Perlog: A Prolog With Persistence and Modules

D.S. MOFFAT anp P. M. D. GRAY

Department of Computing Science, University of Aberdeen, Aberdeen AB9 2UB

The Perlog system is a Prolog system whose clauses and terms can persist on secondary storage as objects in a
database. The unit of commitment is the module, and all atoms indirectly reference their module name, unless they are
declared to be global. The module acts as a source of protection and reference to all its clauses, and also provides
checks on import[export and on privacy, especially in the case of Abstract Data Types. This paper describes the
structure of the module name space and the reasons for the decisions, particularly the use of metacalls to access
procedures in other modules, and procedures with multiple definitions in different modules. A method for resolving
global name clashes between previously committed modules is described. A model of the interpreter is presented in order
to define the semantics of procedure call and assert and consult in a fully modular system. An example is given of a
version of assert using B-tree routines in the database for clause storage. The system has been implemented in C and

Prolog and PS-Algol under Unixt on a VAX.]

Received September 1987

1. INTRODUCTION

Prolog has shown itself to be a very good language for
symbolic programming, but for large applications its
single flat internal clause base proves to be a major
drawback. In the Perlog system we have partitioned the
clause base into modules and have incorporated an
object store that enables the clause base to persist
between sessions.

The object storage system is more general than
Relational Database Management Systems and we can
store general Prolog clauses as well as networks of
objects, bitmaps and even frames with attached pro-
cedures of the language PS-Algol. Objects are retrieved
from the object store incrementally and transparently.
The Prolog modules are the units of commitment for the
object store, and once modules have been copied to disc
they may be shared between users and recombined in
different configurations.

The modules are designed to support software de-
velopment and to be as flexible as possible. A feature that
distinguishes our modules from many others is that they
can have local terms as well as the usual local procedures.
In this respect our model of visibility is the same as that
of MProlog!® and Micro-Prolog,® but unlike them ours
can resolve multiply defined procedures, treats both
system and user predicates uniformly and has support
for Abstract Data Types. The module design also aims to
keep the semantics of the many meta-predicates, like call,
clause, unit and assert, as close to the semantics that they
have in a flat name space. Another system with
modularisation is Multilog,® which supports hierarchies
of worlds with three kinds of inheritance. We think that
the semantics for meta-calls in Perlog are clearer and
safer than those used in Multilog. Unlike the algebra for
modules that O’Keefe® proposes, our system takes in
hand the effect of clause and goal order in Prolog which
has very practical consequences.

In the next section we re-argue for an atom-based
visibility along the lines of Szeredi.!° The section on
meta-predicates affecting visibility discusses our new
resolve and of predicates as well as export and import.

1 trademark of AT & T
} trademark of Digital Equipment Corp.

110 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

Section 5 describes the features of the module system
that are particular to a Prolog with persistence. As an
example of the system in use we show how to have
specialised storage within modules. Finally we give
performance figures and draw some conclusions.

2. VISIBILITY AS A PROPERTY OF
ATOMS

As soon as we partition a large space, the objects within
it attain the property of visibility which defines where
they may now be seen. In terms of programming
languages they have scope. In the module scheme that we
propose for Prolog the modules are all at the same level,
and hence objects have either local visibility — being
visible only within one module — or they have global
visibility and are visible to all modules. We restrict
ourselves to a flat module space, but we can implement
a hierarchical space on top of this by systematic renaming
of predicates with a resolve predicate, as explained
later.

Many other Prologs have a flat module space but they
can be grouped into two categories based on their unit
object of visibility, i.e. predicate-based visibility, in which
only predicates have a visibility (DEC-10, ICL-Prolog,
Quintus, Prolog-2, Waterloo Prolog) and atom-based
visibility (MProlog, Micro-Prolog and our Perlog
system), where an atom and all the functors and
predicates that are built from it have the same visibility.
In the atom-based model local terms cannot unify with
other global terms nor with local terms from another
module. Global terms have the same representation in all
modules and may unify with other globals.

The first consequence of the atom-based visibility is
that the visibility of procedures and terms is the same.
This becomes important when we make use of a meta-
call to call a procedure. Szeredi'® proposes three
principles for meta-calls, which we have adopted.

(1) The meta-call is compatible with unification in
that if two terms unify then calling either will always
invoke the same procedure (even if the terms come from
different modules).

(2) All procedures have a term representation irres-
pective of their visibility.

¥20Z I4dy 01 uo 1senb Aq 0122Ge/01 L/Z/LE/e1ome/|ulwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

PERLOG: A PROLOG WITH PERSISTENCE AND MODULES

(3) All procedures may be meta-called irrespective of
their visibility.
As a consequence of these principles we cannot allow the
clauses defining a global procedure to be in different
modules. Consider the following counter-example :

module ml. module m2. module m3.
global plq. global p2.q. global p1,p2.
r1(q). P2(q). ?7—pl(X), p2(Y),
q:-.... q:-.... X =Y, call(X),
call(Y).
endmodule. endmodule. endmodule.

We have two predicates g with the same name and arity
but in different modules. In each module we have a term
representation of the predicate (principle 2), as an
argument to a global procedure. Calling the global
procedures with a free variable gives us the procedures’
term representation, each of which we may meta call
(principle 3) and invoke the corresponding version of g.
If we declare both gs to be global as above, then their
term representations must unify (since they are globals of
the same name), but we should expect the calls of X and
Y to call different clauses, in contradiction of principle 1.
Thus we must declare one or both gs to be local, in which
case they will not unify with each other, satlsfymg
principle 1. Those systems that do not explicitly recognise
the local terms either violate one of these principles or
implicitly have local terms.

To Szeredi’s principles we add a fourth:

(4) The BIPs such as univ/2 and functor/3 have a

symmemc semantics when decomposing and recompos-
ing terms.
This has the consequence that functors and predicates of
the same name must all have the same visibility, regardless
of their arity, within any module that references them.
Consider the following counter-example where we have a
global atom foo and a local functor foo/1.

module m.

global fo0/0.

local foo/1.

?- foo(a) =. .[Atom|Args), F =.
endmodule.

The first = .. unifies Arom with foo/0. Since foo/0 is
global, having the same representation in all modules, it
has no particular reference to the module m, and when
used to construct F it produces a global foo/1 which will
not unify with the local foo/1. Thus allowing the functors
to have different visibilities means that decomposing a
term and rebuilding it from the components is not
guaranteed to produce a term compatible with the
original!

Note that it is perfectly permissible to have the
declaration global foo in modules other than m, and to
have local foo inside m. Any reference to foo from within
m will always refer to its local definition and not any
external global definition. This facility is also useful
when redefining system predicates within a module, as
explained below.

We consider that the restriction in the use of names
imposed by the atom-based visibility is justified by the
consistent semantics we get for call, univ, functor and
clause.

.[Atom|Args), foo(a) =

2.1 Default visibilities

All clauses enter the Prolog database either via the
explicit use of assert or via an assert as part of consult.
In order that this conversion of assert’s argument from
term to procedure should not side-effect its visibility we
make the default visibility for term and procedure the
same. For reasons of avoiding multiple definitions of
procedures it is safe to assume a default of local. That is,
all atoms, functors and predicates are local to a module
unless a global declaration has been made for their atom.
It should be noted that the string type has global
visibility and provides us with a global atomic type which
does not need declarations.

3. META-PREDICATES AFFECTING
VISIBILITY: RESOLVE, EXPORT,
IMPORT AND OF

Recall that we cannot have a global name that has3
predicate definitions in more than one module, since am
call of their term representation would leave an ambiguity =
over which definition to use, as explained earlier.S
However, in large programming projects it is inevitable =
that groups of modules will be written, between which %
there are global name clashes. We consider that them
modules should provide assistance in resolving suchm
clashes. One way of doing this would be to have an3
import declaration that specifies the module from which &
the imported procedure is to come, but this has the%
drawback that it forces modules to make static references 3 8
to each other. In prototyping and developmental

environments there are often different versions of asg
procedure, and we want to bind these to the calls at=
consult time rather than at file creation (edit) time. An %,_
obvious solution is to rename all the clashing predicates, &
both where they are defined and where they are used, and &
we provide the resolve BIP for this purpose. Its syntax is © '\J
of the form

resolve Proc Modl: ModListl, Mod2: ModList2, ...

and it will rename the procedure Proc, defined in module o
Mod] and called from the modules of ModList1, to some<
internal name and likewise rename Proc as it appears in C
the other mod: Modlist pairs to different internal 2 &
names. 3

Typically a user will consult all the modules that he ©
requires and then the system will inform him of any§
clashes, which can then be resolved with the resolve ;'
predicate. This is superior to the type of system which N
resolves clashes based on criteria which may be of no
consequence to the user, e.g. Waterloo Prolog resolves
clashes by the order in which the various modules were
consulted.

It is possible to put resolves into files as directives
along with consult directives and so package up a group
of modules. We can also achieve a higher level of module
structuring by having declarations that describe hier-
archies or networks of modules and make the system
automatically resolve clashes on the basis of these
hierarchies.

eOojUMO(]

¥2eGeoLL/

uo}

3.1 Exporting and importing of global procedures

A definition of a procedure whose name is declared
global, effectively exports it from a module, while a call

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 111

D.S. MOFFAT AND P. M. D. GRAY

to a global procedure which does not have a definition
effectively imports it. However, if we rely on implicit
exporting and importing there is the danger that a
procedure is exported unintentionally or that, by
forgetting a definition, an import is made instead of an
intra-modular call. We therefore have explicit export and
import declarations and the system considers it an error
if it finds a global procedure or call that has not been
explicitly exported or imported. The export and import
declarations make their arguments global if they are not
already so, and hence the global declaration is only
needed for a term or atom that needs to be unifiable
across modules.

The export and import as described so far are very
similar to those of MProlog, but further to this we allow
exports that do not have any definitions. In Prolog the
absence of a predicate can validly be used to indicate
failure, likewise the non-existence of an optional
predicate such as portray, and so by having export
declarations without definitions we are able to extend
this behaviour across modules. The assert predicate
(Section 5.3) makes use of the export declarations when
its argument is global, and thus global procedures can be
created by the user at run time.

3.2 Uniform treatment of system names

A system predicate or atom is one that is exported from
or declared global in the distinguished module sys_mod.
These system names are automatically imported or
declared global in the other modules that use them, thus
relieving the user from a multitude of declarations.
However, within a module a system predicate may be
explicitly declared as local which overrides the generated
declaration and allows a local version of the predicate to
be used within the scope of the module.

Since the system predicates are declared in the same
way as user predicates, albeit after automatic generation,
we can use the resolve command to allow groups of
modules to use alternative definitions of already defined
BIPs. For example, suppose we have a new version of
listing in the module mx which understands a different
syntax and we want modules m1 and m2 to use this
version then

?-resolve listing mx:[m1,m2], sys_mod:[m3, m4, m5].

would achieve this end with modules m3, m4 and mS
using the system’s definition of listing.

3.3 Of for constructing local references

Having local names avoids accidental name clashes, but
there may be occasions when we want to override the
modularity and construct a reference to someone else’s
local name. An occasion where this arises is with
predicates that have to be distributed across modules.
Typical is term_expansion/2 which the user provides as a
rewrite rule to be used during consult. For example, the
definite clause grammar preprocessor can be invoked by
having a term_expansion rule for ‘-, thus

term_expansion((A—B), (C:-D)):- dfg (4,B,C,D).

which succeeds by replacing 4B with a Prolog clause
C:-D after calling dfg, the grammar preprocessor.
Each module may have its own term_expansion clauses.

In a flat name space the system stores the term expansion
clauses in an arbitrary order and relies on the fact that
their argument values are usually disjoint. In Perlog we
do not allow alternative definitions for a global predicate
to be in more than one module, so we have to make the
term_expansions local predicates.

In order to reference predicates from other modules
we have introduced a new BIP operator called of which
takes a predicate and a module name as arguments,
constructs a reference to the version of the predicate as
it was declared in that module which it then calls. A
definition of the of predicate is given as part of the model
in Section 5. Thus a definition of consult that reads
clauses from a file F, expands them if required, and then
asserts them into a module M would be

consult(F,M) :- see(F), read(X,M),
(X==end_of_file;
term_expansion(X,Y,M),
assert(Y,M),
fail),
1, seen.
term_expansion(X,Y,M):- term_expansion(X,Y) of M, .
term_expansion(X,X,_).

Read has a module argument so that it can create X with
the correct visibility as declared, possibly by default, in
M and assert has a module argument for reasons
explained in the section on ‘Semantics of Assert’.

Note that of can also be used for constructing
references to a public predicate from a module where it is
declared to be local, thus acting as an escape mechanism —
see the example in Section 6.

4. MODULES AND ABSTRACT DATA
TYPES (ADTs)

ADTs are used as a means of ensuring a modular
approach to programming. The data types’ representa-
tions are hidden within a module and only one set of
predicates, called the ADT’s methods, are supplied
which can manipulate objects of the type — all access to
the ADT has to go via these method predicates.

In our system we represent objects belonging to the
same abstract data type as terms all with the same atom
functor, which is declared local to the module containing
the method definitions, for example:

module m.
export newobj, methodl, method?.
private t.

newobj(t(X,Y),X):- body(X,Y).

methodl(t(X,Y),A,B):- ...etc

method2(1(X,Y),1(P,Q)):- ...etc
endmodule.

Since the method predicates have the local term
representing the ADT in their head, they will not unify
with any data type from another module, or any of the
primitive data types. This is a simple and effective run-
time type check. We have also used the declaration
private which behaves like local but ensures that the
meta-predicate of cannot be used to unify the term 7/2
with terms from another module (see interpreter in
Section 6).

An equivalent way of defining ADTs in Modules, but
without using local terms, is described by Furukawa

112 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

¥20Z I4dy 01 uo 1senb Aq 0122Ge/01 L/Z/LE/e1ome/|ufwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

PERLOG: A PROLOG WITH PERSISTENCE AND MODULES

et al.> We have extended it further to allow the method
predicates to call out to the database systems language
PS-Algol, passing the arguments of the local terms which
are basic PS-Algol data types, and thus hidden from
Prolog, which cannot destruct them or dereference
them.*

4.1 Method declarations — dynamic local references
based on ADTs

We have already mentioned that global predicates
cannot be multiply defined, and if a clash occurs we must
rename them. We have seen that in cases where the
multiple definitions are actually alternatives rather than
mistakes or redefinitions (e.g. term_expansion) we make
them local instead of global and construct references via
the of command.

In the example module just given we exported the
methods as global procedures which must not clash with
any others. However, we could instead declare the
methods to be local, since in the case of ADTs the
methods and terms belong to the same module, and so
we can locate the methods based on the module of their
argument and construct dynamic references to them
using of. That is, since the argument to a method is an
ADT, we can find the module that it came from and
hence the appropriate method even when methods of the
same name may be defined in more than one module.

Consider the portray/1 predicate which is used to
print objects in a specialised way. We can have several
modules each implementing a different ADT and each
with a different definition of portray. In each of the
modules where portray is defined we may make the
declaration export_method portray — this makes portray
local, and in modules from where we want to run portray
we have import_method portray.

The import_method declaration effectively plants the
code

portray(O):-module_of(O,M), portray(O) of M.

Here module_of is a BIP that returns the module /abel
from a local functor. Hence calls to portray use the
definition based on the module of its local argument.
Sufficient checks are needed to ensure that the argument
to portray is bound and that the module in question did
actually export portray as a method. Thus method
procedures reduce the number of global procedures and
hence the likelihood of a clash. Note that procedures that
return the first instance of an ADT cannot be declared as
methods since their ADT argument is unbound. In ESP
there is a similar notion where method calls choose the
actual method dynamically.?

5. MODULES AND PERSISTENCE

Persistence is the ability of objects to persist between
runs of a program. Atkinson et al.'! have developed the
language PS-Algol, where persistence is potentially a
property of all types in the language and where the
transfers between main memory and disc are transparent.
At the end of a session all the objects that are reachable
from a given root are copied to disc with their in-store
pointers replaced by file offsets; objects are retrieved
from disc incrementally as and when they are referenced.

Perlog is a Prolog which interfaces with the PS-Algol

language at one level and at a lower level to the Persistent
Object System (POMS), which underlies PS-Algol. The
higher-level interface enables us to experiment with
different storage and access mechanisms, e.g. B-trees and
hashing, and to manipulate the data types of PS-Algol,
e.g. vectors and pictures.” The low-level interface allows
the internal representation of the Prolog database to be
migrated onto disc, preserving an isomorphic copy of the
data structures for use in future sessions. This is the
process of commitment. When a persistent Prolog
database is restored we return to the state of the clause
base as it was prior to the commit, but clause
representations are only read in from disc as required,
and no parsing is needed.

5.1 Modules as the unit of commitment

A common representation of Prolog programs is to have
an atom dictionary containing atom and functor tokens
which lead to clause representations made from more
atom and functor tokens. With such a representation
atom and functor comparison reduces to address
comparisons and the clauses for a particular goal are
easily found. All of the objects in the clause base are
reachable from the dictionary and it is thus a convenient
root for the commitment algorithm of POMS. Commit-
ting a clause base that has had changes made to it
through calls to assert and retract will copy the changes
to the persistent database.

To enable users to be selective in the changes that get
committed we maintain a separate dictionary for each
module and treat modules as the unit of commitment.
Thus we can commit individual modules each to a
separate object store. Import and export links are severed
in the persistent module enabling them to be shared and
recombined with different modules when they are
restored. Thus we do not commit the effect of a resolve,
which allows us to use a different choice of resolve in
another session.

Commits are transactionally secure and POMS main-
tains a One writer — many readers concurrency protocol.
The commit of Perlog is analogous to the save of other
Prologs, e.g. CProlog,® in that a disc copy is made of an
internal representation, but it is superior in that the
modularisation of Prolog can be projected on to
secondary store. Also because the object store is very
general we can commit unit clauses that have bitmaps,
vectors and even PS-Algol procedures as their arguments.
The incremental fetching of disc objects is superior to the
complete load of ‘save’d images when we make relatively
few accesses to a large clause base.

5.2 A Prolog model of our system

We present a simple Prolog model of the Perlog system
in order to clarify its semantics. The model has been
made as simple as possible and makes no attempt to be
efficient. We first illustrate how a module is represented.
Say we have the following module

module m.
export p.
global a.
p(X):—foo(X).
foo(a).
foo(X):—q(X) of ml.
endmodule.

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 113

¥20Z I4dy 01 uo 1senb Aq 0122Ge/01 L/Z/LE/e1ome/|ufwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

D.S. MOFFAT AND P. M. D. GRAY

Then it is represented as a unit clause holding the name
of the module, a list of all its clauses and lists of the
various visibility declarations, excluding local which is
the default, thus

module(m,
[p(X) :- foo(X):m, foo(a):m :- true,
Joo(X):m :- of(¢(X):m, ml:m)],
exp([p)), imp([]), glo([p.al), pri((])).

Notice that the local names foo, ¢ and ml have been
suffixed with the module name and hence will not unify
with foos and gs from other modules. For the purposes
of the model the suffix is bound to a name by the infix:’
operator, but in the implementation this is actually
achieved by making the dictionary entries have references
back to their own dictionary. Since modules act as the
unit of commitment we have gathered the clauses together
under their module name, so that a commit of module m
knows exactly which clauses are to be copied to disc. All
clauses are associated with exactly one module.

To complete our model we need an interpreter, again
written in ordinary Prolog. To keep things simple we
assume that the code to be interpreted does not have any
cuts or disjunctions and that unit clauses have been given
bodies of true. The do_goal predicate is the meta-call
predicate in the object language of this interpreter, and
thus it serves to define the semantics of the call predicate
of Perlog.

module(sys_mod, [true,. . .], exp([true,do_goak,of,...]), ...).
do_goal(L,G)) :— do_literal (L), do_goal(G).
do_goal(L) :- L\ = =(_,.), do_literal(L).
do_literal(X: M) :- do_abs_ref{X: M, M).
do_literal(X) - X \== _:_,
Sunctor (X, Name, _), module(M, _, exp(L), _, _, _),
member(Name, L), do_abs_ref(X, M).
do_abs_ref(do_goal(Goal), sys_mod) -
1, do_goal(Goal).
do_abs_ref(of(X,M), sys_mod) :-
|, glo_rep(M, GM), $SofiX, GM, XM), do_literal(XM).
do_abs_ref(X, sys_mod) -
host_pred(X), !, call (X).
do_abs_ref(X, M) -
module(M,L,_,_,_,), member((X:-Goal),L), do_goal
(Goal).

Sof(X:_,M,X) :- X =..[Name|Args], module(M,_,_,_,
glo(G),-),
member (Name,G).

Sof(X, M, X:M) - X =.. [Name|Args], module(M,

———8l0(G),pri(P)),

not(member(Name,G)), not(member(Name, P)).
$oflX, M, X) - X=.. [Name|Args), module(M,_,_,_.glo
(G),-),

member(Name,G).
Sof(X, M, X: M) :- X = .. [Name|Args], module

(M, —,_,_.glo(G),pri(P)),

not(member(Name,G)), not(member(Name, P)).
member(X,[X]_]). member(X,[_|L]) :- member(X,L).
glo_rep(X:_, X). glo_rep(X,X) - X \==_:_.

The do_goal predicate calls do_literal on each conjunct
from a conjunction of literals. Do_literal calls do_abs_ref
either directly if its argument is a local term or else if it
is a global term, after searching through export lists to
find where it is defined. Do_abs_ref traps the term of and

114 THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988

do_goal and calls these procedures directly. If its
argument is a predicate which is implemented within the
Prolog interpreter’s host language, it calls call, otherwise
it uses member to try unifying the literal X with the head
of some clause whose body, Goal, is then passed to
do_goal. Any instantiations made during the head
unification are carried through the body Goal. The four
clauses for $of handle all cases of local and global, input
and output arguments.

Because the interpreter cannot interpret cuts, yet has
cuts in itself, we have had to write it outside any module
and trap calls to itself (I1st do_abs_ref clause). The of
predicate is best kept outside the module scheme so that
the ability to construct local names is not generally
available. We actually have a more complex interpreter
that can handle cuts and disjunctions and hence we have
been able to place it within the system module itself. A
top-level interpreter sits outwith the module scheme and
is used to read queries and invoke the do_goal of the
module sys_mod.

5.3 Semantics of assert

In non-persistent module implementations global clauses
can live in a global area, but because we have modules as
a unit of commitment all clauses must live in some
module. In our model of Perlog, an assert adds a clause
to the clause list of a module. If the clause to be asserted
is a local one then it is added to the module identified by
the tag on the term, otherwise it is added to the module
that has an export declaration for it. Asserting a clause
has no visibility side-effects yet leaves the clause where it
can be found by the interpreter.
Thus if X is a unit clause

assert(X), call(X)

will always invoke the procedure to which the asserted
clause has just been added. This is the same as for flat
Prologs.

Recall that the system is intended to support an
exploratory style of programming and that the resolve
predicate disambiguates name clashes from within
Prolog rather than at the textual level. Consulting
another module that redefines an existing global pro-
cedure will always succeed, but produces a state that
needs to be ‘resolve’d. In order to create such temporary
inconsistent states we have introduced an assert predicate
that takes a module name as a second argument which it
uses to override the default behaviour of assert/1.

6. AN EXAMPLE - EXTENDING THE
SYSTEM PREDICATES

The assert and retract predicates are responsible for
maintaining Prolog’s clause base and the call predicate
initiates Prolog’s inference mechanism. Kauffmann de-
scribes Multilog in which add, remove and show are
user definable versions of these predicates and gives
several examples which demonstrate the power of giving
modules their own database and inference mechanism.?
We choose the add predicate as an example and show
that it can be easily defined in Perlog.

In sys_mod we have the following:

export add.
add(X,M):-add(X) of M, !.
add(X,M):-assert(X,M).

¥20Z I4dy 01 uo 1senb Aq 0122Ge/01 L/Z/LE/e1ome/|ufwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

PERLOG: A PROLOG WITH PERSISTENCE AND MODULES

Add is a system predicate (exported from sys_mod) and
hence will be potentially accessible from all other
modules. The first clause says that we use the add which
is local to M if it exists, and failing this to use the assert
BIP.

Now consider a module m that wants to store student
clauses in a special B-tree, with all other clauses being
asserted normally.

module m.
local add.
student(Name, Address):- b_tree_lookup(student-
(Name, Address)).

add(X):- x= =student(_,_), !, b_tree_add(X).
add(X):-assert(X).

add(X,M):- add(X,M) of sys_mod.
endmodule.

We declare add to be local so that it does not clash with
the system’s add. The first add/1 clause recognises a
student term and stores it using some B-tree routine. All
other types of term are ‘assert’ed. Remember that local
definitions hide global ones, so the add/2 clause is just
there as an escape to the system’s definition of add/2.
There is one student clause which instantiates its
argument via a B-tree lookup routine. Thus users can add
clauses to the module m, via add(X,m) and be unaware
that some of them are being stored in special way.
Remove is defined in a way similar to that of add.

7. IMPLEMENTATION

Perlog runs on an amalgamation of CProlog and PS-
Algol on a VAX-750 under UNix. The persistence aspect
of Perlog has already been implemented and is reported
in Ref. 7. The modules have been prototyped in Prolog
and are currently being rewritten in C. All of the original
‘Prolog in Prolog’ part of CProlog has worked correctly
when run under the module scheme, and because of the
devious nature of the bootstrap code we consider this a
substantial test.

REFERENCES

1. M. P. Atkinson, P. Bailey, W. P. Cockshott, K.J.
Chisholm and R. Morrison, Progress with persistent
programming. In Databases — Role and Structure, edited
P. M. Stocker, P. M. D. Gray and M. P. Atkinson. Cam-
bridge University Press (1984).

2. T. Chikayama, ESP as a Preliminary Kernel Language of
Fifth Generation Computers. ICOT Technical Report TR-
005 (1983).

3. K. Furakawa, R. Nakajima and A. Yonezawa, Modulari-
zation and Abstraction in Logic Programming. 1COT
Technical Report TR-022 (1983).

4. P. M. D. Gray and D. S. Moftat, 4 Prolog Extension to the
Functional Data Model with Modular Commitment. Internal
Report, Department of Computer Science, University of
Aberdeen, 1987.

5. H. Kauffmann and A. Grumbach, Representing know-

Using non-modular and non-persistent benchmarks
the performance of Perlog is 20 % slower than that of the
original CProlog. This is attributed to generalisations
that had to be made in order to bond the CProlog and
PS-Algol interpreters together. Comparing the time for a
complete commit of a new program with that of the
analogous save of CProlog, it is an order of magnitude
slower. However, for large databases the subsequent
incremental retrieval is better than a complete restore.

8. CONCLUSION

We have described the Perlog system, which features
both modules and persistence. The unit of visibility is the
atom rather than the predicate and in this respect it is the
same as MProlog and Micro-Prolog. It is particularly
suited to an exploratory programming environment in
that it allows modules to be committed separately, and
then to be recombined in different configurations; it
accepts multiply defined procedures and provides a BIP
resolve for resolving the ambiguity ; system predicates are
subject to the same interface declarations as user
predicates and they may be redefined within the scope of
several modules. It has the BIP’s private and method,
which is sufficient to provide an ADT mechanism. It also
has an assert BIP that takes a module argument and
which gives control over where clauses get asserted so
that the commitment of modules copies the correct
clauses to disc.

Acknowledgements

David Moffat would like to thank the other members of
the BSI Prolog Modules Sub-group, particularly David
Bailey, Paul Chung, Kevin Cunnington, Jeff Dalton,
Neil Davis, Tony Mansfield, Robert Rae and Roger
Scowen, for many lively discussions which have given us
a clearer understanding of the module visibility issues. It
was also David Bailey who maintained that univ should
behave symmetrically with respect to decomposition and
recomposition.

ledge within ‘Worlds’. Proceedings, First Expert Database
Systems Conference, edited L. Kerschberg. Charleston, S.
Carolina (1986).

6. F. G. McCabe, Micro-Prolog, Programmer’s Reference
Manual. Logic Programming Associates Ltd (1981).

7. D. S. Moffat and P. M. D. Gray, Interfacing Prolog to a
persistent data store, Proceedings, Third International
Conference on Logic Programming, London (1986).

8. R. A. O’Keefe, Towards an algebra for constructing logic
programmes. Proceedings, Symposium on Logic Pro-
gramming, Boston (1985).

9. F. Pereira, D. Warren, D. Bowen, L. Byrd and L. Pereira,
C-Prolog User’s Manual, 1983. EQCADD, Department of
Architecture, University of Edinburgh.

10. P. Szeredi, Module Concepts for Prolog. SZKI, 1251
Budapest P.O.B. 19 (1983).

THE COMPUTER JOURNAL, VOL. 31, NO. 2, 1988 115

¥20Z I4dy 01 uo 1senb Aq 0122Ge/01 L/Z/LE/e1ome/|ufwoo/woo dno-olwspeoe//:sdpy wolj papeojumoq

