Access Path Selection in Databases with Intelligent Disc

Subsystems

W.KIESSLING

Technische Universitdt, Institut fiir Informatik, Arcisstr. 21, D-8000 Miinchen 2, West Germany*

As the performance demands imposed on relational database systems are steadily increasing, it becomes more difficult to
master them with conventional database architectures. New architectural proposals suggesting the use of intelligent disc
subsystems in combination with appropriate set-oriented interfaces look promising, because they can be realised by
standard, high-performance hardware now. In particular, it makes sense to exploit the fast sequential read-out
capabilities of modern discs. In such a changed environment the access-path selection problem, especially the question of
whether index usage can speed up retrieval query execution, requires new solution approaches. Based on easily acquired
performance data, an analytical model for restriction queries is developed that allows us to determine threshold hit ratios
separating profitable from non-profitable index usage. As this model is founded on an extent-based file organisation, it is
likewise applicable to conventional architectures permitting chained 1/0. Simulation results for two common disc-pack
drives are reported, showing that the bottleneck for random disc accesses sharpens for modern discs, and thus makes
exhaustive relation scans preferable in more cases. However, indexes will still be mandatory on highly selective
attributes to achieve satisfactory performance. The presented optimisation criteria are directly amenable to

incorporation into a query optimiser.

Received May 1986, revised November 1986

1. INTRODUCTION

In relational database (DB) systems the optimisation of
query execution is mandatory to achieve acceptable
performance. Typically, the query optimiser selects a
‘cheapest’ access path among several feasible processing
strategies. As an example consider the following query in
SQL-form.!

SELECT r1 FROM R WHERE r2 > 17

As an alltime available access path a complete scan
over the relation R is one feasible processing strategy.
Alternatively, if an index — e.g. B-tree or ISAM - exists
on the restriction attribute r2, a second processing
strategy would be to first pick up the qualifying tuple
references by examining the index and secondly to
materialise only those qualified tuples. Clearly there is a
trade-off between the potential savings in tuples to be
fetched and the extra expenditure required to traverse the
index. This issue was also addressed by some DB machine
designs that tried to avoid the index overhead costs
entirely by heavy use of parallelism supported by
specialised hardware (see e.g. Refs 15 and 9). However,
recently the opinion of what should be the architecture
of an efficient general-purpose relational DB system
favours those systems that rely on indexes to speed up
retrieval query execution (see e.g. Refs 3-5). But since
conventional DB architectures, being characterised by
disc subsystems with a fetch/store-block interface, can
hardly . master the steadily increasing performance
demands, different architectures must be considered. A
recent proposal, which uses only off-the-shelf hardware
and which aims in this direction, can be found in Ref. 12.
That design proposes a set-oriented interface to an
intelligent disc subsystem, much in the style of a
processor-per-disc architecture. Because an intelligent

* Present address: MAD Intelligent Systems, Prinzregentenplatz 10,
D-8000 Miinchen 80, West Germany.

disc has its read/write arm dedicated at its own disposal,
it can optimise set-oriented disc access requests better
than is possible in conventional DB systems. There, in
general, the DB system has little or no influence on the
underlying operating system that independently sched-
ules the discs and manages the file system. Thus, for such
new architectures, the known standard optimisation
criteria that decide when index usage is preferable over
relation scans (see e.g. Refs 10, 17 and 14), must be
revised to suit the changed environment. However, it
must be emphasised that the results developed in this
paper should also be applicable to conventional DB
architectures, which have an extent-based file organis-
ation and sufficient control over the disc arm movements
for optimised chained 1/0O.

The rest of this paper is organized as follows. In
Section 2 those features from Ref. 12 are explained that
are relevant for this paper. Section 3 presents our
optimisation approach. In Subsection 3.1, disc access
times for elementary and more complex disc operations
are estimated from a couple of easy-to-get basic
performance quantities. In Subsection 3.2, optimisation
criteria are developed that allow us to recognise the
thresholds separating profitable from non-profitable
index usage. Subsection 3.3 establishes the connection
between estimated hit ratios on the tuple level to those
on the block level for disc access. Next, Section 4 reports
results of our threshold model for two common discpack
drives, the IBM /3330 and 3380. Finally, Section 5 states
some conclusions about the usefulness of indexes and
about the integration of our optimisation model in a
query optimiser.

2. ACCESS PATH TYPES IN DATABASES
WITH INTELLIGENT DISC SUBSYSTEMS

The tremendous technological progress on the hardware
sector nowadays makes computer installations with

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 41

¥20¢2 I4dy 60 U0 1senb Aq LEEZ L /L Y/ L/ LE/RI01 e/ |UlWwoo/wod dnoolwapede//:sdiy Wolj papeojumo(q

W.KIESSLING

intelligent subsystems not only available, but also
economical. The following areas are of special interest
for this paper.

(i) Fast magnetic discs with large capacity. Most
certainly, conventional moving-head discs will remain
the dominant medium for long-term storage of the
physical DB.

(ii) Powerful micros with an excellent price/per-
formance ratio: such micros can be employed for a
functional upgrading of discs (‘intelligent discs”).

This trend of a strong technological advancement of
conventional hardware formed the starting point for the
gross design of a hardware architecture of future
high-performance DB systems, as depicted in Fig. Al
(compare also Ref. 12). The Intelligent Disc Subsystem is
responsible for accesses to data currently not stored in
the DB cache. It comprises a set of conventional
moving-head disc-pack drives, each of them being
upgraded by a microprocessor uP.

Concerning the mapping of relations to files on disc,
we assume an extent-based file system, which maps a
relation on to physically adjacent cylinders on disc. The
advantages of such an organisation are well known (see
e.g. Ref. 19); it aims to reduce the number and distance
of expensive disc arm moves. Because the storage density
per track steadily increases, the new generation of
modern discs shows two performance features: the access
bottleneck for random disc accesses will become even
more acute, while consecutively reading physically
adjacent blocks, tracks and cylinders will get faster and
faster. Therefore the implementation of an extent-based
file system is highly desirable.

The query class Q... We want to optimise is the class
of restriction queries on a single relation R and is specified
by the following query schema in SQL-form (* denotes
any attribute(s) of R):

Orestr = SELECT *» FROM R WHERE F* AND F-

F* denotes a restriction predicate on R, that can be
processed by using existing indexes. In general, F* may
involve several attributes of R and therefore several
indexes can be engaged in the evaluation process. On the
other hand, the residue F~ is a restriction on R that is
evaluated by directly examining the respective tuples
without index usage.

Now let us introduce the retrieval interface operations
to our intelligent disc subsystem, which can be used to
evaluate F = F* A F~. We consider the following two
access path types.

(AP1) Exhaustive relation scan of R against F.

(AP2) Index processing of F*, producing a list of block
pointers for tuples satisfying F*. Subsequently, the extent
where R is stored is sequentially scanned, but only those
blocks are read that are mentioned in the pointer list. This
is called a selective relation scan. Finally, tuples picked up
by this selective scan are checked for F-.

Index processing is supposed to be implemented as
follows. An index page currently not available in the DB
cache is fetched from disc with a random disc access. The
two remaining interface operations, exhaustive and
selective scan, deal with sets of tuples, stored in an extent.
All relevant blocks of the extent are supposed to be
accessed by requiring only a single, one-directional sweep
of the disc arm over the extent.

The goal of this paper is to develop optimisation

criteria that choose the cheaper of the above access-path
types. Also criteria will be given that allow us to decide
whether all applicable indexes for F* or only a subset
should be used.

3. THE PERFORMANCE MODEL

Known optimisation techniques used in query optimisers
only count the estimated number of disc accesses,
pretending all are random.?> 1 This is reasonable, if the
disc arm is not dedicated to a specific DB task and
therefore can be manoeuvred to unfavourable positions
by concurrent I/O service requests. On the other hand,
our intelligent discs are supposed to schedule their arms
more efficiently to execute the exhaustive and selective
scanning operations.

3.1. Modelling of DB-disc Accesses

Our analytical performance model of an intelligent DB
disc will rely only on some few basic performance
parameters of the standard disc-pack drives in use. These
few basic data are often available from the vendors’
advertisements or manuals of their disc products. The
quantities of interest are as follows.

Basic performance parameters

Storage-capacity-related numbers

cap_tr: track capacity, [bytes]

tr_cyl: number of tracks per cylinder

cyl_dp: number of cylinders per disc-pack drive
blo_tr: number of blocks per track

Mechanical/electronic numbers

rot: rotation time, [msec]

start_h: start time to move the arm, [msec]
next_cyl: time to cross a cylinder, [msec]

Really, blo_tr is not a predefined number, instead it
can be fixed for each installation by properly formatting
the disc. Further, we use the following derived quantities:

cap_cyl = cap_tr-tr_cyl: cylinder capacity, [bytes]
blo_cyl = blo_tr- tr_cyl: number of blocks per cylinder

Our performance model will be constructed in a modular
way. We shall start with modelling some elementary disc
operations, based on the listed basic performance data.
Then we shall develop cost equations for the more
complex scanning operations on top of these performance
estimates for elementary disc operations.

3.1.1. Access Time Behaviour of Elementary Disc
Operations

As already mentioned, instead of counting disc accesses
we must estimate disc access times. The access time
behaviour of standard disc subsystems has been
investigated in detail in past years, see e.g. Ref. 6 or Ref.
18. However, the given solutions are mostly not directly
related to database processing or are too expensive to be
used by an optimiser in a relational database system.
Also, most existing disc performance models are tied to
some special disc architectures, and an extrapolation of
the performance trade-offs for future disc models is not

42 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

¥20¢2 I4dy 60 U0 1senb Aq LEEZ L /L Y/ L/ LE/RI01 e/ |UlWwoo/wod dnoolwapede//:sdiy Wolj papeojumo(q

ACCESS PATH SELECTION IN DATABASES WITH INTELLIGENT DISC SUBSYSTEMS

easy. Starting from our few basic performance para-
meters, we shall develop a disc performance model that
assumes some idealisations, but it will model the incurred
costs accurately enough for the intended purpose.

Arm positioning time seek_cyl, if ¢ cylinders have to be
crossed (as a slight idealisation, we assume that
seek_cyl(c) is linear in c).

start_h+c-next_cyl [msec],
[msec],

seek_cyl(c) = {

Average seek time avg seek. Let X; be a random
variable, characterising the number of cylinders to be
crossed for the next seek, if the disc arm is currently
positioned on cylinder i. Let j be the cylinder to be located
by the next seek. Then the required arm movements are:
j cylinders for je{l,...,i—1}, j—i cylinders for
Jjef{i+1,...,c}. Under the assumption that the choice of
J is equally likely from {l1,...,cyl dp}, the expectation
E(X;) of X; is as follows: (¢ := cyl_dp)

E(X;) = %(EIHCEJ) = %((z@ Di+(c—i)(c—i+1))

j=1 j=1

Thus the average number of cylinders to be crossed
amounts to:

—ZE(X)— (Z(z—-l)z+2(c—1)(c—t+l))

=1 i=1 =1

=5 2(2 p-3 t+0211“2+ z)

=1 =1 =1 t=1
(2 c(c+1)Q2c+1)—c*—c)
- %(c—%)

This result yields: avg_seek = seek_cyl(i(c —1)).
Because in practice we always have ¢ > 100, we give an
approximation for avg_seek:

M2)

Elapsed time read bl(i), required to read i arbitrarily
dispersed blocks from one track (after arm has already
been positioned on respective cylinder).

For the subsequent derivations we assume an
interleaving factor of 1, i.e. several blocks on one track
can be read out within a single revolution. Also it is
assumed that any of those i relevant blocks can be
accessed first. The model in Fig. A2 will be used, where
the desired blocks are marked by 1 to i.

It can be assumed that the search starts with the read
head positioned in the middle of a block. Thus, initially
half a block must be skipped on the average. Now let X;
denote the average number of irrelevant blocks that must
be skipped until the first relevant block is encountered.
This number is identical to the average number of
relevant blocks between block i and the start position
(compare model in Fig. A 2). Therefore we get:

avg_seek = seek_cyl(}- cyl_dp) [msec]

rot
o_tr

read_bl(i) —(+ (blo_tr— xz))

Denoting the binomial coefficient by C7 and abbreviating
b for blo_cyl, there are C? possibilities to place the i

ifo<c<
ifc=0

relevant blocks on to the b available blocks. Therefore X;
computes as:

1
)‘c,-=65(0C '+ 1CE + .. 4+ xCl)
i
+...+(b-)Ci

< cyldp M1)
Further, it holds that:
b—i
X; = éb Y xCi}=% [/ * terms for x = b—i+1
L are Q0 */
1 b—1
= v Y C#Cozl== [+, pp. 58, eq. 24 */
t T=0
= _Ci+1 = b (%)
Cct i+1
Thus we get: (1 < i< blo_tr)
blo_tr—i
read_bl(i) = (+blo_ —IT)
rot
o r [msec] M3)

Elapsed time read_tr to read an entire track (after seek
has been done).

Assuming again an interleaving factor of 1, read_tr is
composed of:

time until first block begin rotates under the head:

rot
2blo_tr

1 rotation to read the entire track

1
read_tr = <1 +m> ‘rot [msec] M4)
Elapsed time read_tr(j, i) to read from j tracks on the same
cylinder i blocks each (after seek completed).

This cost is composed as follows:

(a) Time read_bl(i) to read the i relevant blocks from
the first of the j relevant tracks.

(b) Assuming that the time to switch from one active
head to another can be neglected, the remaining j—1
tracks do not require the initial skipping of one
half-block. Therefore for each of these j— 1 tracks we get:

read_tr(j,i) = read_bl(i) + (j—1)-
blo_tr—1 rot
blo—tr == bl wr

Rewriting this equation, we get: (1 <j
blo_tr)

Strooyl1<i <

S blo_tr—i
read_tr(j,i) =j- <blo tr — —l+—1>

rot rot

blo_tr T 2blo iy 7ec]

(M5)

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 43

¥202 I4dy 60 U0 1senb Aq LEEZ Ly/LY/L/LE/e101 e/ |UulWwoo/woo dnoolwapede//:sdiy wolj papeojumoq

W.KIESSLING

Elapsed time read_cyl to read an entire cylinder.
This cost consists of:
time until first block begin of track rotates under head:

rot
2blo_tr’

tr_cyl rotations to read tr_cyl tracks.
read_cyl = < lo. + tr cyl> rot [msec] (M6)

Now we have all the elementary cost factors at our
disposal that we need to model the more complex DB-disc
operations. But let us shortly summarise some neat
properties of the model developed so far.

Lemma 3.1. (special cases for elementary operations)
(a) read_bl(blo_tr) = read_tr
(b) read_tr(1,i) = read_bl(i)
(c) read_tr(tr_cyl, blo_tr) = read_cyl

Proof: Obvious.

3.1.2. Access Time Behaviour of Complex Disc
Operations

Based on the cost estimates for elementary disc
operations, time estimates for random block access,
exhaustive and selective extent scanning will be provided.

Random block access time b_at to read an arbitrary
block from the DB-disc:

b_at = avg_seek +read_bl(1) [msec] M7)

Time expenditure sel_at(n,m) to selectively read m
spreading over 7 consecutive cylinders. Assuming that all
n-blo_cyl blocks of the considered extent must be read
out, the single cost constituents amount to:

Seek for first cylinder of this extent.

Read out this first cylinder.

For the remaining n—1 cylinders:

Position arm on next cylinder.

Read out this cylinder.
Because the disc arm can cross the whole extent without
being dislocated by a concurrent request, we arrive at:
(1 <n<cyl_dp)

exh_at(n) = avg_seek +(n—1)-seek_cyl(1)

+n-read_cyl [msec] (M8)

Time expenditure sel_at(n,m) to selectively read m
blocks from an extent covering » cylinders. To compute
this quantity sel_at(n, m), we must know how those m
blocks are distributed on to the n cylinders in question.
Again we assume that this distribution is random and
uniformly distributed. Now let k denote the average
number of cylinders (out of those n cylinders), that
contain at least one from those m blocks. Then the
wanted time sel_at(n,m) can be gained by summing up
the following cost portions:

Seek for first of these k cylinders.

Read all relevant blocks from this cylinder.

For the remaining k—1 cylinders:

Position arm on next out of these cylinders.

Read all relevant blocks from the cylinder under

consideration.
The exact solution for k& uses the hypergeometrical
distribution and is discussed in Ref. 20. (Yao considered
the problem of random distribution of tuples on to

blocks.) As it is expensive to evaluate that formula
numerically, simpler approximate solutions are of
interest. Such a formula, applying the binomial distri-
bution, is mentioned in Ref. 7:

-

In Ref. 20 the deviation of this approximation from its
exact solution was analysed, reporting that, when those
m pick-ups are made out of a collection of more than ten,
the error can be neglected in practice. Note that this
prerequisite is satisfied for our case, because a typical
disc-pack drive comprises 10 to 20 disc surfaces and
therefore blo_cyl > 10 holds. Thus, for our application
the Cardenas formula gives nearly exact results, which is
essential because k contributes by far the largest cost
fraction to sel_at(n, m). So we define:

n(l—(l—l) >, if 1 <m < n-blo_cyl
k:= "

n , ifm=mn-blo_cyl

(M9)=
In each of these k cylinders there is at least one out of
our m blocks. To approximate the distribution of the &
remaining m—k blocks on to the k cylinders, again (m
the absence of any specific distribution knowledge) we
choose the binomial distribution. This results in an 2
average of 1+ (m—k)/k = (m/k) blocks to be read from ¢

0.} papeojumoq

3

=

=

Q

&
3.

O

each of the k cylinders. Now, to determine the time?

required for selectively reading (m/k) blocks from a
cylinder, we need to know how the (m/k) blocks are g

o)
3

distributed on to the #r_cyl cylinders. This is achieved by_

applying the same model as we used for determining k.
Let / be the average number of tracks (in one of

those k cylinders), that contain at least one of those

(m/k) blocks already considered. Recalling that

blo_cyl = blo_tr-tr_cyl, we get:
F(1=(1=——)"), it Z < n
1 tr_cy (—(_rcyl)), i E< o_cyl
tr_cyl , if % = blo_cyl
M10)

In analogy to the way the quantity (m/k) was determined,

0 uoisenb Aq LecZLy/L Y/

Je/u

2
=
Q
@

@
w

-
=
RN

©

it is concluded that in each of these / tracks there areS

[1+Q/l)({m/k}—1) = (m/kl)] relevant blocks to be read. .

What finally remains to be figured out is the average time
required to position the arm from one out of the k
relevant cylinders to the next one. For this purpose we
can apply the same model that was used to compute
read_bl(i) and read_tr(j,i). Tailored to the new problem
to be solved, this model is illustrated in Fig. A 3, where
we view a disc’s cylinders in a circular way. According to
the formula marked (***) when deriving read_bl(i), for
X; in Fig. A3 we have X, = (n—k/k+1).

Whatever the distribution of the k cylinders, named
Cy, ..., Cy, on to the entire n cylinders of the extent may
be, on the average the number of cylinders from C, to C,,
(including both) is:

n—k
n 2k+1 1

Therefore the average distance avg_dist(k) between any

44 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

N
o
N
N

ACCESS PATH SELECTION IN DATABASES WITH INTELLIGENT DISC SUBSYSTEMS

two adjacent cylinders from the k cylinders is (k > 1
assumed):

avg_dist(k) = L<n—2”—_k— 1) _ntl

k—1 k+1) T k+1
n+1 .
1 ifl<k<n
avg_dist(k) = { kt1 (M11)
0, ifk =1

Now we are prepared to give the formula for our desired
sel_at(n,m) by summing up the respective cost con-
stituents:

sel_at(n,m) = avg_seek + read_tr<k, £"_I>

+k—1)(seek_cyl(avg_dist(k)) +read_ tr(l, %))

Thus we finally arrive at: (1 < n < cyl_dp)

avg_seek +

. (k—1)-seek_cyl(avg_dist(k))+

sel_at(n,m) = k-read_tr (1 ﬂ)
L\ L

3.2. Threshold Estimates for Index Usage
3.2.1. The Cost Model

To get a tractable cost model, the CPU-costs inherent in
query processing will be neglected. This is a reasonable
approach, whenever the bottleneck of query processing
is the disc; i.e. if the DB-system is I/O-bound. The costs
taken into account are defined as the time consumed by
the complex DB-disc operations (b_at, sel_at(n,m),
exh_at(n)). The concrete cost functions for our two
principal types of access paths to answer a restriction
query will depend on the following cost parameters:

a: number of transported index pages

m: number of blocks containing at least one tuple
satisfying F*

n: number of cylinders occupied by relation R
Also, it is assumed that those n cylinders form an extent
on an intelligent disc.

Cost of an exhaustive relation scan: (1 < n < cyl_dp)

cost 1(n) : = exh_at(n) [msec]

[msec], if 0 < m < n-blo_cyl

M12)

0 [msec],if m=10

Again, our model developed thus far has some neat
features.
Lemma 3.2. (special cases for complex disc operations)
(a) sel_at(n,1) = b_at
(b) sel_at(n,n-blo_cyl) = exh_at(n)
Proof:

(@ m=1-k=n
1\! m
<1~<l—;>>—l—->zzl—->l—l.
Thus

sel_at(n, 1) = avg_seek
+read_tr(1,1) = avg_seek +read_bl(1) = b_at.
(b) /* bc:=blo_cyl, tc:=tr_cyl */
m=n-bc—>k=n—>%=bc—>l=tc—»kﬂ.l
= n-be = blo_tr.
n-tc

Also it holds that: k = n — avg_dist(k) = 1.
Thus:

sel_at(n,n-bc) = avg_seek + (n—1)-seek_cyl(1)

+n-read_tr(tc,blo_tr) = avg_seek +(n—1)
-seek_cyl(1)+n-read_cyl = exh_at(n).

Lemma 3.3
(a) sel_at(n,m) is strictly monotonically increasing in
m.
(b) sel_at(n,m) < exh_at(n) for 0 < m < n-blo_cyl.
While these propositions are intuitively clear, the proof
is somewhat lengthy and can be found in Ref. 11.

Cost of index processing, followed by a selective relation
scan: (1 <n<cyl dp,1 <m < n-blo_cyl)

cost2(n,a,m) := a-b_at+sel_at(n,m) [msec]

Note: cost 2(n, a, m) is strictly increasing in a and m.

3.2.2. Selection of the Fastest Access Path Type

Now our next goal is to come up with a decision criterion
that tells us which of two access path types is faster to
process a given query with cost parameters a and m.
Consider the case of equal costs cost 1(n) = cost2(n,
a*,m) for some fixed n and m. Evidently, a point a*
of equal cost is reached for

a* = E—l‘—z—t (exh_at(n) — sel_at(n, m)).

From lemma 3.2(b) and 3.3(b) exh_at(n)—sel_at(n,
m) =2 0 is known to hold. Consequently, for fixed n
and m, a* is uniquely defined and lies in the interval

[0, exh _at(n)] .

b_at

Such an a* is now called the threshold point. To separate
profitable from unprofitable index usage, the above value
for a* guides us to define the threshold function ta,,(m) for
index usage as:

ta,(m) = ﬁ (exh_at(n) —sel_at(n, m)),

0 <m< n-blo_cyl

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 45

¥202 I4dy 60 U0 1senb Aq LEEZ Ly/LY/L/LE/e101 e/ |UulWwoo/woo dnoolwapede//:sdiy wolj papeojumoq

W.KIESSLING

Properties of ta,(m):

(1) For fixed n and m, ta, (m) determines the threshold
value a*, i.e. it holds that:
cost 1(n) = cost 2(n, ta,(m), m)

exh_at(n)

2) ta,(0) = ———=

@ a,0) = =" >0

(3) ta,(n-blo_cyl) =0

(4) ta,(m) is strictly decreasing in m.
Proof: straightforward.
Lemma 3.4 (optimisation criterion 1 for Q,,.-queries)
Let relation R be stored in n cylinders, 7 be the estimated
number of block hits containing tuples that satisfy the
restriction F*, and @ be the estimated number of index
pages required to evaluate F*.

(a) a < ta,(m) - index processing followed by a

selective relation scan is faster;

(b) a@ > ta,(m) — exhaustive relation scan is faster.
Proof: Let a* = ta,(m).

(a) @ < a* > cost 2(n,a,m) < cost 2(n, a*,), because
cost2 strictly increases in a. Due to cost2(n,a*,m)
= cost 1(n) proposition (a) is correct.

(b) Analogously.

Now an important special case of restriction queries
will be investigated. We are interested in the case where
the restriction predicate F is conjunctively decomposed
as follows: F= FtAF~, where F* = F} AF}

SQL query scheme:Qop; =
SELECT * FROM R WHERE F}AND Fj AND F-

To evaluate this special query type, our architecture
offers four basic access paths:

(AP1): exhaustive relation scan

(AP2)): index processing of F{, followed by selective
scanning for F} A F~

(AP2,): index processing of Fj, followed by selective
scanning for F} A F~

(AP2, ,): index processing of F{ A F}, followed by
selective scanning for F~

The costs for these access paths amount to:

cost_APl := cost1(n), cost_AP2,:= cost 2(n,a,,m,),

cost_AP2, := cost 2(n,a,, m,).

Computation of cost_AP2, ,. The number of index
pages to be accessed is a, +a,. Assuming that F} and F}
are statistically independent, the probability of one
particular block containing a tuple satisfying F} A F7 is

m, m,
n-blo_cyl n-blo_cyl’

So we get:

= I,
cost_AP2, , = cost 2<n, a,+a,, 7-blo_cy l)
Applying lemma 3.4, it turns out that:
0) a, < ta,(m,) > AP2, is faster than API.
(1) a, < ta,(m,) »> AP2, is faster than AP1.

) a;+a, < ta,,(JZ‘T":;I) — AP2, , is faster than
API. -

The task of selecting the fastest access path poses new
problems, if both (0) and (2) or both (1) and (2) hold. For
these cases, the optimisation heuristics encountered in

existing database systems mostly look like ‘Use all
available indexes’ or ‘Use the most selective index’
(compare e.g. RDB/VI)!. For the following discussion,
without loss of generality we assume that m, < m, and
that AP2, is faster than AP2,. Our optimisation criterion
developed earlier cannot decide for the mentioned case
which access path is the fastest, because a, < a, +a,, but

S _Mm,
~ n-blo_cyl’

m,

Thus the monotonicity of cost 2 cannot be exploited in
this situation. If (0) as well as (2) holds, we compare the
respective cost differences to AP1:

1
ta,(m)—a, = bat (exh_at(n)—

For (0)

sel_at(n,m;))—a,

e >_(a1+a2)

For (2) tan<n—————_ blo_cyl

_ ! _ M_»_
= al (exh_at(n) sel_at(n, n-blo_cyl (a,+a,)

These two differences are identical, if:

_ 1 m, m,
a, = b ai (sel,at(n, m,) —seLat(n, m))

Consequently, in case of a conjunctive query Qconj We
define the threshold function 2a,, ,,,(m) for twofold index
usage as: (m, < m < n-blo_cyl)

b_at

1
12a, pn,(m):=— (sel,at(n, m)— seLat(n, M))
n-blo_cyl

Properties of 12a,, ,,,(m):
(1) cost 2(n, a,, m,)

= cost 2<n, ay+12a, py(m), #()ml)
. _cy

(2) 24y y(m;) >0
(3) 2a,, p,(n-blo_cyl) =0
(4) r2a, ,,,(m) is strictly decreasing in m.
Proof: straightforward.
Lemma 3.5 (optimisation criterion 2 for Q,p;)
Let relation R be stored in an n-cylinder extent, F; and
F3 be restrictions on R with cost parameters a,, m, and
a,, m,, respectively, m; < m,. Then the following holds:
(@) a, < 2a, p,(m;) > AP2, , is faster than AP2,
(b) a, > 12a, ., (m,) - AP2, is faster than AP2, ,
Proof: Similar to lemma 3.4.

Note that, for Q,,;-queries, the general optimisation
criterion 1 for Q.. -queries can be applied to decide
whether index usage pays at all.

3.2.3. Threshold Estimates

The threshold functions ta,(m) and 2a,, ,,,(m) can be
used to optimise arbitrarily complex restriction queries
Orestr and Q,qp;. The intention of this subsection is to
develop an optimisation criterion that determines
threshold selectivities in the following sense: if the hit
ratio lies below the respective threshold, query processing
by using a single index is not profitable over an exhaustive
relation scan, and vice versa. For this purpose the
following terminology is introduced. Let EP[r] be a

46 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

¥20¢2 I4dy 60 U0 1senb Aq LEEZ L /L Y/ L/ LE/RI01 e/ |UlWwoo/wod dnoolwapede//:sdiy Wolj papeojumo(q

ACCESS PATH SELECTION IN DATABASES WITH INTELLIGENT DISC SUBSYSTEMS

restriction on attribute r of R. EP[r] is called an
elementary restriction, if EP[r] has the form
EP[r] = const]1 <r<const2 or EP[r]=r= const.
(Selinger'” calls such predicates ‘SARgable’.) In the
special case F* = EP[r], we define the query class Q Erestr
as follows:

Qprestr = SELECT * FROM R
WHERE EP[r] AND F-

Then the following assumption can be stated, which is
often satisfied in practice. Let the associated cost
parameters for EP[r] be a and m, and let I, denote an
index on r. Then it is supposed to hold that:

thres2, ., = {ml,

Thus, we can omit the subscript and we will simply
write a(m) from here on.

Under assumptions Al and A2, the following
simplifications can be observed. Let m; and m, be the
block hits for qualifying tuples, gathered by traversing I,,
for EP[r,] and I,, for EP[r,], respectively. Then

m, < my,— a, < a, - sel_at(n,a;,m,) < sel_at(n, a,, m,)

This however means that AP2, has to be preferred over
AP2,. In this case we also get: a, > 2a, ,,(m,)—
ay > 12a, py(m,).

Therefore, we define the threshold value thresh?2, ,,,
for twofold index usage as:

if 22a, p,(my) < a(m,)

m*: 2a, ,,,(m*) = a(m*), otherwise

Assumption A1

a = a; (m), where a; denotes a monotonically increasing
function in m.

Now observe that, in contrast to the general case
covered by optimisation criterion 1 in lemma 3.4, for the
special case F* = EP[r] we can get a threshold criterion
that depends only on the cost parameter m.

We define the threshold value thres,, for using a single
index 7, as:

0, ifa;(0) > ta,(0)
thres, := .
m*: ta,(m*) = a; (m*), otherwise

Note that the intersection point m* is uniquely defined
because of the monotonicity properties of ta, and a,.
Moreover, it can be computed very efficiently by classical
intersection algorithms known from numerical
mathematics.

Lemma 3.6 (optimisation criterion 1’ for Q g, s -queries,
Let 7 be the number of blocks that must selectively be
read after index processing of EP[r] using index I,.

(a) m < thresh,, —» using I,, followed by a selective

relation scan is faster

(b) 7 > thres, — exhaustive relation scan is faster
Proof: Follows immediately from lemma 3.4 and the
monotonicity assumption for a = a; (m).

By analogy with the previously defined Q,,,;-queries,
we are now interested in another special case, namely that
F} and F} are elementary restrictions. This subclass of
restriction queries is referred to as Q goqi-queries.

QEconj = SELECT * FROM R
WHERE EP,[r,] AND EP,[r,] AND F-

In general, an index /,, on r, and an index I,, on r,
might incur different processing costs in terms of the
number of index pages to be accessed. To get a similar
simple decision criterion for Qpeon; as for Qpreser, We
make an assumption that also often holds in practical
applications (compare later formula (S4) for this):

Assumption A2

Index processing of I,, and of 1,, is equally costly, if the
same number of qualifying tuples are encountered, i.e.
ar,,(m) = ay,(m).

Because 12a,, ,,(m) strictly decreases, a(m) in turn strictly
increases, the intersection point m* exists and is uniquely
determined. Again, it can be computed efficiently by
numerical intersection algorithms.
Lemma 3.7 (optimisation criterion 2’ for Q g.onj-queries)
Let m, (m,) be the cost parameter, if EP[r,] (EP[r,])
is processed by an index I,,(I,;); m; < my, < n-blo_cyl.
Then it holds that:
(@) m, <thres2, ,,, — AP2, , is faster than AP2,
(b) m, > thres2, ,,, - AP2, is faster than AP2, ,
Proof follows directly from lemma 3.5.

3.3. Hit Ratio Estimates

While this subsection does not propose any new methods
for estimating expected hit ratios, we have to be
concerned with this subject here in order to establish the
link between the expected tuple hit ratio of a restriction
query and the performance parameters a and m on block
level, required by our cost model.

Let us consider an index 7, on an attribute r of relation
R. I, is supposed to be a dense ordered index like a B-tree,
with chained leaf pages to accelerate the processing of
elementary range restrictions (i.e. a B+*-tree). The leaf
pages contain pointers to the pages where the respective
tuples are stored on disc. The following statistics data are
commonly available for a query optimiser:

* ndkeys_r := number of different r-values, currently

stored in R
* height_r : = height of I,

* nleaf_r : = number of leaf pages of I,
* card_R := number of tuples of R

The selectivity factor sf{F) of a restriction predicate F
on R is defined as the relative tuple hit ratio. Estimates
for the selectivity factor of an elementary restriction
EP[r] = r = const or EP[r] = const 1 < r < const2 can be
gained by applying known straightforward methods as
described in Refs 17 and 14, or by employing more
advanced techniques, see e.g. Refs 8 and 16. Either way,
let us assume that we have some estimates for sf{EP[r]).

We define the tuple hit rate z_hits for an elementary
restriction EP[r] as:

t_hits := sf(EP[r]) -card_R [number of tuples)

Having available hit estimates for an EP[r], the next step
is to get estimates for the crucial performance parameters
m and a. As m denotes the average number of blocks

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 47

¥20¢2 I4dy 60 U0 1senb Aq LEEZ L /L Y/ L/ LE/RI01 e/ |UlWwoo/wod dnoolwapede//:sdiy Wolj papeojumo(q

W.KIESSLING

containing at least one tuple that satisfies EP[r], under the
assumption of random distribution we can apply the
Cardenas formula (used for derivation of sel_at(n, m)
previously) again, which yields:
t_hits
) ey

1
=n-bl 1=(1——1
m = n-blo_cyl (l (l blo_cyl)

The number a of index pages to be visited can be
estimated as follows:
number of non-leaf pages to be visited: height r— 1
number of leaf pages to be visited: sf(EP[r])- nleaf r
Therefore we can set:

a = sf(EP[r]) - nleaf r + height r — 1 (S2)

What remains now is to establish the previous
assumption Al, stating a functional relationship
a = a; (m) such that a; (m) increases monotonically in m.

100
S];fout_r(n) =

For this purpose, equation (S1) is solved for 7 hits,
yielding:

m

n blo_cyl) (83)

As can be observed from (S3), ¢_hits is a function of m
and therefore we will write ¢_hits(m) instead of ¢_hits in
the sequel.

Because #_hits(m) = sf(EP[r])- card_R, from (S2) and
(S3) we can conclude:

t_hits =108,_1/n-b10_cy1) (1 -

nleaf r m _
= *card_R' OL1—(1/nblo_cyl) (1 —m) + height r—1

100
Snn, lfout(ml) =

Observing that (card_R/nleaf r) represents the average
number of tuple pointers that are stored in an index leaf
page, we assign an extra name to this quantity:

card_R
nleaf r
Thus, finally we have:

Ifout r .=

/* leaf fanout */

1 m .
ap(m):= Toutr 108, 1/n-b10_cyt) (1 —m) + height r—1

Because the base of the logarithm is smaller than 1, our
stated assumption A1 holds here. (Note: the previously
stated assumption A2 holds, if lfout_r, = lfout r,, i.e. for
B*-trees with equal height, if they have an equal number
of leaves.)

4. EVALUATION OF THE PERFORMANCE
MODEL

In this section, numerical results from two simulation
series that evaluate our threshold functions will be
presented. The average blocking factor bf R is intro-
duced; bf R is defined as the average number of tuples
of R that are stored in a block of R on disc. (This
definition also accounts for variable-length tuples.)

48 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

m]ogl—(l/n-blo_cyz)

n-blo_cyl-bf R 1og,_1/n-bto_cyt)

4.1. Application of the Threshold Criteria

Simulation series 1 will aim to calculate threshold
percentages for tuple hits. If those tuple hits exceed the
thresholds, the usage of an index will no longer be
profitable to process elementary restriction queries
Qprestr- To optimise this query schema, the threshold
value thres, and lemma 3.6 must appropriately be applied
as follows. Choosing m in eq. (S3) to be the threshold
value thres,,, we can conclude that [¢_hits(thres,)/card R]
gives us the relative threshold ratio for tuple hits, above
which the usage of an index is no longer profitable (as
opposed to an exhaustive relation scan). Because it holds
that card_R = n-blo_cyl-bf_R, the subsequent thresh-
old function STy, ,(n) represents a threshold per-
centage for tuple hits. If this threshold is exceeded, an
exhaustive relation scan has to be preferred over index
processing.

(1-5) up%) (s5)

T -blo_cyl

The second simulation series to be presented will
provide threshold selectivities for the case of elementary
conjunctive queries Qgcon;. The relevant optimisation

criterion is stated in lemma 3.7. To apply this criterion,

we must assume that [fout_r, = Ifout_r,. Denoting the

expected percentage of block hits owing to EP,[r,] by 7,

(equalling [m,/n-blo_cyl-bf_R]100), the subsequent

threshold function ST2,, ,;,,,,(771,) represents the threshold

percentage for tuple hits owing to EP,[r,] as follows. If
this value lies above, then the usage of two indexes for

EP[r,] and EP[r,] is slower compared to the usage of the
index for EP[r,] alone, and vice versa.
thres?2

_ n,ml o
<l n -blogcyl> [rup 271

4.2. Simulation Results

(S6)

Our threshold performance model will now be evaluated
for two concrete standard disc-pack drives, namely the
old product IBM /3330 and the modern IBM /3380. Both
discs have roughly the same mechanics, however they
differ enormously with respect to their storage density.

(54)

(To reduce seek times, the IBM /3380 is equipped with
two read—write arms. This capability will be neglected for
the subsequent simulations.) The few basic performance
quantities required to drive the threshold simulations are
listed in Table 1.

The remaining required parameters are initialised as
follows:

height_r = 3,bf_ R =10

In both cases the block size can be viewed as identical,
namely 2 Kbytes (|cap_tr/blocksize| = blo_tr). Thus the
tuple size is assumed to be about (2048/bf_R) ~ 200
bytes.

¥202 I4dy 60 U0 1senb Aq LEEZ Ly/LY/L/LE/e101 e/ |UulWwoo/woo dnoolwapede//:sdiy wolj papeojumoq

ACCESS PATH SELECTION IN DATABASES WITH INTELLIGENT DISC SUBSYSTEMS

Table 1. Basic performance parameters of two IBM computers

3330 (c. 100 Mbyte storage capacity)

cap_tr = 13030 bytes rot = 16.7 msec

treyl=19 start_h = 10 msec
cyl_cp = 404 next_cyl = 0.1 msec
blo_tr =6

3380 (c. 730 Mbyte storage capacity)

cap_tr = 47500 bytes rot = 16.7 msec

treyl=19 start_h = 10 msec
cyl cp = 808 next_cyl = 0.05 msec
blo_tr = 23

Simulation series 1

The threshold function ST, .(n) is plotted for two
different values of Ifout_r in Fig. A4. On the x-axis, n
gives the number of cylinders that are occupied by
relation R. As an example, consider the case of n = 10.
If the estimated tuple hit percentage for EP[r] is, say, 4%,
index usage would be preferred for 3330-type discs;
however, an exhaustive scan would be faster for
3380-type discs.

Simulation series 2

Here the threshold function ST2,, ;,,,(7,) is plotted for
the 3380 with height _r, = height_r, = 3, lfout : = Ifout_r,
= Ifout_r, = 100 and varying values of n. The result is
shownin Fig. AS. The curves are drawn only for the range
of values for which index usage (in some form) is faster
than an exhaustive relation scan. Below each curve, only
the index on r, should be used; above each curve, both
indexes should be used. Consider, for example, the case
of n = 10 and let the estimated percentage of block hits
for EP[r,] be 19, . If the estimated tuple hit percentage for
EP[r,] is, say, 5%, the usage of both indexes on r, and r,
is preferred. On the other hand, an estimate of 6%, for
EP[r,] would predict that using only the index on r, is
faster.

The results shown should be contrasted with those for
conventional DBs like System R, where index usage for
much higher tuple hit percentages is selected.? From these
two sample series the following conclusions can be
derived.

The maintenance of indexes in a DB architecture with
intelligent disc subsystems will bring an overall per-
formance gain only if the following three points are
satisfied.

REFERENCES

1. M. M. Astrahan et al., System R: relational approach to
database management. ACM TODS 1 (2), 97-137 (1976).

2. M. M. Astrahan and M. Schkolnik, Performance of the
System R access path selection mechanism. Proc. IFIP,
pp. 487-491 (1980).

3. J. Banerjee and D. K. Hsiao, Performance study of a
database machine in supporting relational databases. Proc.
VLDB, pp. 319-329 (1978).

4. H. Boral, D. J. DeWitt and W. K. Wilkinson, Performance
evaluation of associative disk design. Computer-Science
Department, University of Wisconsin-Madison (1981).

5. H. Boral and D. J. DeWitt, Database machines: an idea
whose time has passed? A critique of the future of database
machines. Third International Workshop of Database
Machines, pp. 166187 (1983).

(a) An index I, on an attribute r must be highly
selective.

(b) The retrieval frequency on I, must be high.

(c) The update frequency for I, must be low.
On the whole, from Fig. A 4 it can clearly be observed that
the increased storage density of modern discs increases
the danger of bottlenecks for random disc accesses.
Therefore, compared to the utilisation of indexes in
standard DB architectures, in the new architecture the
profitable use of indexes for restriction query processing
will be more limited. However, indexes on very selective
attributes — for example, on key attributes — will also be
mandatory for these architectures, if excellent per-
formance is to be achieved. This can be figured out from
the given curves by noticing that the expected percentage
of tuple hits for a restriction of the form EP[r] = r = const
on a key attribute r, being 100/card_R, lies considerably
below the computed threshold values.

5. CONCLUSION

In this paper a modelling technique for disc access times
for an environment like a set-oriented DB architecture
with intelligent disc subsystems was developed. The key
assumption of this model is an extent-based file
organisation on disc, where a physical relation is mapped
on to a physically contiguous file. Thus our model also
works for those conventional DB systems that are
implemented on top of an extent-based file system and
whose operating system cleverly provides chained 1/0O.
Based on this model, several threshold criteria were
presented that allow us to decide whether index usage is
profitable over an exhaustive relation scan and if so, how
many indexes should be used. The strength of our method
is that it requires only a couple of readily available basic
performance parameters. Also, forecasts for the
performance trade-offs between sequential and random
disc access of future discs are possible by simply choosing
scaled-up parameters.

The two concrete discs analysed revealed that, with
modern disc technology, the bottleneck of random disc
accesses gets even more acute. However, indexes on
highly selective attributes will still be mandatory, if
excellent retrieval performance is to be accomplished.
The access-path selection criteria presented can be
incorporated into a query optimiser in two versions:
either the respective thresholds are computed at
optimisation time, or — maybe preferably — the thresholds
are pre-computed and kept in the system’s catalogues.

6. J. P. Buzen, I/O subsystem architecture. Proc. IEEE 63 (6),
871-879 (1975).

7. A. F. Cardenas, Analysis and performance of inverted data
base structures. Comm. ACM 18 (5), 253-263 (1975).

8. S. Christodoulakis, Implications of certain assumptions in
database performance evaluation. ACM TODS 5 (2)
(1984).

9. D. J. DeWitt, DIRECT - a multiprocessor organization
for supporting relational data base management systems.
IEEE Trans. on Comp., pp. 395-406 (1979).

10. M. Jarke and J. Koch, Query optimization in database
systems. ACM Comp. Surveys 16 (2), 111-152 (1984).

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 49

¥202 I4dy 60 U0 1senb Aq LEEZ Ly/LY/L/LE/e101 e/ |UulWwoo/woo dnoolwapede//:sdiy wolj papeojumoq

11.

12.

13.
14.

15.

W.KIESSLING

W. Kiessling, Database systems for computers with intel-
ligent subsystems: architecture, algorithms, optimization.
Technical Report TUM-I8307, Technical University of
Munich (1983) (in German).

W. Kiessling, Tuneable dynamic filter algorithms for high
performance database systems. Proc. Int. Workshop on
High-Level Comp. Arch., pp. 6.10-6.20 (1984).

D. E. Knuth, The Art of Computer Programming, vol. 1.
Addison-Wesley, New York (1968).

A. Makinouchi et al. The optimization strategy for query
evaluation in RDB/V1. Proc. VLDB, pp. 518-529 (1981).
E. A. Ozkarahan, S. A. Schuster and K. C. Sevcik, Per-
formance evaluation of a relational associative processor,
ACM TODS, 2pp. 175-195 (1977).

APPENDIX

Mainstore

Host

Intelligent
disc-subsystem

S |

Fig. Al. Sample database architecture with intelligent disc
subsystems.

(- Read direction

8

g

Current position of
read head

1

Fig. A2. Model to compute read bi(i).

n-—k Non-relevant cylinders

Current arm position

Fig. A3. Model to compute avg dist(k).

50

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

16.

17.

18.

19.

20.

G. Piatetsky-Shapiro and C. Connell, Accurate estimation
of the number of tuples satisfying a condition. Proc.
SIGMOD, pp. 256-276 (1984).

P. G. Selinger et al., Access path selection in a relational
database management system. Proc. SIGMOD (1980).
A.J. Smith, Input/output optimization and disk archi-
tectures: a survey. Performance FEvaluation 1, 104-117
(1981).

M. Stonebraker, Operating system support for database
management. Comm. ACM 24 (7), 412-418 (1981).

S. B. Yao, Approximating block accesses in database
organizations. Comm. ACM 20 (4), 260-261 (1977).

— 3330; Ifout = 100

tup (%) -

/- — 3330; Ifout = 50

STlfout (n)

_________ — 3380; Ifout = 100

§ /_—__________-—— 3380; lfout = 50
o

T T T
1 5 10

100 n

Fig. A4. Threshold values for single index usage vs. exhaustive
relation scan.

tup, (%)

7 -

[
|
|
|
!
I
|
|
|

Threshold to
»~ faster exhaustive scan

|
8T2, 100 (74) :
|
|
]
|
i
1

(% block hits for
EPy[r,]1)

T T T
0.5 1

25 my

Fig. AS. Threshold values for usage of two indexes vs. one index.

¥202 I4dy 60 U0 1senb Aq LEEZ Ly/LY/L/LE/e101 e/ |UulWwoo/woo dnoolwapede//:sdiy wolj papeojumoq

