Comparison and Extension of Theories of Zipf and Halstead
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The length estimates of Zipf (behavioural psychology) and Halstead (software science) are shown to emerge from a
single empirical law, providing a unified approach to the software metrication problem. Alternatively, both estimates
may be derived from a probabilistic hypothesis concerning the programming process. On the other hand, it is shown
that these two models (those of Zipf and Halstead) yield quite different token frequency distributions. It is suggested —
and empirical evidence serves to support the claim — that the real situation lies somewhere between the two theories. A
series of inequalities is proposed for guiding future research along these more realistic lines.
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1. INTRODUCTION

Beginning in the 1930s, G. K. Zipf developed a theory!
describing the structure of written or spoken language,
one that has since been applied to the study of analogous
questions for computer programming languages. In a
seemingly unrelated development, the work of M. H.
Halstead has led to a theory of ‘software physics’?
designed to address these same questions. We seek to
compare and unify these two separate theories and to
broaden and extend their application in an empirical
software engineering setting.

Whenever the author speaks on this subject, he is
reminded of the popular bumper-sticker ‘expect a
miracle’. For indeed, it seems that something like a
miracle is needed if the predictive character of the
Zipf-Halstead theory is to be manifested in actual
programming practice. That is because we are presented
with a means, presumably, for estimating the length of a
program before it has been written! In fact, we will see
that the estimates of Zipf and Halstead can be treated as
lower and upper bounds, respectively, on the expected
program length. Moreover, we will show that both of
these bounds can be obtained from a single unifying
hypothesis — that of a ‘Zipf’s law’ distribution of the
frequency of occurrence of the program tokens (or
alternatively, but perhaps, less believably, from ‘Hal-
stead’s equiprobability hypothesis’.)

We then proceed to show how the theory may be
modified and extended to improve its performance in
actual practice. Toward this end, we derive a series of
inequalities that will ensure that a model for token
frequency distribution will yield results that lie some-
where between those predicted by the Zipf and Halstead
theories.

2. ZIPF'S LAW

In any given sampling of linguistic text, whether a
newspaper article, an essay, or whatever, it will be
observed that certain words (notably the definite and
indefinite articles, ‘the’, ‘a’, ‘an’) occur with great
frequency whereas others (e.g. ‘aardvark’ or ‘supercali-
fragilisticexpialidocious’) appear only once, if at all.
Based on studies such as that shown in Fig. 1, Zipf has
further postulated that the overall frequency behaviour
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exhibits a straight line with negative unity in slope when
graphed on the log-log coordinates:

R=logr
r =rank of token (=1, 2, ..., 1)

N, =logn,
n, = number of occurrences of token of rank r

where ¢ (the vocabulary size) is the number of distinct
tokens appearing in the text. [In the study cited here, the
difference in the low-rank limiting behaviour for the
Latin text as opposed to the English is due to the fact
that in Latin, declension of nouns takes the place of the
use of articles as separate tokens.] The behaviour can
thus be expressed in the form

R+ N, = constant.

When rephrased in terms of the ‘natural’ coordinates
rand n,, we obtain the Zipf’s law* hyperbolic relationship

since we may evaluate the resulting constant by assuming
n,=1 when r=1t (as in the case of ‘aardvark’ or
‘supercalifragilisticexpialidocious ).

In a simple counting of the successive ordinates
appearing in this relationship, we obtain an estimate for
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n (the total length of the text) as each token is counted
according to its multiplicity of occurrence:

t t 1
n=3Xn=tY->ty+Ini).
r=1 r=1 r
Note. Whereas the infinite sum of 1/r diverges, the
modified partial sums C
YX——Int
r=1
are known to converge from above to the Euler constant
y & 0.5772, and the above estimate then follows immedi-
ately.

Example
A newspaper article using ¢ = 100 different words should
beatleast 100 (y+1In 100) ~ 518

words in length — assuming a Zipf law distribution.

In fact, we can show that the Zipf law distribution
imposes an upper bound on the length as well. Imagine
a grade-school student with a limited vocabulary who has
been asked to write an essay. In principle, arbitrarily
long essays could be written, but in fact, nothing like this
is observed. It is as if the vocabulary size acts as a
limiting factor. One could argue that this is somehow
related to the estimate:

t t
n=Yn=t3% l<t(1+lnt)<tlog21
r=1 r=1
(the latter inequality valid for all ¢ > 9).
Note. The first inequality follows directly from the
definition of the natural logarithm.
Combining our two estimates we obtain

Theorem 1 (Zipf-Halstead)

Assuming a Zipf law distribution for the frequency of
occurrence of tokens, we obtain the bounds on length:

y+Int) <n<tlog,t

(used as estimates of the length by Zipf and Halstead,
respectively).
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In Fig. 2 we show that the lower and upper bounds are

reasonably ‘tight’, at least for the range of values in ¢

(the vocabulary size) typically encountered in practice.
Here we refer to the programming applications wherein
the tokens are understood in the compiler-theoretic
sense, as representing the indivisible entities of a
programming language: the operators, punctuation
symbols, parentheses and delimiters and, most notably,
the identifiers — names of variables, functions, arrays,
etc. And it is in this latter sense that we are given a means
for predicting the length of a program at an early design
stage, i.e. before the program has been written. Note that
in contrast to the studies of some other researchers, most
notably Halstead himself,> we draw no particular
distinction here between ‘operators’ and ‘operands’ in
the programming language context. (Treating them all
simply as ‘tokens’ has an obvious simplifying effect on
the argument but perhaps misses the chance to observe
that the operators are rather more limited in number, in
general.)

In most program design methodologies® — Warnier—
Orr diagrams, HIPO charts, pseudocode, etc., one is
required to provide a rather complete listing and
identification of all program variables, functions and
data structures, as a means of documentation for the
preliminary design phase. And in this context, a
reasonably good estimate for ¢ (the size of the program
vocabulary) will be known well in advance of the detailed
coding phase. This estimate of ¢ can then be used to
predict the program length n (using the bounds on length
as given by Theorem 1) assuming that the composition of
program text indeed follows a Zipf law distribution,
regarding the frequency of occurrence of the various
programming tokens. However, this is itself a matter of
some debate, and we will have more to say of this
assumption as we proceed.

3. HALSTEAD’S HYPOTHESIS

In somewhat more of a probabilistic vein* Halstead seeks
to determine the ‘expected value’ of the program length
n, using a rather naive model of the programming
process. Again a program is viewed as a sequence of
tokens, but with the choice of any one of them considered
as equally likely, from one point to the next. The
program is completed when the last unused token is
chosen for the first time. If we let

I, = length of subprogram from (k—1)st to kth token
occurrence

and
t = total number of distinct tokens (vocabulary size)
n = number of token occurrences (total length)

as before, then we may compute the probability
s—1 k
Pl =5) = (k/oy (12

as a geometric distribution of Bernoulli trials.® Summing
over all possible values for s we obtain the expected
value

% stk/oy(1-K) =
Bllu) = X sk/) (1 _7) -
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using a familiar identity

® 1
iyvi—1 __
PR (o
from the discrete calculus.® Finally, in noting that
n=2_ I we obtain
t t 1 t 1
En=XEl)=tY———=1tY-.
™ lEl ) k?lt—k_’_l Elr
Since this is the same finite summation as that obtained
in the earlier Zipf law analysis, we obtain the following
pair of estimates.

Theorem 2

Assuming the Halstead hypothesis for program construc-
tion, we obtain the bounds on the expected value of the
program length:

Hy+Int) < E(n) < tlog,t
Example

If we throw an ordinary die until all six tokens finally
appear, we may expect the number » of required throws
to lie in the range

142~ 6(y+1n6) < E(n) < 61log,6 ~ 15.5

say about 15 times as a round number.

Of course, it is one thing to say that a dice game
follows the laws of chance. It is quite another to suggest
that the programming task involves a stochastic process.
This may not correspond to the actual practice. And yet
it is certainly interesting to see that Halstead’s rather
simplistic hypothesis leads (essentially) to the same
length estimates as those resulting from Zipf’s law. The
impression that somehow these two different theories
lead to similar predictions of length has long been a part
of the software engineering folklore,” though perhaps
not so well documented previously. Even less apparent
from the literature, however, is the difference in
distribution of token occurrence in these two instances,
that resulting from Halstead’s probabilistic hypothesis
as opposed to the Zipf hyperbolic distribution. This
difference is quite significant and of immediate concern,
by way of motivating the discussion to follow.

4. DIFFERENCE IN DISTRIBUTION OF
TOKEN OCCURRENCES

Under Halstead’s probabilistic hypothesis, it is fairly
easy to see that the expected number of occurrences of
the first occurring token is n/t. Using either of our
estimates from the length, this number may be considered
to be of the order of log 7 as a function of ¢ alone. Owing
to the variance of the distribution, we might expect the
maximum number of occurrences of any token in a
program string to be somewhat larger than this, but not
nearly so large as n, = ¢, the value predicted by the Zipf
theory. This point of view and the importance of this
distinction have been outlined in a private communica-
tion to the author.®

To confirm this suspicion that the Halstead hypothesis
leads to quite a different distribution from that of Zipf,
even though the resulting length estimates are similar,
one can perform the following simple experiment:
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Figure 3.

generate random ‘Halstead’ token sequence trials
sort the results of each trial by token frequency
average the resulting rank frequencies over many trials

These averages should then give a fairly good indication
of the Halstead distribution, representing the expecta-
tions of token occurrences for the various ranks. These
could then be compared with the Zipf hyperbolic
distribution, as suggested in Ref. 8.

In performing this experiment, the comparisons are
indeed striking. We have shown the results in Fig. 3 for
the case ¢ = 100. Perhaps most noticeable is the difference
in the initial value of n,, as had already been anticipated,
but also a corresponding difference in the initial value of
the magnitude of the slope:

d:

T

dn,
dr

[It is more convenient to work with these non-negative

quantities in our subsequent discussions, noting that the

slope itself is negative.] Thus we have the following:
(A) ny<t (B)d <t

in comparing the Halstead distribution with that pre-

dicted by the Zipf theory. [Note that (dn,/dr) = —t/r* in

differentiating Zipf’s law, yielding d, = ¢.]

Empirical support for the Zipf-Halstead length formu-
las has been cited previously.®'® But we know of no
study which would tend to support one of the two
distribution theories as opposed to the other. In fact, it
is quite likely that the real situation is somewhere in
between the two theories. This is a point of view expressed
in Ref. 8 and one that we plan to explore more fully as
we proceed.

Example

Consider the PL/I program of Fig. 4, used as an
illustration in Ref. 3. In figure 5 we tabulate the ranks r
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FIBONACCI: PROCEDURE;
N=2;
GET LIST (PREV_F, LAST_F, LIMIT);
PUT LIST (PREV_F, LAST F);
REPEAT: TEMP=LAST F;
LAST_F=LAST_F+PREV_F;
PREV_F =TEMP;
PUT LIST (LAST_F)
N=N+1
IF N<LIMIT THEN GOTO REPEAT,
END FIBONACCI;
Figure 4.
Rank Probability Count
r f, Symbol n,
1 0.2000 : 11
2 0.1091 LAST_F 6
3 0.0909 = 5
4 0.0727 N 4
5 0.0727 PREV_F 4
6 0.0545 . 3
7 0.0364 : 2
8 0.0364 PUT LIST 2
9 0.0364 + 2
10 0.0364 FIBONACCI 2
11 0.0364 LIMIT 2
12 0.0364 REPEAT 2
13 0.0364 TEMP 2
14 0.0182 PROCEDURE 1
15 0.0182 GET LIST 1
16 0.0182 IF THEN 1
17 0.0182 < 1
18 0.0182 go to 1
19 0.0182 end 1
20 0.0182 2 1
21 0.0182 1 1
Total 55
Figure §

of the t = 21 tokens and the number n, of their respective
occurrences. Indeed, a plot of n, vs R (the logarithms of
n, and r, respectively) would seem to suggest a Zipf-like
relationship. [Note that in languages like PL/I or Pascal,
the semicolon delimiter plays a role like that of an article
(‘a’, ‘an’, “the’) in a natural language]. However, there
are several observations that must be made here,
particularly in the light of the analysis just completed.
Most importantly, the resulting length estimate,
assuming a Zipf law distribution, yields the range:

76.06 = t(y+1Int) < n < tlog,t = 92.24,

in which » is supposed to lie. But n = 55 according to
Fig. 5. Moreover, the Zipf estimate for n, = ¢ is too high
(we have n, = 11, whereas ¢ = 21). And the magnitude of
the initial slope is likewise overestimated at d, = ¢ = 21
by the Zipf theory, as we see by considering the initial
data n, = 11, n, = 6, n, = 5, etc. Indeed, it would seem
that the impression that ‘real situation is somewhere in
between the two theories — those of Zipf and Halstead’
may be borne out here, and perhaps in many other
examples as well.

5. CONCLUDING REMARKS

Certainly the Zipf law is of the ultimate simplicity. And
its use in predicting program length (through the
estimates of Theorem 1) has an undeniable appeal. But
the question remains as to whether it is really the case
that actual programs follow the strict Zipf law distribu-
tion, or whether instead some modification is in order,
one where we would be able to move towards the
direction of the ‘middle grounded’ between the theories
of Zipf and Halstead.

In extending the observations of the preceding section,
in particular those labelled (A) and (B), we propose that
the following set of inequalities should be considered as
a basis for exploring this middle ground:

(A I<n<Int<n, <t
B) 0<d <d <t

Note, in reference to (A), that the value n, = In ¢ is almost
certain to be attained at some intermediate point by any
predictive theory that we would be willing to consider.
Since the constant function with this value again yields
n=tlInt as a length estimate, and because n, must of
necessity be monotonic, it is reasonable to take In ¢ as an
upper bound on #, and a lower bound on n,. Moreover,
in the case of the latter we ensure that »n, ranges upward
from the Halstead prediction, as discussed previously.

It has been noted by several investigators®® that
‘tokens occurring a small number of times will be more
common in real programs of significant size than will
tokens occurring just once’, as is predicted by both the
Zipf and the Halstead theories. For this reason, we use
the Zipf-Halstead n,=1 only as a lower bound.
Similarly, in (B), we take the near-zero slope of n, at the
low occurrence end (as predicted by Zipf) as only a lower
bound on d,, recognising again the monotonicity of any
predictive theory that we might consider.

A survey of twenty-six Pascal programs from Ref. 11
was conducted by a software engineering graduate class
at the University of Denver in 1985. Partial results of this
survey are listed in Fig. 6, and it is seen that the
inequalities of (A) are satisfied in all but one instance. In
all cases, the inequalities of (B) were satisfied as well. We
note however that an intermediate value (corresponding
to the In ¢ of (A)) has not been proposed for (B), and thus
these latter results are perhaps less significant by
comparison. In (B) an intermediate value of (In%¢/¢) had
been considered, but thus far, empirical results are less
than completely supportive of such a position, particu-
larly at the low-occurrence end of the distribution.

In conclusion, we would propose that the set of
inequalities (A) and (B) might be used to guide future
research in the development of more realistic software
metrication theories. For example, one might consider
generalized Zipf distributions of the form

" = Ct

T (r+A)B
where A, B, C are parameters used to provide an
optimum fit to the observed data. One would then
compute 1
(r+A)°®

as an approximation to the length, once a method had
been devised for ‘calibrating the model’ so that realistic

t
nxCty

r=1
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n, In¢ n, t
1 343 9 31
1 3.30 6 27
1 3.26 5 26
1 3.00 5 20
1 347 10 32
1 3.53 8 34
1 3.53 11 34
1 3.61 11 37
1 3.64 11 38
1 3.04 6 21
1 3.40 10 30
1 3.37 13 29
1 3.18 7 24
1 3.26 8 28
1 343 18 31
1 3.26 9 26
1 3.09 5 22
1 3.18 7 24
1 3.58 15 36
1 3.40 7 30
1 4.39 88* 81
1 3.78 15 44
1 4.07 29 59
1 3.89 26 49
1 4.62 51 102
Figure 6

values for 4, B and C could be determined. Note that if
A=0, B=1 and C =1 we obtain the pure Zipf law
distribution. On the other hand, in the event that 4, B
and C satisfy the inequalities (@) 4 >0, () 0 < B< 1
and (¢) C < (1+ A)® we obtain

n —L<t
1T (14 A4)8
B Ct B 1

D= TrAGTA? (3 <Tya’ <!
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dn,
+n

dr =0

r

one might be led to consider the more general Cauchy-
Euler differential equations'? of which this is the simplest
form. The inequalities (A) and (B) could then be used to
suggest particular solutions n, = f{r, 4, B, C, ...) that
could be expected to provide a good empirical fit to the
data.

Of course, it must be emphasised that these are only
illustrations from among the many possible ideas that
quickly come to mind. We do not intend to advocate any
one of these competing theories over another, but only
to provide a direction that could serve to focus such
future explorations, generally. Finally, we include a
necessary word of advice —that no new distribution
theory be advanced as a serious candidate for study
unless or until a substantial empirical backing compels
its consideration.

Acknowledgement

The author would like to acknowledge the significant
contribution of Professor Dan Johnston of the University
of Queensland, Australia, particularly in reference to the
analysis of Section 4.

8. D. Johnston, private communication (1986).

9. T. Sunohara, A. Takano, K. Vehara and T. Ohkawa, Pro-
gram complexity measure for software development
management. Sth Intl. Conf. on Software Engineering,
IEEE, New York (1981).

10. B. Curtis, S. B. Sheppard, P. Millman, M. A. Borst and
T. Love, Measuring the psychological complexity of
software maintenance tasks with the Halstead and McCabe
metrics. IEEE Trans. on Software Engineering SE-5
(1979).

11. R. E. Prather, Problem Solving Principles: Programming
with Pascal. Prentice-Hall, Englewood Cliffs, N.J (1981).

12. A. L. Rabenstein, Elementary Differential Equations with
Linear Algebra, 3rd ed. Academic Press, New York
(1982).

252 THE COMPUTER JOURNAL, VOL. 31, NO. 3, 1988

¥20Z Iudy 01 uo 1senb Aq 2z LY/8¥2/S/ L /oo |ulwoo/wod dnosolwspeoe//:sdiy wolj papeojumoq



