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1. INTRODUCTION

Continuations are used in denotational semantics™® to
describe the semantics of control mechanisms and of
control commands such as jumps. Continuations are an
example of a sophisticated use of high order functions.
Strachey and Wadsworth® give their origins in the tail
functions of Mazurkiewicz® and of Morris. Here, con-
tinuations are used as a programming technique to
simulate non-determinism and co-routines either in a
functional language or when using a functional style in
an imperative language. It is hoped that this will further
the use of this powerful tool from the functional
programming armoury.

Functional composition, o, is the usual way of
combining two functions:

f:B>C, g:A—B
fogx = flgx).

Two composed functions pass an intermediate value
between themselves. Continuations give another way to
combine functions. There is a function g’ related to g:

g B-C)>A4A-C
gfx = flgx)

Note that fog = g’f. fis a continuation to g’. In this case,
g’ passes a value (gx) and control to f. There is no o
operator involved. g” has the extra freedom to manipulate
the flow of control and it will be exploited in the
following sections.

2. NON-DETERMINISM

Non-determinism appears where that may be zero, one
or many solutions to a problem and where a search is
necessary to discover which will succeed. This section
illustrates the implementation of non-determinism by
continuation functions via an example from parsing.
Non-determinism is a central feature of logic pro-
gramming languages such as Prolog.® The technique of
implementing non-determinism in a functional language
is present in the various denotational semantics of
Prolog*® and in implementations of Prolog in functional
programming? but it deserves wider exposure. The use of
continuations is implicit in the organization of the trail
stack in a conventional implementation of Prolog.
The following grammar is non-deterministic:

{S)::= (aORaa) (aORaa)
{aORaa):: = alaa.

The string ‘aaa’ has two parses — a(aa) or (aa)a. Such a
grammar cannot usually be parsed by recursive descent
because of the non-determinism. However, recursive
descent plus continuations can do the job.

The following example indicates how this grammar
can be parsed. It is written in a simple functional
language. The answers returned by the parser are just
indications of success but the parse trees could easily be
returned. First some general operators are defined:

Types or domains:
Ans ={Success}*
input: Text = char*
cont: Pcont =Text—Ans
Parser =Pcont »Text >Ans =Pcont >Pcont

fin input =
if null input then [Success]
else nil

fin: Pcont

letter ch cont input =
if null input then nil
else if ch=hd input then
cont tl input
else nil
letter: char—-Parser

seq p, p, cont=p, (p, cont)
seq: Parser—>Parser—>Parser

either p, p, cont input =
append (p, cont input)
(p, cont input)

either: Parser—Parser—Parser

Using these operators, the particular grammar can be
programmed:

a=1letter ‘a’

aORaa =either a (seq a a)
S =seq aORaa aORaa

a, aORaa, S: Parser

The expression ‘S fin string’, will indicate how many
parses the string has.

Each parser has a parser continuation, a Pcont, which
follows it. The function ‘seq’ forms the sequential
composition of two parsers, as indicated by concat-
enation in BNF. The definition of seq exactly follows
that of sequential composition (;) in the standard
semantics of programming languages. To parse ‘p,’ and
then ‘p,’ and finally do ‘cont’, call p, with a continuation
which is (p, cont). The function ‘either’ performs
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alternation, ‘|’. It simulates non-determinism by trying
both alternatives with the following continuation and
appending results.

If only one solution is required, fin should be modified
to raise an exception which should be caught by S.

2.1. Pascal

The central idea in the parser of the previous section is
that of parser continuations, Pcont. These can be
programmed in Pascal. The only slight difficulty is the
lack of curried functions (or procedures). This means
‘seq’ and ‘either’ cannot be used in partially para-
meterized form which renders them rather pointless;
suitable in-line code is more appropriate.

program Continuations (input,

var l:array[l..80]of char;

{the input string}
{its length}

output);

len:integer,

procedure fin(m:integer);
beginifm=1en+1 thenwriteln( ‘Success’)
end;

procedure aORaa(
procedure cont(p:integer);
n:integer);

begin if 1[n] = ‘a’ then

begin cont(n+1); {a }
if 1[n+1]= ‘a’ then
cont(n+2) {aa}

end
end;
procedure sentence(
procedure cont(p:integer);
n:integer);
procedure aORaaCont(n:integer);
begin aORaa(cont, n) end;
begin aORaa (aORaaCont, n) end;

begin writeln( ‘type a string’);
while not eof do
begin len: =0;
while not eoln do
begin len: =len-+1;
end;
readln; writeln;
sentence(fin, 1);
writeln( ‘finished’)
end
end.

read (1[1len])

In this version the input is held in a global buffer ‘I’
Because Pascal is imperative it is possible, although not
essential, for the final continuation ‘fin’ to act as a side
effect.

If it is only necessary to accept the first parse out of
many, procedure fin should be modified to do a non-
local goto out of the parser.

2.2 Parsers

In parsing terms, the original grammar requires a slow-
back top-down parser. The string ‘aaa’ can be parsed as
a(aa) or (aa)a. The first aORAa can succeed by parsing
‘a’ but its activation cannot be discarded because it may

be required to succeed again as ‘aa’. When one of the
parsers is run, the first aORaa in a sentence calls the
second one which is incorporated in the first’s con-
tinuation. The first one is still active and can succeed
again in another way.

3. CO-ROUTINES

A set of co-routines is a collection of routines which pass
control amongst themselves. A co-routine is resumed
from the point at which it was last suspended ; apart from
its initial start it resumed just after the point that it last
resumed some other co-routine. Simula and Modula
provide co-routines. In this section the example of
merging two search trees will be used to illustrate how
continuations can simulate co-routines.

A search tree is a binary tree in which the elements in
the left subtree are less than the element in the root which
is less than the elements in the right subtree. This
property also applies to all subtrees. The problem is to
merge the elements of two search trees so as to print one
ascending list of their elements. The natural solution to
this problem uses two co-routines. Each co-routine
traverses one tree in infix order. Co-routine A resumes
co-routine B when the element that A is examining
exceeds the element that B is examining.

There are many other solutions such as

A tree,, tree,. listmerge (flatten tree,)

(flatten tree,)

but these all produce temporary structures or visit some
nodes more than once. The tree merge algorithm given
here simulates the co-routine solution.

3.1. Tree flattening

The tree merge algorithm is based on the following
unusual way of flattening a single tree.

Type:
cont: Cont =Void—>List of element
flatten t =
let fin () =nil,
fl t cont =
if null t then cont()
else
let contright ()=
(elt t). (fl (right t) cont)
in f1 (left t) contright
in f1 t fin
flatten: Tree of element—List of element
fin, contright: Cont
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fl: Tree of element—Cont—List of element

The continuation parameter ‘cont’ of ‘fl” is an ac-
cumulating parameter. It is a function which will flatten
the rest of the tree once fl has flattened the left subtree.
Note that ‘.’ is the infix list constructor. Flatten can
easily be programmed in Pascal.

3.2. Tree merging

The tree-flattening function of the previous section can
be used as the basis of a tree-merging function. To merge
two trees first find their smallest (left most) values, then
traverse one tree until an element larger than a ‘switch’
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value is met. Then an ‘alternative’ function must be
invoked. The alternative will traverse the other tree until
a switch back to the first tree is necessary. The alternative
is the co-routine or co-function of the current traversal
function.

Type:
Cont =element->Cont—-List of element

merge tree, tree,=

let rec
traverse tree cont switch alternative =
if null tree then
cont switch alternative
else traverse (left tree)
(travright tree cont)
switch alternative,

travright tree cont switch alternative =
if null tree then
cont switch alternative
else if elt tree<switch then
(elt tree)
. (traverse (right tree)
cont switch alternative)
else alternative (elt tree)
(travright tree cont), —

m tree, cont, tree, cont,=
if not null (left tree,;) then
m (left tree;)
(travright tree; cont,)
tree, cont,
else if not null (left tree,) then
m tree, cont, tree, cont,
else if elt tree,<elt tree, then
travright tree, cont; (elt tree,)
(travright tree, cont,)
else
travright tree, cont, (elt tree,)
(travright tree, cont,),
fin switch cont =cont maxint halt,
halt switch cont =nil
in
if null tree, then
traverse tree, halt maxint halt
else if null tree, then
traverse tree; halt maxint halt
else m tree, fin tree, fin
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1. INTRODUCTION

In a computing environment, a set of machine-dependent
parameters can be identified which indicate the properties
and limits of the floating-point arithmetic on the
processor. A possible set includes such parameters like
the normalisation base, the overflow and underflow
thresholds, the number of digits in the mantissa, the
relative precision and so on.! Assignment of proper
values to such parameters is vital for accurate floating-
point computation and for producing transportable
numerical software.>* By using normal manufacturers’
documentation it should be possible, in principle, to find
values for these parameters.’®!* However, in practice
this may not be true for all cases. To determine the radix
employed and the number of digits retained in the
mantissa is normally a straightforward task. It would be
more difficult, however, to find in all cases details of
arithmetic round or chop or the number of guard digits
retained in intermediate calculation, and in particular
how accurately external decimal values are converted to
internal storage forms. The latter process is particularly
important in the production of portable numerical
software involving a large number of literal constants.>*

This paper presents a number of test procedures which
measure accurately such parameters and determine the
statistical behaviour of the basic arithmetic operations
and of conversion from external decimal value to internal
storage form. These procedures were successfully im-
plemented in a transportable Fortran software package,’
which has been tested by one of the authors (MR) on
some twenty major computers at different sites in the UK
and abroad. The scope of this testing activity is described
in Ref. 6. Although it has been possible to examine
thoroughly the precision-related parameters, transport-
ability is still not perfect as far as accurate measurement
of the range thresholds is concerned. This is because (i)
any attempt to test them directly would cause a threshold
violation and (ii) various processors differ widely in their
approach to handling floating-point exceptions. How-
ever, an indirect approach has been used to estimate their
values. Software tools similar to those of Ref. 5 have also
recently appeared in the literature.61%

In Section 2 the details of the test procedures are
described. Section 3 deals with typical test results

obtained for a selection of processors, and finally
conclusions are presented in Section 4.

2. TEST PROCEDURES

2.1 Representation test procedure

peoe//:sdiy wouy pepeojumo

A test procedure is described in this section which can @
measure the parameters appropriate to stored floating- &
point quantities, i.e. the representation parameters.
These are the radix or normalisation based «, the number o
of digits in the mantissa, d, and the minimum rep-
resentable floating-point number, i.e. relpr. Values of d 8
and relpr depend on the machine working precision. The =
procedure uses a modified algorithm first suggested in
Ref. 7 and later enhanced in Ref. 8. A real number X is
first constructed to satisfy a? < X < a®!. It can be
shown? that the radix « = X— Y, where Y is constructed
such that X+ Y # X and X+ Y/2 = X. Having found «,
the algorithm then determines whether the arithmetic
rounds by testing if («—1)+ X is different from the
stored value of X. The algorithm thus detects rounding
for the addition operation but not its form, nor whether
the other arithmetic operations are also rounded. The
value of d can then be evaluated from the smallest
exponent of a® such that

(((@*+1.0)—a*—1.0) # 0.0.

A variant of the approach suggested in Ref. 8 is also
used to force-store the results of each dyadic arithmetic
operation for any subsequent comparison or opera-
tion.® Since the algorithm checks for rounding or other-
wise, it is also used to infer relpr. The nominal decimal
precision can then be calculated from Nd = {—log,,
(relpr)}, where {4} denotes the largest integer less than
the floating-point number A.

dnooiw
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2.2 Conversion test procedures

The conversion process in a computing environment
involves representing a mathematically ‘exact’ real
number by an internal machine value using a finite
decimal floating-point approximation. Ideally, this pro-
cess should be such as to ensure that the internal value is
the nearest ‘exact’ value to the external number, as in
Ref. 12. Although the ideal case may not be possible, a
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‘faithful” conversion can be obtained provided a suf-
ficiently long decimal approximation is used.®® In fact, a
‘faithful” representation is the best that can be obtained
in a correctly implemented conversion process. The num-
ber of decimal digits required for ‘faithful’ represen-
tation, Nc, can be obtained® from Nc¢ > 1+dlog,,c.
It should be noted that choosing Nc to be greater than
the minimum value will provide little or no improvement
in conversion.® ® However, when ‘faithful’ conversion on
a machine is not properly implemented, for example due
to an artificial truncation of the decimal length, rep-
resentation of literal or input constants in a program
would become an important source of error and might
complicate error analysis and/or software verification.®
This section presents test procedures which enable us to
detect any conversion errors and to determine statistically
how well the conversion process is performed. The tests
deal with literal conversion as well as floating-point
numbers read by formatted input, that is, input con-
version. The procedures for both cases are similar, and
they are based on conversion and statistical error analysis
of specially prepared sets of data. The latter consists of
a large number of data samples, each containing a set of
uniformly distributed random numbers which have been
rounded to various decimal digits, starting at 5D and
increasing to 36D. For each sample, a basic data set is
then produced which contains an accurate reference
standard, R, and six test values approximated from R to
Nd—1, Nd, Nd+1, Nd+2, Nd+3 and Nd+4 decimal
places, respectively.

As each test procedure is designed to work entirely
with a single machine working precision, an approach
had to be devised to produce R to extra accuracy. This
was achieved by generating values of R with 40-decimal-
digit accuracy using an Algol 68 multiple-precision
package available at the computing centre of the
University of Birmingham.!® Once the required data
structure is established, the procedure then compares the
test values in a single data sample with the corresponding
reference standard R in order to evaluate individual
relative conversion errors. This process is repeated for
the total number of data samples to provide, for a given
working precision, the conversion-error statistics,
namely the mean, rms (root mean-squared) and maxi-
mum errors.®

These conversion test procedures have been suc-
cessfully implemented in a transportable software which
is capable of testing any machine with nominal decimal
accuracies ranging from 6D to 32D, that is, single,
double and extended precisions.

2.3 Arithmetic test procedure

This section describes a test procedure which can measure
the statistical properties of the basic arithmetic oper-
ations, that is, addition, subtraction, multiplication and
division on a processor. Assuming that the operands
themselves are exact, the test uses a higher working
precision as a reference standard for testing a lower
working precision. A pair of random floating-point
numbers, Y and Z, are generated which are then assigned
to variables of higher precision DY and DZ. This is
followed by performing

B=Y60Z
DB =DYODZ

for each operator # = +, —, * and /. The relative error
in B is then evaluated in higher precision as

d=(B—DB)/B

This process is repeated for a sufficiently large number of
trials to take account of any statistical fluctuations. For
each operation the mean, rms and maximum error
statistics are then calculated and displayed. This test
procedure, however, cannot determine the accuracy of
the arithmetic operation for the highest working precision
as a reference standard for testing a lower working
precision.

3. EXPERIMENTAL RESULTS AND
DISCUSSIONS

This section presents typical experimental test results for
DEC, IBM, CDC and ICL computers, selected from a
comprehensive set of results which the author has
obtained on various processors. A detailed survey of
these results will be the subject of a separate paper.!’.
The objective here is to demonstrate typical capabilities
of the test suite, and to discuss and highlight some of the
properties and peculiarities of the relevant floating-point
characteristics which have been observed. The section is
divided into four parts. Section 3.1 deals with the
experimental results obtained from the number-rep-
resentation tests. Sections 3.2 and 3.3 discuss the results
associated with the literal and conversion tests. Finally
the results of the arithmetic tests are presented in Section
3.3.

3.1 Representation test results

This section deals with some selected results obtained
from representation tests. Table 1(a) shows the test
results for the CDC 7600 machine with FTN 4.7
compiler. Entries in columns 2 and 3 are associated with
single-precision (SP) and double-precision (DP) values.
The computed values of Nd for single and double
precisions are 14D and 28D, respectively. All the results
obtained from this tests are as would be expected from
the CDC documentations.

Table 1. Results of the representation test on three computers

(a) CDC 7600 Sp DP

a 2 2

d 48 96
Addition option CHOP/ROUND CHOP
Implied relpr 7.11E-15/3.55E-15  2.52D-29
(b) ICL 2980 SP DP QP

a 16 16 16

d (equivalent binary digits) 6(24) 14 (56) 28 (112)
Addition option CHOP CHOP CHOP
Implied relpr 9.54E-7 2.22D-16 3.08D-33
(¢) DEC 20 SP DP

a 2 2

d 27 62

Addition option ROUND ROUND
Implied relpr 7.45E-9 2.17D-19
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Table 2. Results of conversion tests on three computers. () denotes input conversion

Error
No. of
decimals Mean rms Maximum Bound
(a) CDC 7600
13 5.3E-15 1.14E-13 4.56E-13 5.04E-13
14 —9.5E-16 1.14E-14 3.70E-14 5.36E-14
15 2.7E-17 1.96E-15 5.61E-15 8.55E-15
16 4.2E-17 1.52E-15 3.55E-15 4.05E-15
17 3.7E-17 1.52E-15 3.51E-15 3.60E-15
18 3.7E-17 1.52E-15 3.51E-15 3.56E-15
Error
No. of
decimals Mean rms Maximum Bound
(b) ICL 2980
14 —(7.5) 75E-16 (1.2) 1.2E-14 (3.7) 3.7E-14 5.0E-14
15 (1.1) 1.1E-16 (1.2) 1.2E-15 (4.9) 49E-15 5.1E-15
16 (3.5) 3.5E-18 (1.2) 1.2E-16 (4.3) 4.3E-16 6.1E-16
17 —(2.8) 2.8E-18 (3.2) 3.2E-17 (1.1) 1.1E-16 1.6E-16
18 —(0.27) 1.8E-17 (2.9) 3.5E-17 (0.96) 1.1E-16 1.2E-16
19 —(0.50) 1.8E-17 (2.9) 3.6E-17 (0.96) 1.1E-16 1.1E-16
Error
No. of =
decimals Mean rms Maximum
(¢) IBM 370
14 —(7.47) 10.47E-16 (1.16) 1.12E-14 (3.75) 3.75E-14
15 (1.07) 0.915E-16 (1.21) 1.19E-15 (4.87) 4.87E-15
16 (3.52) 7.31E-18 (1.18) 1.13E-16 (4.32) 4.32E-16
17 —(2.83) 2.72E-18 (3.16) 3.14E-17 (1.11) 1.11E-16
18 —(2.75) 2.97E-18 (2.86) 2.81E-17 (9.58) 8.65E-17
19 —(4.96) 4.48E-18 (2.89) 2.83E-17 (9.58) 8.65E-17

Table 1(b) and 1(c) present the representation test
results for the ICL 2980 machine (F1.B. 60 compiler) and
DEC 20 machine (FTN 20 compiler). Note that the
entries in the fourth column of Table 1(b) correspond to
quadruple-precision (QP) values. The nominal precision
for the two machines are obtained as Nd = 6, 15, 32 and
Nd = 8, 18, respectively. Again, as before all the results
are in agreement with the relevant machine documen-
tations.

3.2 Conversion test results

This section discusses some selected results for literal and
input conversion tests. Table 2(a) shows the results
obtained for single-precision literal-conversion tests on
the CDC 7600 machine. The columns show the mean,
rms and maximum error statistics calculated for a range
of decimal values of lengths 13D to 18D. The last column
gives the theoretical relative error bound involved in the
conversion process.® These figures are fairly typical of the
behaviour found for a correctly functioning conversion
process. As would be expected, the first two rows show
errors to be dominated by the rounding in the underlength
decimal representation. The third row indicates that the
errors are predominant in the decimal round-off, but now
some small effect of the decimal-binary conversion is
also noticed. At the decimal length 16D, which cor-
responds to Nc, the round-off error is largely due to the

finite length of the binary, and thus we have a faithful
representation.

Increasing the decimal length to 17D and 18D has
minimal further effects, as would be expected. Although >
the conversion process appears to produce results with 3
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little bias in the errors, the compiler flags any constant of &

length 16D or more as overlength and gives a warning =
message. This seems to be unnecessary as the required 2

length for a faithful representation Nc is clearly 16D. An ~

entirely similar behaviour was noticed for the input@S
conversion process, and the related test results were

found to be identical to those given in Table 2(a). The P S

results of double-precision literal- and input-conversion
tests for the ICL 2980 machines are presented in Table
2(b). The figures in parentheses correspond to input-
conversion tests. Here we have an example of a
conversion process which is not behaving as expected.®
The results for input conversion are identical to those for
literal conversion down to the decimal length 17D, at
which length the expected effects due to increased
importance of the decimal-hex conversion are noticed.
While the rms and maximum errors for input conversion
continue decreasing down to the ‘faithful’ decimal
length 18D, the corresponding figures for literal con-
version at this length increase. This implies that there is
a premature truncation in the decimal length for literal
conversion and would suggest the use of NC = 17D
instead of 18D. The corresponding conversion tests
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carried out on IBM 370 (H compiler) performed very
well and the input- and literal-conversion characteristics
were essentially identical (Table 2(c)).

For almost all the machines tested, the results obtained
for the single-precision conversion process were found to
be consistent with ‘faithful’ representations. For a few
machines, double-precision conversions, and in par-
ticular literal conversions, have not been implemented
properly. In one or two cases actual errors in the
conversions have been noticed.® One such case is that of
the double-precision conversions on the ICL 1906 A
machine with hardware-extended precision and any
XFIV/XFIH/XFEH compilers. This machine with a =
2, d = 74 ought to have a nominal precision Nd = 22D
and a faithful length Nc = 24D. Preliminary tests
showed gross errors in double-precision literal con-
version, with little or no improvement in accuracy for
decimal lengths above 21D (see Table 3(a)).

Subsequent tests with different data samples, all
possible and all negative literals, revealed that the trouble
occurred for negative values only. Table 3(b) shows that
the conversion of indirectly signed literals, represented as
—(+d.dd - D-dd), is performed correctly, while directly
signed literals (see Table 3(a)) are converted as if the

Table 3. Results of DP literal conversion test on the ICL
1906A

Error
No. of
decimals Mean rms Maximum
(a) Normal sample values
21 —2.41E-22 1.04E-21 1.25E-21
22 —6.7E-22 8.89E-22 1.25E-21
23 —6.12E-22 8.87E-22 1.25E-21
24 —6.12E-22 8.87E-22 1.25E-21
25 —6.12E-22 8.87E-22 1.25E-21
26 —6.12E-22 8.87E-22 1.25E-21
(b) Indirectly signed negative sample values
21 1.73E-22 6.24E-22 7.73E-22
22 2.55E-22 6.77E-23 9.35E-23
23 2.55E-22 2.59E-23 3.02E-23
24 2.55E-22 2.59E-23 3.02E-23
25 2.55E-22 2.59E-23 3.02E-23
26 2.55E-22 2.59E-23 3.02E-23

internal representation had only 68, instead of 74, bits in
the mantissa.®

3.3 Arithmetic test results

This section presents typical results of arithmetic tests on
the DEC 20 and CDC 7600 machines. Table 4(a) gives
the results of testing single-precision arithmetic operation
on the DEC 20 machine. The total number of trials used
for testing each operation is 10*. These figures are typical
of a machine on which the basic arithmetic operations
(with round option) are performed correctly.® A fairly
larger value for the mean error associated with addition
operation indicates the effect of residual bias introduced
by round-up on tie values, which is rather common for
binary floating-point systems. All the other operations
(except addition) show very little bias, with the mean
values being much less than the rms values.

The results of single-precision arithmetic tests on the
CDC 7600 machine with round and chop options are
presented in Table 4(b). The figures in parentheses are
for the round option. These results indicate a relatively
poor arithmetic performance with a number of peculi-
arities.® One of its poor features is the lack of guard digits
on subtraction operation. A close inspection of the CDC
arithmetic shows that although a double-length inter-
mediate results is actually used, the truncation to a single
length occurs before post-normalisation, which has the
effect of ignoring any guard digit. Another poor feature
is that rounding reduces the maximum error by almost
75% rather than by 50% as would be expected. Close
inspection of the pattern of rms and maximum errors in
Table 4(b) and their comparison with those in Table 4(a)
for the DEC 20 also reveals some inconsistencies in their
statistical behaviour.®

4. CONCLUSIONS

A number of test procedures were presented which can
be used to determine accurately the behaviour of the
floating-point characteristics of a computing environ-
ment. These procedures, implemented in a transportable
software tool, have been used for testing most of the
major Fortran processors now in use. It can be said that
the majority of these processors have produced test
results consistent with good floating-point charac-

Table 4. Results of SP arithmetic test on two computers. () Denotes the ‘round option’

Error
Operation Mean rms Maximum
(a) DEC 20
Addition —1.64E-9 3.52E-9 7.44E-9
Subtraction —6.37E-10 2.28E-9 7.45E-9
Multiplication 5.36E-11 3.17E-9 7.41E-9
Division —8.75E-11 3.11E-9 7.40E-9

(b) CDC 7600 using ROUND and CHOP options

Addition (—0.335) 1.75E-15  (1.69) 2.34E-15
Subtraction (2.64) 3.39E-15 (8.63) 8.63E-14
Multiplication (0.716) 2.56E-15 (1.82) 3.02E-15
Division (—0.024) 2.54E-15  (1.67) 2.99E-15

(4.86) 6.73E-15
(8.60) 8.60E-12
(5.21) 7.03E-15
(5.19) 7.08E-15
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teristics. However, a few processors did not perform
properly, by showing problems such as premature
truncation of decimal values, errors in conversion or lack
of guard digits on subtraction and so on.
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