|c,|. . .|c,,
(expression)y — v,|v,|...|v,
{expression) — {expression) {operator) {expression)
{expression)y — ({expression))
{ predicate) — {constant ) {relation) {constant)
{ predicate) — (identifier) {relation) {constant)
{ predicate) — {constant ) {relation) {identifier)
{ predicate) — (identifier) {relation) {identifier)
{program-body) — A
{ program-body — (identifiery « {expression)
{ program-body) — if { predicate) then { program-body)
else { program-body) end
{ program-body — if { predicate) then { program-body
end
{ program-body> — while { predicate) do<{program-body}
end
{ program-body) — { program-body { program-body)
{ program) — input {identifier) { program-body)
output {identifier)

In order to use this grammar to define a distance, we
speak of a transition sequence from program P to
program Q, meaning a sequence of expressions P,, ..., P,
such that P, = Pand P, = Q and foreachi=1,...,k—1
either P,,, is obtainable from P, (referred to as a forward
step) or P, is obtainable from P, (a backward step) using
one of the productions of the grammar. Next we define
the length of a transition sequence to be the maximum of
the number of forward steps and the number of backward
steps in the given transition sequence. Now we can define
p(P,Q) as the smallest length of a transition sequence
from P to Q. It is very easy to see that this function p is
indeed a distance function, and is in fact both finite and
discrete. However, p as thus defined is not really very
satisfactory, because there are many examples of pairs of
programs which intuitively should be very close, but
which are a rather large distance apart as measured by
p as thus defined.

To deal with this problem, we add productions to our
grammar intended to provide ‘short cuts’, that is to bring
closer programs whose distance apart is greater than
seems intuitively appropriate. For this purpose, we add
to our grammar a special non-terminal {|). Although we
shall add productions involving {|», the symbol (|> will
never appear on the right-hand side of a production.
Hence these productions will not change our language at
all. However, because transition sequences are permitted
to contain backward steps, these productions can and will
decrease the distance between programs. The first
additional production is

H-A

Thus by inserting a backward step into a transition
sequence, the symbol {|> may be inserted anywhere.
Desired ‘short cuts’ can then be obtained simply by
inserting appropriate productions with <|> on the left. In
particular, we add the additional productions:

{|> = {operator) {expression)
{|> = {expression) {operator)
<> =)

<= (

(> - {expression) {operator))
{|> = ) operator) {expression)

Now we define p exactly as above, but permit the use of
these additional productions in constructing transition
sequences.

To help in understanding the effect of these short cuts,
let us consider what types of syntactic change cause
programs P and Q to be ‘very close’ to each other, i.e.
distance 1, using this notion of distance. If the only
difference between P and Q is that the relation symbol in
a predicate is different, or the operator in an expression
is different, these programs would be distance 1 apart.
Similarly if a new program is obtained by changing a
single identifier or constant at exactly one place, the
distance between these programs would be 1. Likewise if
the new program is obtained by replacing a constant by
an identifier, or vice versa, at exactly one place, the
resulting program is at a distance 1 from the original
program.

On the other hand, adding an assignment statement to
a program requires, at a minimum, the following
transition sequences:

A, {program-body,
v; « {expression),

{identifiery « {expression),

The distance between a given program and one with this
simplest type of assignment statement added is 3 (the
transition sequence involves 1 backward step and 3
forward steps).

Also distance 3 apart are programs P and Q, which
differ only in one statement in which P contains the

statement
yex

while Q contains the statement
yex+1

In contrast the program R which is identical to P except
that the statement
yex

is replaced by y e 2%z
would be of distance 4 from P, as demonstrated by the
transition sequence

Yy« Xx, y<« {expression),

y « {expression) {operator) {expression),
y « 2{operator) {expression,

y « 2x{expression), y <« 2%z

which contains 1 backward and 4 forward steps.
Inserting (or deleting) a WHILE statement with a
non-null body requires a transition sequence containing
a minimum of 8 forward (backward) steps, as does an IF
THEN statement with a non-null program body.
Inserting an IF THEN ELSE statement with neither
program body null requires a minimum of 11 forward
steps. Of course, as the number of statements and degree
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of complication of the program bodies grow, so does the
number of steps needed to insert or delete code, and hence
the distance between programs.

We will sometimes speak of the distance between pairs
of statements or parts of statements to mean the obvious
application of the distance function to the desired
program parts.

6. A REPRESENTATION THEOREM

Let us call a mapping ® symmetric if it satisfies the
following condition.

If P is not embedded in Q and Q is not embedded in
P, Qe ®(P) if and only if Pe ®(Q)

Then it is clear that the mappings @, defined by a distance
function are symmetric. In fact we can easily prove:

Theorem 4 (Representation Theorem)

Let the mapping ® be symmetric. Then there exists a
distance function p such that a set T is ®-adequate for
a program P if and only if T is 1-adequate for P with
respect to p.

Critical points

Generalizing from Ref. 3, we define as follows.

Definition

A point cis called ®-critical for a program P if there exists
a program Q € ®(P) such that P(¢) = Q(¢) for all ¢ # ¢,
but P(c) # Q(c).

Theorem 5

Let T be ®-adequate for program P and let ¢ be ®-critical
for P. Then ceT.

In what follows, we assume that some fixed specific
finite-distance function has been chosen, and we write
d-critical for @ -critical. Then we have:

Theorem 6

Let ¢ be d-critical for P and let d < e. Then c is e-critical
for P.

We now assume temporarily that the distance function
referred to is the one defined above in terms of a
grammar.

Consider a program P:

if x < c then Q else R end

where Q(c) # R(c). Then c is 1-critical for P as dem-
onstrated by the program:

if x < c then Q else R end
Similarly b = ¢+ 1 is 1-critical for P as evidenced by the
PrOBTam: e » < b then Q else R end

This type of ‘boundary’ point is the same type that was
found to be critical in Ref. 3.

The question is, then: does considering increasingly
distant programs as possible alternatives to the program
being tested increase the number of points which must be

included in any d-adequate test set for the program? The
surprising answer is yes, but not until d becomes quite
large, and only for certain kinds of programs.

Let f{x) be an arithmetic expression containing the one
identifier ‘x’. The program y « f{(x) will generally have
no d-critical point, no matter how large d may be. In
general, points of ‘discontinuity’, i.e. points on the
boundary between regions in which essentially different
computations are performed (like » and ¢ in the above
example), turn out to be 1-critical. Indeed, it is precisely
because the program y « f{x) does not have any such
discontinuity that it has no d-critical point. Now consider
a program which computes g(x) on some finite
contiguous portion D, of the domain (where D, does not
consist of a single point and where g(x) is an arithmetic
expression) but which computes f{x) on D,, the set of all
points of the domain not in D,. As in the above example,
such a program will normally have the usual endpoints
of D, and D, as l-critical points. However, each of the
points of D, will also be d-critical for sufficiently large d.
A simple example will help to clarify the intuition and
give the reader a feeling for the size of d which would be
required.

Consider the program P below, in which c,, ¢, are
constants such that ¢; < ¢,:

y < fix)

if x > c, then if x < c, then y < g(x) end end

The points ¢;—1, ¢, ¢,, ¢,+1 would all normally be
1-critical points.
Next, consider the program Q:

y < fix)

if x > c, then if x < ¢, then y « h(x) end end
if x = ¢, then y « g(c,) end

if x=1c,+1 then y — g(c,;+1) end

if x = ¢, then y « g(c,) end

where the block of if x = ¢ then y « g(c) statements
contains one for each element of D, except the point c;.
Then, since P is not embedded in Q provided A(x) # g(x)
for all xeD,, it follows that ¢, is d-critical for P, where
d is the distance between P and Q. This distance will
depend on such factors as the size of D, and the arithmetic
expressions g and h. Assuming that the distance between
g and h is 1 (for example that they differ by a single
constant or arithmetic operator), then, since the addition
of each of the if statements requires 8 forward steps,
p(P,Q) = 148k where D, contains k+1 points, and
hence each of the points in D, would be (1+ 8k)-critical.

The implications of this example are quite interesting.
A critical point must be included in any adequate test set.
Intuitively, these are points at which a programmer is apt
to make a mistake and therefore they should always be
checked. Off-by-one errors are a classical example of a
programming blunder. The programmer includes one
too few or one too many elements in a subdomain. It is
interesting to notice that the points selected by our theory
as necessary to test coincide with the points which
pragmatic experience has taught us should be included in
every test set. We consider this a confirmation of the
reasonableness of our theory.

In contrast to 1-critical points, the type of error
represented by the last example seems much less likely,
and this is reflected in the distance from P to Q, and the
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unnatural type of program which must be constructed in
order to demonstrate that such a point is d-critical for
suitable d.

We conclude this section with two slightly more
substantial examples. Consider the following program,
which is intended to compute the integer part of the
square root of a number n, provided 0 < n < 100. ‘Error’
indicates that the program prints some error message
(technically an integer in our language) and halts.
input n
if n < 0 then error

else if 100 < n then error
else i 0
Jje1
while j < n do
i—i+1
je@+D*3GE+1)
end
end
end
output i
The 1-critical points for this program include —1, 0, 1,
100 and 101. —1, 0, 100 and 101 arise from the bounds
onn. 0 and 1 are also critical points which arise from the
statement which initialises j (namely j « 1). If instead j
were initialised to 0, the square root of 0 would be
computed to be 1, rather than 0. No other input would
be affected, and hence 0 is a 1-critical point. Similarly, if
J were initialised to 2, the square root of 1 would be
determined to be 0, and hence 1 is 1-critical. 0 can also
be seen to be 1-critical by changing the initialisation of
ifrom ‘i <0’ to ‘i « —1°. For input 0, the output would
then be computed to be —1. All other outputs would
remain unchanged. As explained above, if d is chosen to
be sufficiently large, each of the points in the interval
[0, 100] becomes d-critical for this program.

As mentioned above, some programs, particularly
those that compute the same function on every element
of the domain, will generally have no d-critical points.
For example, if the restriction on the upper bound on n
were removed, 100 and 101 would no longer be 1-critical,
and the points in the interval [2, 100] would no longer be
d-critical. If the restriction that n > 0 were removed, —1
would no longer be a 1-critical point, but 0 and 1 would
remain 1-critical points, as explained above. In this case
the program computes 0 for n < 0 and |v/n] for n > 1.
0 and 1 are ‘points of discontinuity’ between the two
functions, and hence are 1-critical points. Notice that
changing the predicate ‘j < n’ to ‘j < n’ yields no critical
point, since many inputs would now have an incorrectly
computed square root. On the other hand, since the
given square root program and the version with the
incorrect predicate are distance 1 apart, some test case
must be included which exposes this boundary error in
order for the program to be deemed adequately tested.

Our final example is intended to help elucidate the
notion of a critical point and the type of test sets needed
to satisfy our criterion. The program is supposed to
categorise triples of integer inputs, when interpreted as
the lengths of the sides of a triangle, and is similar to
programs in Refs 4, 8 and 9. A specification for such a
program is also presented in Ref. 6 as an exercise to check
one’s skills in designing test sets. The program prints a
message indicating whether the inputs represent a
scalene, isosceles or equilateral triangle, or do not

represent the sides of a triangle. For simplicity, in
exhibiting this program we permit ourselves some
inessential extensions of our programming language.
Thus we show outputs as strings with appropriate
semantic content (error, scalene, etc.) where strict
conformity to our programming language would require
integers. Also, we permit input of tuples of integers (as
is the case in the closely related language used in Ref. 12).
Finally, we use simple arithmetic expressions in the
predicates (where strictly speaking we are only allowed
constants and variables).

input 4, B, C

if4>B+C
then error
elseif B> A+C
then error
elseif C> A+B
then error I
else if A # B 3
thenif 4 # C i g:
then if B # C o
then scalene )
else isosceles end | 3
else isosceles end E:
elseif 4 # C 2
then isosceles o
else equilateral end §
end 3
end §
end S
end S

This example contains no d-critical point for any value g
of d. This is consistent with one’s intuition that there is 3
no particular point (in this case triple) which must be %
included in every test set. On the other hand, however, =
the criterion does require that a representative from each @
of several classes be included. For example, in order to =
distinguish the given program from the program in which =
the first predicate ‘4 > B+ C’ is replaced by the predicate =
‘A > B+ C’,itis necessary to include a test case for which g
A= B+C. Similarly, from the second and third
predicates, test cases with B = 4+ Cand C = A+ Bmust =
be included. To distinguish the given program from one ©
in which the first predicate is replaced by ‘4 = B+ C’, test
data must be included for which 4 > B+ C. Similarly,
from the second and third predicates, we must include test
cases with B> 4+ C and C > A+ B. These six test-case
types represent all the ways that a triple may fail to satisfy
the triangle inequality. If one continues this analysis
considering programs which are distance 1 from the
original, it is easy to demonstrate that the tester would
also be required to include test cases representing valid
scalene, isosceles and equilateral triangles (including all
permutations of the two equal sides of an isosceles
triangle, and all permutations of the relative sizes of a
scalene triangle). If one considers Myers’ list of
appropriate test cases for such a triangle classification
program,® we find that representatives of 8 of his 13
‘likely errors’ must be included in any 1-adequate test
set. If, however, the distance is increased, the three
additional ‘likely errors’ involving negative and 0 inputs
must be included. They are deemed less likely than the
other errors by our criterion in the sense that they
represent programs which are a greater distance from the
original than the other cases. If one examines this more

20z IHdy 60 U0 }so

22 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988



METRIC SPACE-BASED TEST-DATA ADEQUACY CRITERIA

closely, this can be seen to be intuitively reasonable, since
having a negative-length side or a side of length 0 is
simply a special case of the failure of the triangle
inequality. For example, if 4 <0 either C > B+ 4 or
B> C+A, and hence the triangle inequality is not
satisfied. Thus our theory would require that test data be
included which would expose 11 of 13 of Myers’ ‘likely
errors’. Myers lists two other ‘likely errors’ which should
be tested for. The first is a non-integer-type input. Since
our language contains only integers, this is not a possible
error in our theory. The other error type is an incorrect
number of inputs. What happens when a program has
been provided with too few inputs depends on just how
uninitialised variables are treated. Since we have not
chosen to deal with this matter in formulating our
programming language, we cannot expect to handle
errors of this kind.

7. MINIMALLY ADEQUATE TEST SETS

In general, we say that a set T is minimally ®-adequate
for a program P if:

(1) T is ®-adequate for P;

(2) if S = T and S is ®-adequate for P, then S = T.

We have seen that for a program P with protected
mapping @, there is a finite ®-adequate test set. By
successively deleting points from such a ®-adequate test
set, eventually we must arrive at a minimally ®-adequate
test set. Of course, we can now speak of a set T being
minimally d-adequate for a program P. Let us call a
distance function p stepwise if for every program Q of the

form if x = c then y « b else P end

we have p(P,Q)=1. Our grammar-based distance
function is not stepwise in this sense. However, it is not
difficult to see how it could be transformed into a stepwise
distance function. Begin by adding to the grammar the
‘short cut’ productions:
> —=ifv,=c; then v, —c,else 1 < ik <n;
1<j,l<m
{|> —»end
Then for P and Q as above we have p(P, Q) = 2. Then
a change of scale (replacing each distance d by [d/2])
suffices to make p into a discrete, stepwise distance
function. Of course, letting R be the program if x > ¢ then
y <« b else P end, p(P, R) is a good deal larger than 1,
although intuitively Q and R seem equally distant from
P. Presumably, by adjoining still more °‘short-cut’
productions we could make our distance function behave
in a manner more in accord with intuition. However,
since the notion of p being stepwise occurs as a hypothesis
in only one of our theorems, we do not dwell on the
matter.

Now, let p be a discrete, finite, stepwise distance
function, and let
T= {61’02’---’(;]{:}
be d-minimally adequate for program P. For 1 <i <k,

let T, = T—{c,).
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Proof of Theorem 5

A ®-critical point for a program P is a point such that
P differs from some program in ®(P) only at that point.
It therefore follows immediately from the definitions that
®-critical points for a program P are points which must
appear in any ®-adequate test set. li

Proof of Theorem 6
Obviously, ®,(P) < O .(P). B

Proof of Theorem 7

Since p is stepwise, p(P;, Q;) = 1. Now, for all te T, we
have Q,(¢) = P(t). We know that P is not embedded in
P;; thus P can only be embedded in Q; if either P always
outputs the value b or if P = Q,. But we can eliminate the
first possibility because we have assumed that P outputs
at least 2 distinct values. Now, if P = Q,, ¢; is a d-critical
point for P; on the other hand, if P is not equivalent to
Q;, then by definition, p(P, Q,) > d. Also,

P(P,Q:) < p(P,P)+p(F, Q) <d+1.

Since our distance function is assumed to be discrete, it
follows that p(P,Q;,) =d+1. B
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