The Unification of Systolic Differencing Algorithms

G. M. MEGSON anD D. J. EVANS*

Department of Computer Studies, Loughborough University of Technology, Loughborough, Leicestershire, LE11 3TU

A templating method for the fast derivation of systolic arrays is presented and discussed in relation to differencing
Sormulae and similar problems which generate tabular representations. Individual designs can be optimised and generate
a full table in O(n) rather than the O(n?) operations (where n is the number of starting values). Finally the designs are
incorporated into a single array, i.e. the Unified Systolic Array for Differencing (USAD), which can be used as a cheap
chip-based ‘ add-on’ device to accelerate algorithms involving table generation and differencing.

Received March 1986, revised July 1986

1 INTRODUCTION

In this paper systolic arrays for computing the coefficient
tables for commonly used difference techniques are
considered. The simplicity of the formulae such as the
finite (forward and backward) differences, as well as
divided and reciprocal differences together with their
recurrent computational nature makes them well suited
toa VLSI and systolic design approach. For introductory
material on the systolic concept and array design the
reader is referred to Refs 1, 2, 3 and 4.

In Refs 5 and 6 the authors have developed
area-efficient and computationally fast Systolic Arrays
for Extrapolation techniques for Ordinary Differential
Equations and Romberg integration; there it was shown
that a certain correlation exists between table generation
and the matrix computations heavily used in systolic
arrays. From our correlations it is possible to develop the
concept of templating arrays. The main idea of an array
template is to generate a sequence of designs for
computationally related problems by using a global
method of calculation, which freezes the abstract
definition of the systolic array at a high level and
significantly reduces array design time.

The subject of this paper is twofold. Firstly it defines
templates for the problem of differencing algorithms,
indicating that the previous results, i.e. Refs 5 and 6, are
special cases of a more general systolic structure.
Secondly, we illustrate the method by developing a
sequence of simple array designs for commonly used
difference methods and indicate that all the designs can
be unified to fit a single systolic array, the Unified Systolic
Array for Differencing (USAD).

1.1. Array templates

Before producing new systolic arrays for differencing
functions we briefly review the techniques and results of
Refs 5 and 6 for extrapolation table generation.
Essentially the designs for extrapolation obeyed a few
simple rules developed from the structure of the tables
and a method indicated for the parallel evaluation of the
table elements as shown in Fig. 1, for a type of template
for all differencing or table-type algorithms, and consist
of the following.

(1) An ordering of the table elements for the parallel
evaluation of the table, and a computational rule relating
elements in the partially constructed table to unknown

* To whom correspondence should be addressed.

elements. (Usually a column is defined in terms of
columns to the left.)

(2) A linear array is defined with basic cells mapped
to a column in the table, cell (i) computing column 7%,
In Fig. 1(a) we derive the array of Fig. 1(b) with n cells
(n = 6), each cell implementing the computational rule.

(3) Aclass of arrays for partial or full table generation,
ie.

(a) a linear array with a single fan-in link for
generating the diagonal entries of a table only.

(b) A linear array (Fig. 1(c)) generating the full
table, each cell outputting all the elements of
a column.

(c) A systolic ring which reduces the number of
cells to a minimum while leaving the computa-
tion time unchanged, leading to an area-
efficient array for generating diagonal table
entries.

(4) A generic timing of

T = (number of inputs)+ (delay through the array)

T=(n+1) +c*n

which follows simply from the fact that there are (n+ 1)
starting values in column 7 and n cells in the linear
array. Also, c is the latency of each cell, which is basically
the number of cycles between input to a cell and a
corresponding output associated with the input element.
Clearly c varies for the complexity of the computational
rule. When ¢ > 1, we can save area by using a systolic
ring. Essentially, in a systolic ring we notice that after n
cycles the last input enters the first cell of the array, but
the first input has only penetrated as far as the [n/c] cell.
On successive cycles the cells at the start of the array
complete all their computations and are essentially idle.
We remove the last n—[n/c] cells and wrap the output
of the [n/c]th cell back to the first cell. Details of this are
given in Refs 5 and 6. This results in the same
computation time with only [n/c] cells. Consequently we
define a cell area in terms of a basic component of the
computational rule calculation, and a cycle time
equivalent to the cost of evaluating this component. The
array is then clocked at this cycle time. Thus, as long as
¢ is small we require only O(n) cells and O(n) cycles to
compute the whole table. In previous designs a cycle has
been at most the cost of an inner product step
(y = y+a=x) satisfying all the assumptions above.

We now apply these techniques to the derivation of
some simple differencing or table-generating algorithms.
The key point to notice is that the array structures remain

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 83

¥20¢2 I4dy 60 U0 1senb Aq 6212 L /€8/ /L E/2I01e/|ulWwoo/woo dnoolwsapeoe//:sdiy Wolj papeojumo(q

G. M. MEGSON AND D. J. EVANS

1, /
TO / @/)
2rm NV /T°/T(s>/
O /27 e w0 e
W Y py N s CO
TO® /37 /2, T® 1 — — Elements on the same line
4/ s 37 r® ? computed in parallel
o, (41)’ T® 3
T
© S
T .
(@) Sample table.
Fan-in link
F======= }'_ - === ST-===- 1" ----- >
|
]]]
1 1 1
W TPTOTO o Cell 1 Cell 2 ce Celln

(b) Table array for generating diagonal table terms.

Qo
g
[Resulting table
output
L TOTOTO Cell 1 Cell 2

Celln

(c) Full table generation.

Figure 1. Template for table generation.

essentially static, and only the design of a good basic cell
using the computational rule is required. We shall denote
the computational rule as a function R defining the cell;
for instance, a rectangle rule of the form

ng‘l)

TY) = TYD
= R(TY7V, TV, T{;?)

Ty

gives rise to a cell for computing the rule (e.g. Burlisch
and Stoer extrapolation).

2. DIFFERENCE ALGORITHMS

In this section we introduce new arrays for common
differencing techniques such as the forward and
backward differences, divided differences and rational
function approximation. All the tables presented can also
be used to extract coefficient data for the construction of
polynomials P(x) and rational function approximation
R(x) of a given function y(x). Many formulas are
available for this, such as the Newton and Gauss
forward/backward difference formulae as well as the
continued fraction representation for rational functions.

84 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

It is the simplicity and universal application of these
methods which requires generating their coefficients (or
part of them) by fast systolic arrays, which is important.

2.1. Finite difference arrays

Given a discrete function, that is a set of arguments x;,
and a corresponding value y, such that the arguments are
equally spaced by the distance 4 = x,,,—x,, the
difference operator A is defined as

first difference
Ay = Ve =Yk
second difference
A’y = AAyy) = A1 — AV = Yiera— i1 + Vi
and generally
Ay = A"y — APy,

This gives rise to the table template in Fig. 2(a), and the
cell function R is derived from the simple computational
rule

Yk
Ay, = Ry(Vi» Yi+1) = Ayy

Yi+1

¥20¢2 I4dy 60 U0 1senb Aq 621z L /€8/ 1L/ LE/2101 e/ |ufWwoo/woo dno-olwsapede//:sdiy wolj papeojumoq

THE UNIFICATION OF SYSTOLIC DIFFERENCING ALGORITHMS

--- Elements computed
in parallel

(a) Finite difference table computation.

Y2 Y1 Yo

Sub. — Ayo=y1—Yo

(b) Basic A-cell.

Sub. —» R(zo)

(c) Switchable difference cell.

Figure 2. Finite difference template.

This in turn produces the cell for the arrays of Fig. 1, as
shown in Fig. 2(b). The A-cell consists of only a single
subtractor and a delay cell for synchronisation. We
choose a cycle time of 7, = cost of subtraction. Hence,
when y, is input it gets delayed a cycle by the delay
register then synchronises with y; on the next cycle in the
subtractor giving ¢ = 27,. Normalising the cycle time to
eliminate 7, gives the result

T=n+1)+2n=3n+1.

Also the systolic ring consists of [n/2] A-cells,
approximately [n/2] subtractors.

Similarly we can define backward differences (V) by
the simple computational rule,

Yk-1
Vye = Ry(Vi-1> Vi) = V% = Ve — Vi,
Vi

which results in a similar cell to Fig. 2(b) and retains the
same computation time. This is expected, as the two
methods only have a minor difference in the order of
computation, which is a simple reversal of the starting
data input. This is convenient because it gives trivial
methods which can be used to illustrate the method of
unification. The cell functions R, and R, (in a
mathematical sense) can be understood as defining a new
computational rule R, for a new cell, which is a uni-
fied cell for computing both methods on the same
architecture. We denote this as Ry(R,,(Vi, Vit1)s
Ry(¥i_1 Yi)) = R4(2) such that,

Ayk C; = l .
R = I = 1(1 1
) ={gr o o) =1+
and
7 {yn_]_+l C] — 0.] ()

The basic cell is shown in Fig. 2(c) and uses a switching
control ¢;, j = 1(1) n to switch the order of the operands
input to the subtractor, depending on whether R, or R,
is computed. Notice also that the input for R, is reversed,
and the new cell involves only a trivial amount of extra
switching hardware, which essentially minimises the
amount of extra hardware to implement the two designs
by a single unified array.

2.2. Divided differences

The differencing algorithms defining the current template
arrays have a significant drawback, for they assume
equally spaced arguments. In order to fit the templating
concept to more general table generators and hence for
wider applications we need to consider unequally spaced
arguments. For purposes of illustration, these unequally
spaced arguments will take the form of divided
differences and are defined as follows:

first divided differences

_ N1 e
Y(xg, Xy) = X, — X,

second divided differences

V(X1 X2) = y(xo, X
W(Xg, Xy, Xp) = 1 X2) =)0, X))
Xy — X,

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 85

¥20¢2 I4dy 60 U0 1senb Aq 621z L /€8/ 1L/ LE/2101 e/ |ufWwoo/woo dno-olwsapede//:sdiy wolj papeojumoq

G. M. MEGSON AND D. J. EVANS

higher differences

,x,) = V(X ooy Xp) = P(Xgy +ees Xp_y)

Y(Xo, Xy, ..
Xp—Xo

which would produce a template function of the form,

R4(J’(X1, ceey xi)3 (y(xoa [RXX} xi—l)a Xo» xi) = y(xO’ [XX) xi)

and presents a further problem for generating a parallel
computation order for the table elements. Essentially we
have the arguments x; represented explicitly in the cell
function. Further, for two arguments x; and x; in R,,
successive j values with i fixed increase the distance

Cycle Actions
t —>1 —> — —»f —>
Yo
t+1—> Yo [—» - - L | .
Y1
TA)’o
t+2 Y1 — —» —) .
Y2 Ay,
Ay,
t+3— V2 Ayo |— L] - .
V3 Ay,
TA}’z TAz)b
t+4 — V3 |— Ay, —l —
Ya Ay, Ay,

Figure 3. Successive cycles in forward difference table generation.

between the elements. However, for a systolic point of
view, as the distance between indices of elements
increases with values in the same cell, dataflow problems
also increase. The reason is simple; systolic arrays are
based on nearest-neighbour connections and perform
well when data elements are related only to elements with
locally available indices (i.e. i+1, i—1, i+2, i—2, etc.).
Attempting to use the first template of Fig. 1 for
unequally spaced arguments is disastrous, and indicates
that equally spaced arguments can make the explicit use
of arguments implicit (see Ref. 7). Fig. 4 indicates a more
general template for table algorithms which maps on to
the more intuitive parallel computation of column sweep
or the generation of a whole column in parallel. Fig. 4(b)
indicates the cell for R,. The array is linear and is shown
in Fig. 5 with the new dataflow. The cell consists of two
subtractors, a divider and two pre-loadable registers as
well as a delay for x;,,.

The cell operation is divided into two parts, i.e.

(a) pre-load cell i with x; and y; the starting values;

(b) compute the next column element as follows: (i)
evaluate x;, —x;, and y;, —y; in parallel; (ii) compute the
divided difference using the divider, and overwrite y; with
the new divided difference.

Thus for a linear array of cells we still require n cells,

Yroxs)

Xy 1 ! }'(xo»;xl-x:) '

Y(x4,%2) X y(x."'x"xi'x’) '
Xy i Y("--:"l"“) () Yeoxixaxaxy)]

x Y(x1,%3,%3,x (X 1,X2,X3,X 4,X5,X
. " y(x,p;) y(x"f”x‘) =l 2,X3.X4 P a s exs) Y(x1,x3,X3,X4,X5,X6)
(X 3,X '

X4 Ya Yo !‘) Y(X3,X4,X5) YxaX3Xexs)

V(xaxs)
Xs Vs

--- Elements on same line
computed in parallel

(@) Parallel divided difference table computation.

- o
D
'
r : "
€
I
y out
(b) Divided difference cell.
Figure 4. Divided difference template —— lines used for

pre-loading.

which are pre-loaded before the computation starts. On
the successive cycles after pre-loading, the array
computes one complete column of the table every cycle,
with each cell contributing a single element to the column.
Hence we can seen that the template definition of Section
1 remains essentially correct, we have introduced a new
table evaluation order, and, as we shall show later, the
use of systolic rings is prohibited due to changes in the
dataflow.

The timing of the divided-difference arrays is given by

T = (pre-load time)+ (time through array) = n+c*n.

Notice that the pre-load time replaces the length of input,
which is of the same order of magnitude due to the
geometry of the table. It follows that ¢ = 7, +1,, where
7, = cost of divide. So T = 2n after normalising the cycle
time ¢. Notice that the cycle time must be equivalent to
¢ because of the feedback by y;,. It follows that ¢ = 1 and
s0 no benefit is gained from a systolic ring even if it could
be used. In any event a systolic ring is not practical
because of the initial pre-loading and subsequent data
movement. It should also be clear that for divided
differences the new cell computes forward differences and
backward differences by making the x;,—x; subtractor
always produce a value 1. We shall show how to perform
this when we present the unified array. However, a
comparison with the finite difference array gives

T, = 3t,n (finite difference)
T, = 2(1,+71,)n (divided difference)

Hence the dedicated finite-difference algorithm and array
will be [2(r,+7,)/37,] faster than the unified array.
(Remark. An alternative way of viewing this new
template is that the first method allocated each cell to
compute a single column, whereas the new method

86 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

¥20¢2 I4dy 60 U0 1senb Aq 6212 L /€8/ /L E/2I01e/|ulWwoo/woo dnoolwsapeoe//:sdiy Wolj papeojumo(q

Cycle

t+1

t+2

t+3

t+4

THE UNIFICATION OF SYSTOLIC DIFFERENCING ALGORITHMS

Array action
e

Xy X,

Y1 | Va2

X2 Xy X3 X,
Y2 pg! b4) Y2
X3 x; |¢ X4 X3
¥(2,3) y(,2) y(3,4) y(2,3)
X4 Xy 1} Xq
y(2,3,4) »(1,2,3) 5 ¥(2,3,4)
1 Xy) X2
) y(1,2,3,4) 5)
) X, 1) X3
))) 1}

X3 [X,
Y3 s

Xq4 X3

Ya Y3

) X3

) y(3,4)

] X3

é 1}

) X3

) 8

1} X3

1} 1}

- Xo
— Yo
+— Xy Xo
¢— N Yo
«— x; Xo
«— ¥(1,2) y(O,1)
— X3 Xo
+—¥(1,2,3) y(0,1,2)
t— x4 Xo
+«—y(1,2,3,4) ¥(0,1,2,3)
7 3 Xo
+— § p(1,2345)
Xin Xi
Yin Vi

Key to state of dividend difference cell

Figure 5. Dataflow/computation in divided difference array.

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 87

¥20¢2 I4dy 60 U0 1senb Aq 621z L /€8/ 1L/ LE/2101 e/ |ufWwoo/woo dno-olwsapede//:sdiy wolj papeojumoq

G. M. MEGSON AND D. J. EVANS

Xy N1 !
X2 2 P(an.X:) " |x N |
X v p(x,:,x;;) IE f P(Xx.i\'a.xg.xc) |
' p(x2,x3,X4) | P(x1,X2,X3,X4,Xs)
Xe Ve P(x3,x4) ! P(X2,X3,X4.Xs)
! P(x3,X4,Xs5)
x5 Vs P(x4,X5)

— — Elements on same line
computed in parallel

(a) Reciprocal difference table generation.

Fout 7} . %in
To
Div. tm,
Add L2 Pin
~ s |

Pout +—— i

- gE

(b) Reciprocal difference cell.
Figure 6. Reciprocal difference template.

assigns each cell the job of computing a single row
throughout the table.)

2.3. Reciprocal differences

Although divided differences can be used to substitute
derivatives in formulas like those of Taylor and Newton,
only polynomials can be approximated. However,
rational functions represent a much wider class of
functions as they are quotient polynomials. A function
like tan (x) cannot be accurately approximated around its
asymptotes by a polynomial, whereas a rational function
can. A rational function has the form R(x) = P(x)/Q(x)
with P(x) and Q(x) polynomials. When Q(x) =1 we
generate all the polynomial approximations.

It follows that rational functions have a wider range of
applications and would also incorporate other designs.
The link with difference algorithms and rational
functions is via the reciprocal differences. Rational
functions can be represented by a continued fraction,
which is itself composed of reciprocal difference
components.

A continued fraction is of the form

(x—x,)

¥(x) =y +
(x—x,)

prt
(x_xa)

Pe—N+
(x_x4)

P3s—p1t+
~ (pa=p2)

where p; are reciprocal differences and

— (xy—xy) _ 1

(V2=r) ¥(xg %)
in the above fraction. Fig. 6 indicates the table template
and basic cell, which is very similar to the divided

difference, and the R function for the cell definition now
becomes

1

88 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

Pa(Xs, X3, X4)

Pi(x 5, x,) Pa(Xys X3, X4, X5)

Pa(X3, X4y X5)
X5 —Xg

=
PaX3, Xy45 X5) = Po(Xa, X3, X4)

The cell hardware has also increased. We now require
an adder, divider, two subtractors, three pre-loadable
registers and a delay for the x;, value.

In a particular cycle the cell computes as follows,

LD Ty = Xin— X451 = Pin— s
r
t+3: oy = {r—°}+ptmp
1

t+1: poyy =y ptmp = piy

Snapshots of the array computation are shown in Fig. 7
for clarification. The timing of the array is given by
T = 2cn after normalisation with ¢ = 1. No systolic ring
can be used, and the cycle time due to the feedback loop
to the y; register is 7, + 27, (taking the cost of add = cost
of subtract). Hence the finite difference array and the
divided difference array run [(z,+27,)/37,] and
[(zo+27,)/(z,+ 7,)] faster, respectively.

3. THE EPSILON ALGORITHM

The template used in Refs 5 and 6 for table generation
can also be extended to the finite differences. However,
to deal with unequally spaced arguments a second
template for divided and reciprocal differences was
introduced. The main change between the two templates
was the explicit representation of the arguments in the
computational rule and the change from cell-column
generation to cell-row generation. This next algorithm
indicates that the two templates can be used to implement
a single algorithm.

The epsilon algorithm® ® is a powerful technique for
accelerating a slowly convergent sequence. The basic
computational rule and the cell function R is given as

e(s'")

1

ey i) =) = M +

€s

egmﬂ)

The table template is shown in Fig. 8 (a). Notice that this
uses the first array template rules and the cell in Fig. 8(b)
is suitable for systolic ring implementation. The amount
of hardware is less than that required by reciprocal
differences, yet the epsilon algorithm has a very similar
structure to the reciprocal formula, or R function. It
follows from this that the epsilon algorithm can be
implemented by both templates and hence by both the
systolic ring-type cell and the pre-loading schemes. Later

+p1(x3, Xx,).

€§m+1)* (m)

¥20¢2 I4dy 60 U0 1senb Aq 6212 L /€8/ /L E/2I01e/|ulWwoo/woo dnoolwsapeoe//:sdiy Wolj papeojumo(q

THE UNIFICATION OF SYSTOLIC DIFFERENCING ALGORITHMS

¢ Xy X2
0 0
b4 b
— x Xy X3 Xy
0 0
D N V3 Y2
— X3 Xy X4 X, |&
N V3
— p(2,3) p(1,2) p(3,4) p(2,3) e
— Xga Xy Xs X,
p(2,3) p(3,4)

1 p(2,34) p(12,3)

p(3,45) p(2,3,4)

X3 Xy |[&————— xg
0 0 0
»3 ya [
Xa X3 Xs X, [
0 0
Vs ¥ [* s ya (&
Xs X3 [Xy |¢————
Ya Vs
p(4,5) p(3,4) @ 6 p(4,5) ¢——
) X3 8 xs [¢
p(4,5))
é p(3,4,5) [5 |¢&——
5 x; [¢ 5 x, [&—
))
) 5 | [5 [¢—
) X3] X, [¢E—
5)
)) 8 56 [¢——

1 xs x, 8 X3
p(2.3.4) p(3,4,5)
+—p(2,3,4,5) p(1,2,3,4) 5 0(2,3,4,5)
— 5 X1 5 X2
p(2,3,4,5) §
+— (1,2,3,4,5) |e 5 1)
Key to state of reciprocal cells
Xin Xi
ptmp
Pin Yi

Figure 7. Dataflow in reciprocal difference array.

we will show that the second template introduced is more
general and that the template used in Refs 5 and 6 and
epsilon scheme is a special case when argument spacing
can be eliminated from the R function in the cell. For

completeness we state the computation order for Fig.
8(b).

t:IN1e©, IN2 &0
t+1: IN1 @, IN2 &), ry = &V — &l
t+3: IN1 @, IN2 &), ry = 1/ry, ry = & — eV
t+5: IN1 &P), IN2e®), r, = e® +r,r, = 1/r,,
ro = &) —ef®.

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 89

¥20¢2 I4dy 60 U0 1senb Aq 621z L /€8/ 1L/ LE/2101 e/ |ufWwoo/woo dno-olwsapede//:sdiy wolj papeojumoq

G. M. MEGSON AND D. J. EVANS

)
€ s € /
-1/ 1 0
2 /8,
G-
- 1 0
/ef,” A S /eg)//
QSR DS D
, 583) J o/ 6(22) s ED
AT A
1/ & /l'e(” 3
L M)
) /€@
-1 5 &
€
(a) e-table generation

> _ > Out 1

Inl———>" " F—""

n 2L sub [T oiv. —f Add |——0ut2

(b) e-cell structure
Figure 8. Epsilon ¢-algorithm template.

This gives a latency of ¢ = 4t,, hence T = n+4n, = 5n,
after normalisation, and a systolic ring requires [n/4]
e-cells.

4. A UNIFIED SYSTOLIC ARRAY FOR
DIFFERENCES (USAD)

We have considered briefly the problem of unification in
the combination of the forward and backward finite
differences. Now we indicate that all the algorithms
discussed in this paper can be implemented on a single
array (USAD). The basic principle is that all the
computational rules used for the table-generation and cell
functions are similar to the rhombus rule.

b

d

For instance, by omitting vertex a, the forward and
backward formulas are represented, while divided,
reciprocal differences and Wynn’s algorithm all fit the full
rule with only slight variations on the computation. What
is required is a minimised architecture cell for all the cells
and a set of controlled switches to dictate the type of

Table 1

¢, ¢ ¢ Cell function Array format

0 0 0 ryr Divided difference

0 0 1 r Forward difference
o 1 0 — —

0 1 1 nr Backward difference
10 0 ry/ri+py, Reciprocal difference
1 0 1 1/ri+pin e-Algorithm

1 1 0 — —

1 1 I — —

computation rule. Careful consideration shows that the
reciprocal-difference cell contains all the hardware
necessary to compute all the formulae; only the controls
are to be added. We augment the reciprocal-difference
cell with three control bits ¢;, i= 1(1)3 with the
interpretation shown in Table 1.

We can interpret the controls as commands to the
reciprocal cell such that,

e = {0 ro/r
! Lro/ritpin’
0 Normal operand order
€= {1 switch operand order

0
G=9

0 inputs to divider unchanged
1 input to divider swapped.

¢, now performs the swapping of operands discussed with
the forward/backward differences, while ¢, provides a
neutral value so that the divider can be effectively masked
out for forward and backward differences, and acts as a
reciprocal cell for the epsilon method. ¢, masks out the
adder, while the special command s permits r,/r, to be
computed when necessary. The pre-loading of the arrays
is trivial and is not discussed here.

The timing of the array is identical to that of the
reciprocal-difference array. The additional switching
logic and hardware are trivial, consisting of simple
combinational logic, and adds no time to the algorithm.

r, output valid

while setry =1

s=c_1/\c3={

5. CONCLUSIONS

We have investigated the use of array-templating
techniques for the derivation of systolic arrays for
computationally related problems. In particular we have
examined a collection of differencing and extrapolation
techniques when Refs 5 and 6 are considered. The
concept of array unification has been introduced to
combine similar systolic arrays with similar cells, which
is achieved by combining cell functions to produce a
minimal hardware arrangement. Two templates were
discovered, indicating that earlier work on extrapolation
systolic arrays is a special case of a general template
developed in this paper. In particular, we have shown that
equally spaced arguments allow the arguments them-
selves to be inferred in a cell function. Unequally spaced
arguments must remain explicit in the cell computation,
and this results in a change in the method of computation.
Equally spaced arguments introduce cells which compute
columns, unequally spaced arguments computing rows
of the table to be generated.

Although the algorithms discussed in this paper are
computationally simple, the unified array and the method
by which the algorithms are analysed are important for
future systolic array design. We have allowed a number
of problems to be implemented on the same cell
architecture and so have a very cost-effective VLSI
design. Recent trends in systolic array development and
particular the CMU WARP processor? are aimed at more
flexible systolic array design. The frequent use of the
methods examined here should make the USAD device
an interesting alternative for the fast computation of
approximating functions.

90 THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988

¥20¢2 I4dy 60 U0 1senb Aq 6212 L /€8/ /L E/2I01e/|ulWwoo/woo dnoolwsapeoe//:sdiy Wolj papeojumo(q

THE UNIFICATION OF SYSTOLIC DIFFERENCING ALGORITHMS

6. REFERENCES

1. C. E. Leiserson, Area-efficient VLSI computation. Ph.D.
Thesis (1981). C.M.U. Pittsburgh.

2. H. T. Kung, The structure of parallel algorithms. Advances
in Computers 19 (1980).

3. H.T. Kung and M. S. Lam, Wafer-scale integration and
two-level pipelined implementation of systolic arrays.
J. Parallel and Distributed Computing 1, 32-63 (1984).

4. D.J. Evans and G. M. Megson, A Systolic Array for the
QD Algorithm. Internal Report C.S. 254, L.U.T. (sub-
mitted to IEE for publication).

5. D.J.Evans and G.M. Megson, Romberg integration
using systolic arrays. Parallel Computing 3, 289-304 (1986).

6. D.J. Evans and G. M. Megson, Construction of extra-
polation tables by systolic arrays for solving ordinary
differential equations. Parallel Computing 4, 33-48 (1987).

7.

10.

H.T. Kung, Systolic Algorithms for the CMU Warp
Processor. CMU-CS-84-158 (1984).

. Y. Saad and A. Sameh, Iterative methods for the solution

of elliptic difference equations on multiprocessors. In
CONPAR 81 Lecture Notes in Computer Science, edited
G. Goos and J. Hartmanis, Springer-Verlag, Heidelberg,
pp. 395-411.

. P. Wynn, Acceleration techniques for iterated vector and

matrix problems. Mathematics of Computation 16, 301-322
(1962).
F. Scheid. Theory and Problems of Numerical Analysis.
Schaum’s Outline Series, McGraw-Hill, New York
(1968).

THE COMPUTER JOURNAL, VOL. 31, NO. 1, 1988 91

¥20¢2 I4dy 60 U0 1senb Aq 621z L /€8/ 1L/ LE/2101 e/ |ufWwoo/woo dno-olwsapede//:sdiy wolj papeojumoq

