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The chase procedure, for determining if a given dependency must hold in any relation where a set of dependencies is
known to hold, operates bottom-up by constructing a hypothetical relation known as a tableau. A top-down counterpart,
based on resolution theorem proving techniques, is introduced in which, through factoring, resolvents which contain
Junction terms may be avoided. A literal numbering technique, which limits the number of resolvents, is also examined.
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INTRODUCTION

In the dependency inference problem for relational data-
bases, one must determine if a given dependency must
hold in any relation where a set of dependencies is known
to hold. The chase procedure' operates bottom-up by
constructing a hypothetical relation known as a tableau.
This notes examines a top-down counterpart based on
resolution theorem-proving techniques.®> Through
factoring, resolvents which contain function terms may
be avoided. A literal numbering technique which limits
the number of resolvents is also examined. The procedure
is not intended for the entire class of template depen-
dencies, since the inference problem is known to be only
semi-decidable,® but this procedure can be applied to
various subclasses of the template dependencies. In some
experiments involving embedded multivalued dependen-
cies, this procedure finds a proof much faster than the
chase.! In one instance, our procedure found a proof in
less than a minute (VAX 11/780) when the chase had not
succeeded in over three hours. We assume familiarity
with relational databases as described in Ref. 7 and
automated deduction methods as described in Ref. 3.

Top-Down Inclusion Dependency Inference Procedure

Before examining template dependencies, the simpler case
of inclusion dependencies is considered.?

Definition: An inclusion dependency, R[x,...x,]<
S[y;...y.), where R and S are relations and x,...x, and
¥.-..y, are sequences of attributes from R and
S, respectively, is a logical statement indicating that for
each tuple in R there exists a tuple in S such that the
value for y; is identical to the value for x, for 1 <j<n.

Example Inclusion Dependency

R[ABC] < S[DEF]
states that for any tuple in R there must also be a tuple
in S whose D-value is the same as the A-value, whose E-
value is the same as the B-value, and whose F-value is the
same as the C-value.

The chase may be used for inclusion dependencies.
As an example, assume a database has relations
R(A,B,C), S(D,E,F) and T(G,H,I). Also assume that the
inclusion dependencies R[AC]< S[DE], S[DF]< T[GH],
and T[G] < R[C] are known to hold. R[4]< R[C] is to be
proven to also hold. Initially, the only tuple is R(a,b,c). By
R[AC] = S[DE], we must also have tuple S(a,c,d), where
d is a value arbitrarily chosen (it cannot be chosen

again). Similarly, by S[DF]< T[GH], there must be a
tuple 7T(a,d,e), where e is a value arbitrarily chosen.
Finally, by T[G]< R[C], there must be a tuple R(fg,a),
but this last required tuple proves that R[A]< R[C] must
also hold.

The described chase operates forward, that is, it works
from elementary facts towards the goal, in this case the
tuple which must be present. The top-down counterpart
operates backward, that is, it works from the goal
towards the elementary facts. For the same instance as
above, we start with a goal of R(x,y,a) (x and y are
variables and unify with any term). From T[G]< R[C],
this goal can be satisfied if T(a,w,z) can be satisfied.
Further, from S[DF]< T[GH], T(a,w,z) can be satisfied if
S(a,v,w) can be satisfied. Finally, from R[AC]< S[DE],
S(a,v,w) can be satisfied if R(a,u,v) can be satisfied. But
since we are testing R[A]< R[C] and we are assuming a
tuple R(a,b,c), this last goal is satisfied.

Top-Down Template Dependency Inference Procedure

Definition: A (typed) template dependency for a relation
R is represented as:

hyy...hy,
Ry by,
Cy-..Cp

where hy, +h, ifj* 1, ¢, * h, ifi + k,and ¢, + c;if i .
The row h,,...h,, is an hypothesis row. The row c,...c,
is the conclusion. A template dependency is interpreted
by considering the symbols to be variables. If the
template dependency holds on a relation R with arity n,
then if a set of tuples from R can consistently replace the
pattern represented in the hypothesis, some tuple in R
must satisfy the required conclusion.

A conclusion row symbol which does not appear in the
hypothesis is an embedded position. A conclusion row
symbol which does appear in the hypothesis is a context
position.

Example Template Dependency

ABCD
AEFG
ABFH

states that if there are two tuples which agree in the first
attribute, then there must also be a tuple with the same
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value for the first attribute, its second value from the first
tuple, and its third value from the second tuple. Note
that the fourth position is embedded and is left arbitrary.

The chase can also be applied to template depen-
dencies. Suppose we know that in a relation the following
template dependencies must hold:

(1) ABCDE ((2) ABCDE ((3) ABCDE
Abcde aBecde abCde
ABFdH FBCGe AbCDe

We would like to prove that:

ABCDE
Abcde
ABFdE

must also hold. The steps in constructing the tableau are
given. Initially, the tableau contains rows which fulfil the
pattern in the hypothesis of the dependency to implicate:

(1) ABCDE
2 Ab cde

Row 3 is created to fulfil dependency 1, the two
hypothesis rows are fulfilled by rows 1 and 2. 1 and 2 are
symbols arbitrarily chosen for the embedded positions.

(3) AB1d2

Row 4 is created to fulfil dependency 2, the two
hypothesis rows are fulfilled by rows 3 and 1, in that
order. 3 and 4 are, again, arbitrarily chosen for the
embedded positions.

(@) 3B14E

Row S is created to fulfil dependency 3, the two
hypothesis rows are fulfilled by rows 3 and 4.

(5)AB1dE

Row 5 matches the conclusion of the template
dependency to be proven in its context positions, thus
implying that it must also hold.

A top-down proof without function terms is induced
by the chase proof. We start with the conclusion of the
template dependency to be proven as our goal. For sake
of readability, ‘_’ represents a distinct variable which
appears only once in the clause (i.e. like Prolog). From
the hypothesis of the dependency to be proven, we know
the goals (4 BC D E) and (A4 b ¢ d e) can be satisfied.

(4 B_dE)

This goal is satisfied if the following goal derived from
applying dependency 3 can be satisfied:

(A_Xd_) (_BX_E)

One possibility for this new goal being satisfied is to
derive the following goal from applying dependency 2 to
the second subgoal :

(A-Xd_) ((BX__) (B__E)

This new goal may be satisfied if the first two subgoals
are satisfied by the same dependency, which can be
represented by factoring:

(ABXd.) (_B__E)
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This goal may be satisfied if the goal resulting from
applying dependency 1 to the first subgoal can be
satisfied :

(AB___) (A-_d_) (B__E)

Once again, we may factor, this time the first and third
subgoals:

(AB__E) (4-_-d.)

We may now see that these two subgoals are satisfied
by the rows (A BCDE) and (Abcde) from the
hypothesis of the dependency to be proven.

If template dependencies are described using Horn
clauses,? the variable for each embedded position is
existentially quantified, which leads to Skolem functions.
In positive hyper-resolution, the automated deduction
version of the chase, these functions replace our use of
arbitrarily chosen values. In a top-down proof, through
the use of factoring as in the above example, resolvents
with function terms may be deleted.

From Ref. 4 a template dependency may be written in
the form:

VXy... X Ippee ¥ Vzpoz, ROM..PR() = R ()

where the x, correspond to symbols appearing in both
the hypothesis and conclusion (the antecedent and
conclusion of the implication), the y, correspond to
symbols appearing only in the conclusion, and the z,
correspond to symbols appearing only in the hypothesis.
The y, will be replaced by Skolem functions over all x,.
As is noted in Ref. 9, for (typed) template dependencies
all y, may be replaced by the same function. As an
example, the following TD:

ABCDE
Abcde
ABFdH

may be written as:

R(xla XosZ15Zg, Z3) A R(Xl‘ Z4s 25 xsszs) =
R(x,, x5, fx,, X9, X3), xaaﬂxh Xy, X3))

using a Skolem function.

Theorem 1

Resolution with factoring and the following restrictions
is complete for template dependency inference.

(a) Set-of-support with conclusion from dependency
to be proven given support (i.e. only resolve with this
clause or its descendants).

(b) All resolvents containing a function term are
deleted.

Proof

Recall that the chase (or positive hyper-resolution) is
complete. We will show that given a chase proof, our
procedure generates a corresponding top-down proof.
The generation of each new row in the chase method
gives a total ordering on the generated symbols. In the
top-down proof, our goal is free of functions. Each step
in a top-down proof will:

(1) Remove subgoal corresponding to the most recent
row from the chase proof which has not been removed.
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(2) Add new subgoals from the hypothesis of the
template dependency which forced the chase row to be
created. Factor subgoals which correspond to the same
row in the chase. This guarantees that a function term
can never unify with a variable which appears in another
subgoal. If during execution a function term appears,
then we have replaced a row (subgoal) prior to accounting
for its use in an hypothesis to create a later row, which
contradicts the ordering induced by the chase proof.
Q.E.D.

Corollary

Resolution without factoring, but with the following
restrictions is complete for template dependency infer-
ence.

(1) Set-of-support with conclusion from dependency
to be proven given support.

(2) All resolvents containing a nested function term
are deleted.

Proof

Similar to main theorem, but all subgoals corresponding
to the same chase row are removed consecutively using
the same dependency. Q.E.D.

Enhancements

Additional conditions, besides those on function terms,
can be used to delete more resolvents while still
maintaining completeness. Factoring is known to in-
crease the combinatorics and is often omitted when
solving difficult problems with a theorem prover (and
possibly sacrificing completeness). For this problem, any
subgoal may factor with any other subgoal, making the
situation worse. A simple literal numbering strategy will
make factoring more reasonable.

Within each clause (i.e. set of subgoals), each subgoal
is numbered uniquely. The initial goal from the depen-
dency to be proven is assigned 1. When a subgoal
numbered i is replaced by the k subgoals corresponding
to an hypothesis, they are numbered ni, ni+1,...
ni+k — 1, where n is the maximum number of hypothesis
rows of all template dependencies which are known to
hold. This guarantees that subgoals are numbered
uniquely.

When a resolvent is generated, the number of the
replaced subgoal is recorded. In the future, only subgoals
which are numbered higher may be replaced. We refer to
these as replaceable subgoals, the others are unreplaceable
subgoals. Unreplaceable subgoals are still eligible for
factoring.

Factoring is also restricted, but so as to maintain
completeness. When a resolvent is generated via some
template dependency, each new subgoal may be factored
with no more than one previously existing subgoal and
any number of the new subgoals. The resulting subgoal
is numbered with the highest number of the factored
subgoals (and will be replaceable). Completeness can be
shown by examining what factoring did in our proof of
the top-down procedure. At any time there is no need to
maintain more than one subgoal to correspond to a row
generated in the chase. So by applying factoring as soon
as subgoals are produced, we never allow two subgoals

corresponding to the same chase row to exist. Finally,
this fact also guarantees that for a proof thus produced
there is a chase proof which performs the identical
replacements, but in the opposite order.

To further restrict allowable resolvents, we define
connected variables.

Definition. The variables in a replaceable subgoal are
said to be connected variables. If x and y are connected
variables and y appears in another subgoal, then all
variables in that subgoal are also connected to x (i.e.
connected is an equivalence relation).

If an unreplaceable subgoal does not contain a variable
connected to a variable in a replaceable subgoal, it is
due to one of two reasons: either (1) there is another
resolvent differing only in the replaceable/unreplaceable
designations which does replace this literal (i.e. factoring
is not necessary for success); or (2) the subgoal is
satisfied by one of the hypothesis rows for the dependency
being proven. In the first case the resolvent should be
deleted. In the second case the subgoal is removed
(ordinarily all subgoals corresponding to the hypothesis
of the dependency being proved (input-positive units)
will be factored together and replaced as the last steps in
the proof). Factoring is also restricted by only permitting
factoring of subgoals which have a connection of
variables. This lowers the number of factors which must
be tested.

Subsumption can be used,® but must be modified due
to the distinction between replaceable and unreplaceable
subgoals. If a clause C subsumes a clause D, there must
be a substitution which makes the set of subgoals of C a
subset of the subgoals of D. To ensure completeness, a
subgoal of C can correspond to a subgoal of D as long as
the subgoal of C is replaceable or the subgoal of D is
unreplaceable (in other words, an unreplaceable subgoal
cannot correspond to a replaceable subgoal).

Subsumption is applied in particular way. Forward
subsumption, or deleting a new clause which is subsumed
by an older clause, is always allowed. Backward
subsumption, or deleting an old clause which is subsumed
by a new clause, is only allowed in the same level of
breadth-first search. If applied to clauses in the preceding
level, a proof may be blocked.

Application to a Result of Sagiv and Walecka

The decidability of the inference problem for embedded
multivalued dependencies (EMVD) is an open problem
in dependency theory. An EMVD is a template depen-
dency with the following properties. (1) There are two
hypothesis rows. (2) If a symbol appears in a column of
both hypothesis rows, then it must appear in the
conclusion in the same column.

Example EMVD

ABCD

Abcd

ABc e
which is usually written as 4 —— B|<. An EMVD X —»—
Y| Z, where X, Y and Z are sets of attributes, indicates

that the X symbols appear identically in both hypothesis
rows and the conclusion, the Y attribute symbols appear
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identically in the first hypothesis row and the conclusion,
and the Z attribute symbols appear identically in the
second hypothesis row and the conclusion.

Regardless of the ‘simple’ structure of these depen-
dencies, most results have been negative. Sagiv and
Walecka® examine a subclass of the EMVDs which do
have a decidable inference problem. Their class, the Z-
EMVDs, has the property that all EMVDs known to
hold in an instance have the form X -— Y|Z, where Z is
the same for all dependencies. We show that a top-down
procedure which corresponds to their chase-style pro-
cedure is easily derived.

Suppose that 4—>— CE|F is to be inferred in the
relation scheme R(ABCDEF). Z is just the attribute F.
The goal is:

(A_C_Ef)

The two positive units from the hypothesis which can
satisfy goals are:

(4,B,C,D,E,F)
(4,b,c,dse.f)

Now, suppose that CD—->— AFE|F is known to hold
(recall that F must appear this way in all EMVDs in the
instance). This replacement gives the subgoals:

(A_C1E)) (__C1_f

Replacing the first subgoal will always lead to a clause
which will be subsumed by its parent clause. Consider
replacement using D >— ACE| F:

(A_C1E)) (C__1_) (L_-C1_p

This clause is clearly subsumed. Even replacements
allowing function terms will be subsumed, leaving
factoring or satisfying the subgoal with an hypothesis fact.
Factoring certainly does not help, since the original goal
is obtained. Satisfying the subgoal with an hypothesis
fact corresponds exactly to Sagiv and Walecka’s pro-
cedure.

Complete Example of Top-Down Procedure for EMV Ds

A more complete example of top-down inference is now
examined. For the given instance, a reasonably efficient
chase program did not find the proof after three hours
on a VAX 11/780. The top-down procedure described
herein, without the checks for connected variables, found
a proof in less than a minute. Of course, the useful rows

501 A4 B C D E
500 a b C d e
250 250 b C 250 E
125 125 b 125 125 E
62 A b 62 62 62
31 31 b 31 62 31
15 15 15 C 62 15
7 7 b 17 62 17
3 3 b C 62 3

1 A b C 62 1

Fig. 1. Chase proof.
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250
125
62
31
15
15
15
1
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in the chase tableau may be determined from the top-
down proof. The assumed EMVDs are:

(1) [>— A|B
Q) E—>— B|I
(3) G >— CID
(4) DF > C|B
(5) B>— D|G
(6) D >— BJF
(7) BD —— A|C
(8) C >— BIE

The EMVD to be inferred is: C -— A|B.

Before giving the proof using our procedure, the chase
proof (constructed using our top-down proof, not a
chase program) is given (see Fig. 1). Each row is
numbered by the subgoal for which it corresponds in the
top-down proof. After the row, we give a triple (X Y Z)
where X is the EMVD used, Y is the number of the row
matching the first hypothesis row, and Z is the number
of the row matching the second hypothesis row. Instead
of using function terms, the row number replaces the
generated term.

Only the clauses actually needed for the proof are
given. Sixty clauses generated by resolution or factoring
were not deleted. The initial goal is:

1(4,b6,C, _,_,_,_,_,-)

The goals which can be satisfied by the hypothesis of
C >— A|B are:

(4,B,C,D,E,F,G,H,I)

(a,b,C,d.e.f,g,h,i)

Note that replaceable subgoals are underlined.
Variables which do not appear elsewhere are represented
with ‘_’, otherwise a number is used. The first generated
clause is from replacing the goal by using EMVD 7
(BD -— A|C):

24,6, ,1,,,_,_,_) 3(,bC1,_,_,_,_,)
Next, subgoal 3 is replaced using EMVD 4 (DF—->—
C|B):
24,b,,1,_,,_,_, ) 6(_,_,C/1,_,2,_,_,)
B z(_’ b’ - 1’ - 2, -y = *)

Subgoal 7 is now replaced using EMVD 6 (D —>— B|F):

2(4,b,,1, ., ,,_,) 6(_,_,C1,_,2,_,_,)

E(—’ b9_’1’—’ -y = —) 15(—7 -y 1’—’ 29 -y —)
Factoring is now used to combine subgoals 15 and 6, and
subgoals 14 and 2:

_lﬁ (A’b’—’ l’—’—9—’—’—) E(—’—s Ca 1,_,_,_, —’——)
G H 1 Hypothesis
g h i Hypothesis
250 250 250 (8 500 501)
125 125 I (2250 501)
62 62 I (1501 125)
250 31 31 (562250)
250 15 15 (325031)
7 7 7 (662 15)

3 3 3 4157
1 1 1 (762 3)

¥202 Iudy 01 uo 1senb Aq v1EzLi/LS/L/LE/RIoIEe/|UlWwoo/wod dnoolwapede//:sdiy Wolj papeojumoq



A TOP-DOWN INFERENCE PROCEDURE FOR TEMPLATE DEPENDENCIES

Subgoal 15 is now replaced using EMVD 3 (G —-— C|D):

14(Asb5—, 19—’—’~«7—7-—) E(-—’—a C,—’—;—,z’—s—)
3_1(—5—’—-7 ls—, — 2,—’—)

Subgoal 31 is now replaced using EMVD 5 (B—— D|G):

14(A’b, — 39—, —y—y—> —) 30(—a - C, —3—3 —3 29 —7—)
Q(-9 15—-3 3’~, —y—>—s —) @(—5 1,—’ —3—5—> 29 - —)

Factoring is again used, this time to combine subgoals 63
and 30, and subgoals 62 and 14:

Q(Aa b’ —,—’—7—7—a—’-) 9(—a ba C9—a -3 —y—y—3—
Subgoal 62 is now replaced using EMVD 1 (I->— A|B):

@(—,b; C,—5-—,-7—7—’—) E (A’—7—1—9—1—’—’—9 l)
12_5(—, ba—’—s—’—y —y -3 1)
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