A Simple Algorithm for Generating Non-regular Trees in

Lexicographic Order

M. C. ER

Department of Computer Science, The University of Western Australia, Nedlands, WA 6009, Australia

A one-to-one correspondence between a set of non-regular trees that have n; internal nodes each with k; sons, for
1 <i<t, and (m+ 1) leaves and a set of feasible codewords that have n; occurrences of k;, for 1 <i < t, and m

occurrences of 0 is proved to be isotone, where

m= é (k;—1)n,.

A simple and efficient algorithm for generating a set of non-regular trees in lexicographic order is presented.

Received April 1986, revised July 1986

1. INTRODUCTION

In this paper we are concerned with the generation of
rooted, ordered and non-regular trees in a lexicographic
order. A tree is said to be rooted if there is an internal node
which is used as the root. A tree is said to be ordered if
the sons of each internal node may be distinguished as
the first son, the second son and so on. The number of
sons a node has is known as the degree of that node. A
tree is said to be non-regular if every internal node of the
tree may not have the same number of sons.

The problem of generating rooted, ordered and regular
trees has been extensively studied in recent literature.? 3
However, the generation of rooted, ordered and
non-regular trees has received less attention in the
literature. Chorneyko and Mohanty! reported one of the
earliest attempts in encoding non-regular trees as strings
of digits using the breadth-first search method. More
recently, Zaks and Richards* presented another method
for encoding non-regular trees as strings of digits using
the depth-first search approach. However, their algor-
ithm for generating non-regular trees is unnecessarily
clumsy and computationally expensive.

It turns out that the efficient method? 2 for generating
regular trees can be extended to the case of non-regular
trees. In what follows, we shall derive such an efficient
algorithm. This algorithm, of course, runs faster than
Zaks and Richards’ corresponding algorithm.*

2. PRELIMINARIES

Let K= (k,,k,,...,k;) be a t-tuple of non-negative
integers, such that k, <k, <...<k, Further, let
N = (n,, n,,...,n) be another -tuple of non-negative
integers, such that

t
m= 21 (ks—Dn,. )

i-
Note that n; may be regarded as the frequency of k;, for
1 i<t Let T(K, N) denote a set of non-regular trees,
such that each tree has n; internal nodes each with k;
sons, for 1 <i<t, and (m+1) leaves. An example of
TeT(K,N),where K = (2,3,5)and N = (3, 1, 1) is shown

in Fig. 1.

For convenience, let 7; denote the ith son of
TeT(K, N), and degree (T) be the degree of the root of

Figure 1. A non-regular tree te T(K, V), where K = (2,3,5) and
N = (3,1,1), with codeword C = 52000032020000.

T.Let T, T'e T(K, N). Then we may impose an ordering
among them.

Definition 1 (lexicographic order of non-regular trees)

We say that T < T'if
(a) degree (T') < degree (T"), or
(b) degree (T') =degree (T),
1 <i < degree (T),
() ;=T for1 <j<i and
(i) T; < T;. O
This lexicographic ordering, of course, is a generalisa-
tion of the local ordering used in the case of binary
trees.2 3 As such, it is easy to construct an efficient
algorithm for generating 7(X, N) in lexicographic order.
To generate all non-regular trees of T(K, N), it is easier
to manipulate linearised representations of non-regular
trees rather than the actual trees themselves. Let
C=cC,...c, be a codeword, such that it has n,
occurrences of k;, for 1 < i < ¢, and m occurrences of 0,
where

and for some i,

t
n=m+ Y n;. 2
=1
A codeword C is said to possess the dominating property
if the number of zeros is not greater than

Z (=1
Ci#0
while scanning from ¢, to ¢,,. A codeword C is said to be
feasible if it possesses the dominating property and the
number of zeros satisfies Equation (1). For example, the
codeword of the non-regular tree shown in Fig. 1 is
C = 52000032020000.

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 61

¥202 I4dy 01 uo 1senb Aq €z L1/19/1/LE/2101e/|ufwoo/wod dnoolwsapede//:sdiy Wwolj papeojumo(q



M. C. ER

Let C(K,N) be a set of feasible codewords. Let
C=cc...c, and C' =cjc;...c, be two feasible
codewords. Then we may also impose an ordering among
them.

Definition 2 (Lexicographic order of codewords)

We say that C < C’ if there exists a i, | < i < n, such that
(@) ¢;=cj, for 1 <j<i;and
) ¢; < c;. O
Now we prove the following two theorems, which are
essential to the subsequent derivation of a generating
algorithm.

Theorem 1
The mapping between T(K, N) and C(K, N)is one-to-one.

Proof

Let Te T(K, N). If T is traversed in pre-order, such that
the degree of each node visited is recorded, the sequence
of degrees so recorded forms a codeword C of
non-negative integers, with the last digit omitted (which
is a zero, as the last node visited by pre-order traversal
isa leaf). As a property of pre-order traversal, an internal
node is visited prior to its sons; therefore its degree comes
before the degrees of its sons in C. It it generally true that
the number of leaves an internal node has cannot be
greater than its degree. Thus the codeword for such a
simple tree is feasible. If another simple tree is attached
to a simple tree, the codeword for such a resulting tree
is also feasible as a zero (a leaf) is replaced by k
occurrences of 0 and one occurrence of k, where k is the
degree of the attaching simple tree. By induction, C is
feasible and therefore is a member of C(K, N).

Let T,T'e T(K,N), and C,C’ e C(K, N), such that T
and T" map to C and C’, respectively. If C = C’, then
T'=T as pre-order traversal visits each node in a
deterministic and pre-defined manner. Hence the map-
ping from T(K, N) to C(K, N) is one to one.

The converse is also easy to prove. O

Theorem 2

The lexicographic ordering of non-regular trees is
preserved in the lexicographic ordering of codewords. In
other words, the mapping between T(K, N) and C(K,N)
is isotone.

Proof

Let T,T'eT(K,N), such that they both map to
C,C’eC(K,N), respectively. Suppose T < T°. Then
either (a) degree (T') < degree (T7), or (b) there exists an
i,1 < i< degree (T), such that T; < T; and T; = Tj, for
1 <j <i. Corresponding to case (a), we have c, < c].
Corresponding to case (b), there exists an x such that
¢; < ¢ and ¢, = ¢, for 1 <y < x, where x is the xth
nodes in T'and T visited by pre-order traversal such that
they are the first nodes that have different degrees. Hence
c<(C. O

procedure Generate(f, z, p: integer);
var i: integer;
begin
if (f=0) and (z = 0) then PrintCodeword
else begin
if z > 0 then begin
dp] := 0;
Generate(f, z—1, p+1)
end;
fori:=1totdo
if n[i] > 0 then begin
clp] := k[i];
nli] := n[i]—1;
Generate(f— 1, z+k[i]— 1,
p+1);
n[i] := n[i]+1
end
end
end {Generate};

)
Figure 2. An algorithm for generating C(K, N) in lexicographic%
order.

20204000
20240000
20400020
20400200
20402000
20420000
22004000
22040000
22400000
24000020
24000200
24002000
24020000
24200000
40002020
40002200
40020020
40020200
40022000
40200020
40200200
40202000
40220000
42000020
42000200
42002000
42020000
42200000

Figure 3. A lexicographic listing of C(K,/V) generated by the<.
algorithm shown in Fig. 2, where K = (2,4) and N = (2,1).

6 Aq y2€21¥/1.9/1/L.€/a1o1E/UlWOD/WOD dNO"DIWBPEdE//:SARY WOI) PapEo)

udy Q| uo1san

¥20c |

3. SIMPLE ALGORITHM

From Theorem 2, we see that, to generate T(K,N) in
lexicographic order, we need only to enumerate C(K, N)
in lexicographic order. Since a codeword can be
represented by a one-dimensional array and is easier to
manipulate than a tree, generation of C(K,N) is
preferred.

To generate all feasible codewords of C(K, N), it is
necessary to generate all possible combinations of k; with
the appropriate number of occurrences given by n;, for
1 < i<t such that the resulting codewords are feasible.
To ensure that the dominating property is satisfied during
the process of forming a codeword, two parameters are
needed - one controls the number of all remaining k;s

62 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988



AN ALGORITHM FOR GENERATING NON-REGULAR TREES

function Convert(var i: integer): treeptr;
var j: integer;
T: treeptr;
begin
ii=1i+1;
if (c[i]] = 0) or (i > f+m) then Convert: = nil
else begin
new(T);
T .degree: = cli];
for j:=1to c[i] do T" .son[j]:= Convert(i);
Convert:=T
end
end {Convert};

Figure 4. An algorithm for converting CeC(K, N) to
Te T(K, N). It is activated as Convert(j), where j = 0.

N

20204000 22040000

20240000 22400000
%7\ 24000020

20400020

20400200 24000200

20402000 24002000

?\ 24020000

20420000

22004000 24200000

)

that can be attached to a head; another one controls the
number of zeros that can be added to a head at that point.
Both parameters need to be adjusted accordingly as soon
as a non-negative integer is appended to a head. An
algorithm for generating C(K, N) in lexicographic order
is shown in Fig. 2. This algorithm is activated as Generate
(£,0,1), where

t
f=Xxn.
t=1
The first parameter f of Generate controls the number of
k;s yet to be used in a codeword; the second parameter
z controls the number of zeros that can be added to a
codeword such that the resulting codeword still satisfies

A

40002020 40202000
40002200 40220000
40020020 42000020
ﬁ 42000200
40020200
40022000 42002000
40200020 /X\
42020000
40200200 42200000

Figure 5. A listing of T(K, N) converted from C(K, N), where K = (2,4) and N = (2,1).

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 63

¥202 I4dy 01 uo 1senb Aq €z L1/19/1/LE/2101e/|ufwoo/wod dnoolwsapede//:sdiy Wwolj papeojumo(q



M. C. ER

the dominating property; the third parameter p points to
the next position to be filled. Thus whenever k; is used
in a codeword, fis decremented by 1, and z is incremented
by (k;—1). Furthermore, whenever a zero is used in a
codeword, z is decremented by 1. The combination of f
and z ensures that the number of zeros inserted into a
codeword is not more than

(1)

ci#0
at any moment. Hence the dominating property is
preserved.

Finally, the algorithm Generate always tries to assign

a zero to the next position first before assigning a k;, for
i=12,...,t provided n; #0. Therefore the list of
codewords so generated is in lexicographic order. A
lexicographic listing of C(K,N) generated by the
algorithm is shown in Fig. 3, where K = (2,4) and
N=(,1).

REFERENCES

1. I. Z. Chorneyko and S. G. Mohanty, On the enumeration
of certain sets of planted plane trees. Journal of
Combinatorial Theory (B) 18, 209-221 (1975).

2. M. C. Er, A note on generating well-formed parenthesis
strings lexicographically. The Computer Journal 26 (3),
205-207 (1983).

64 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

4. CONCLUDING REMARKS

A codeword Ce C(K, N) may be regarded as a linearised
representation of the corresponding non-regular tree
TeT(k,N). In fact, C can be converted to T easily by a
conversion algorithm as shown in Fig. 4. A listing of
T(K, N) converted from C(K, N), shown in Fig. 3, by this
algorithm is illustrated in Fig. 5.

A comparison of our algorithm Generate with Zaks
and Richards’ generating algorithm* reveals that ours is
very much simpler and shorter. This is, no doubt, due to
the explicit use of two parameters to control the
dominating property so that the generated codewords are
always feasible. An empirical test also reveals that
Generate consistently runs faster than Zaks and
Richards’ generating algorithm. Thus our algorithm is
preferred.

3. M. C. Er, Enumerating ordered trees lexicographically.
The Computer Journal 28 (5), 538-542 (1985).

4. S. Zaks and D. Richards, Generating trees and others
combinatorial objects lexicographically. SIAM Journal on
Computing 8, 73-81 (1979).

oe//:sdny wouj papeojumoq

¥202 I4dy 01 uo 1senb Aq €2 L1/1L9/L/LE/e101e/|ufwod/wod dnoolwe



