On the Worst-Possible Analysis of Weighted Comparison-Based

Algorithms

D.RICHARDS
University of Virginia, Charlottesville, VA 22903, USA

A new model for evaluating comparison-based algorithms is discussed. Each key has an associated price, and the cost of
a comparison is the sum of the prices of the two comparands. Three types of analysis of worst-case performance are
presented which differ in the power given to an adversary : the Almighty version, the Just version, and the Merciful
version. For example, in the Almighty version (the ‘worst-possible’ case) the adversary knows which algorithm will be
used before assigning the prices to the keys and then chooses the worst-case assignment of values to the keys. We give

a complete characterisation of optimal algorithms for the problem of finding the maximum key.

Received January 1986

1. INTRODUCTION

The typical analysis of a comparison-based algorithm is
concerned with the total number of comparisons. This is
evidenced in the vast literature on sorting and order
statistics (e.g. Ref. 4). We assume that each record has
a price or weight associated with its use, perhaps reflecting
the length of the key or the difficulty of access. The price
is independent of the value of the key field in each record.
The cost of a comparison is the sum of the prices of the
comparands (though other measures could be imagined).
We are concerned with the worst-case total cost of an
algorithm, i.e. the most costly path through its decision
tree.

There are several types of analysis we could do, and
they are best understood by analogy with F. K. Hwang’s
‘group testing game’.® There are two players G and H,
where G poses a problem instance for which H must give
an algorithm that solves it. The problem which Hwang
addressed was to find the set of d counterfeit coins in a
set of n coins. The basic operation was a ternary query,
i.e. ‘good, bad, or mixed’, of any arbitrary subset. By
changing the rules to have queries of two elements only
with the responses > and <, we get closer to the model
in this paper.

Hwang described three ways of playing such a game.
While our initial work predated Hwang’s paper we find
it convenient to use the same terminology.

@ G is almighty, the A version. In this version G will
know the algorithm that H will choose. G will assign
the values to the prices and the keys in such a way as
to force H to have the worst total cost. H does not
know the prices.

@ G is just, the J version. In this case G does not know
the algorithm that H will adopt before it assigns the
values to the prices of the records. However, G will
still try to maximise the cost for H by assigning the
key values after knowing H’s algorithm. Again H
does not know the prices.

® G is merciful, the M version. In this version G will
reveal the price of each record to H initially. H may
spend much time choosing its algorithm. Again G will
assign key values in an adversarial manner.

The M version above differs greatly from Hwang’s
definition (which did not even have a notion of prices).
The original definition called for G to be completely

random, which is appropriate for a discussion of the
average performance H could expect. However, we are
only concerned with worst-case analysis.

If G is merciful we are in a position to choose the best
possible algorithm, though it may be prohibitively
expensive to find it. In Ref. 6 we discuss how H can use
pre-processing to produce a comparatively short list of
algorithms to choose from when the prices become
known. We used a dynamic programming approach
which does not extend to the case when the prices remain
unknown.

In this paper we assume that G is almighty, unless
otherwise stated. So we must adopt a pessimistic stance.
G is an adversary who will assign the prices and answer
our comparisons so that H will get the ‘worst-possible’
cost. In particular, G will not only take H down a costly
path of our decision tree but will make the most-used key
the most expensive and so on. In the next section we
present some formalisms and in the last section we
concentrate on the problem of finding the maximum.

2. PRELIMINARIES

We expect a comparison-based algorithm to be presented
by its decision tree. Each internal node compares the keys
of two records, and we branch to one of its two sons
depending on the result. Let the n keys be K, K,,..., K,
with associated prices p,,p,,..., p,. (To simplify our
exposition we assume that G is constrained to always use
the same set of prices and just permutes them as best
possible. Our results do not assume any distribution on
the prices beyond that they could be skewed.) Each path
from the root to a leaf has an outcome, which is a vector
¢ = (cy, Cy..., ¢,), Where ¢, is the number of comparisons
involving K, in that path. Each outcome is identified with
the (relative) ordering of the keys that defines its path in
n

the decision tree. The path cost of that outcome is T p,c,.
i=1
The algorithm cost is the maximum of the path
costs.
To analyse the 4 version we sort each outcome. Let
¢ =(c/, ¢),..., ¢,’) denote the vector with the same
elements as (c,, c,,..., ¢,) sorted in non-increasing order.

J J
We say ¢ dominatesdif ¥ ¢/ > ¥ d/,foralll <j<n,
i=1

i=1

276 THE COMPUTER JOURNAL, VOL. 31, NO. 3, 1988

¥20Z Iudy 01 uo 1senb Aq g/ L/ L1/9/2/S/L /81 e/|ulwoo/woo dnosolwspeoe//:sdiy wolj papeojumoq



ON THE WORST-POSSIBLE ANALYSIS OF WEIGHTED COMPARISON-BASED ALGORITHMS

that is ¢’ ‘majorises’ d’. Further we say c strictly
dominates d if ¢’ and d’ are distinct.

Lemma 1. If G is almighty and ¢ dominates d then G
can have the path cost of ¢ greater than or equal to the
path cost of d.

Proof. G can assign the most-used key of ¢ the largest
price, and so on. Clearly the path cost of d is maximised
if it also happens to have its most-used key assigned the
highest price, and so on. But even then the result follows
immediately. ]

Hence in analysing an algorithm H need consider only
those outcomes which are not strictly dominated. We call
these the worst-possible outcomes.

When choosing between two algorithms H can reject
the first if every outcome of the second is dominated by
an outcome of the first. We say the first algorithm
dominates the second, and that it strictly dominates the
second if the worst-possible outcomes are different. This
can be easily decided by comparing just their worst-
possible outcomes. If H cannot reject all algorithms but
one with this criterion then H is in a no-win situation,
due to the following simple observation. Let ¢ and d be
a worst-possible outcome for the first and second
algorithm of the remaining algorithms, respectively. If
neither ¢ nor d dominates the other then the adversary G
could come up with assignments of the prices that would
favour either the first or the second algorthim. We call an
algorithm optimal if it does not strictly dominate another
algorithm for the same problem; there may be several
optimal algorithms.

Finding an optimal algorithm for the sorting problem
appears to be difficult. The best-known algorithms with
respect to our worst-possible case analysis are serial-
izations of O (log n) depth sorting networks (e.g. Ref. 1).
All other sorting algorithms that we have seen are
rejected because they have some comparands that are not
in O (log n) comparisons.

3. MAX-FINDING ALGORITHMS

We turn our attention to the problem of finding the
maximum of » keys when G is almighty, since this is a
problem we can completely solve. We will characterise
the optimal algorithms. The analysis is simplified because
there is a unique worst-possible outcome for these
algorithms. A balanced knock-out tournament, discussed
below, suggests itself. In that case the keys are all equally
vulnerable and H is not giving the adversary any
advantage. We show that such a tournament is optimal,
but we must be careful in defining ‘balanced’.

First we observe that the M version of the max-finding
game, where the prices are known to H, is trivial. H will
compare the two cheapest keys, then the third cheapest
will be compared with the previous winner, and so on.
Clearly the best G can do is to have the more expensive
comparand win each comparison. (If the problem is
somehow constrained so the H must use a tournament
with the records assigned to the leaves in a given left-to-
right order then the a solution is also known, based on
Huffman’s algorithm.)” Below we deal with the A version.

Any full binary tree on n leaves is identified with a
‘knockout’ tournament. That is, the n leaves correspond
to keys and internal nodes are ‘matches’ which the
greater key wins and advances to the next match, i.e. the
parent node. (The tournament tree describes an algorithm

with a corresponding decision tree. The two trees are
otherwise unrelated.) We define a tourney to be a
tournament based on a binary tree which has height
[log, n], while one of the two subtournaments has
exactly 2* participants, k > 0, and both subtournaments
are themselves tourneys. A perfect tourney is for 2F
participants, that is, all the leaves are at depth k.

Lemma 2. Every max-finding algorithm dominates
some tournament.

Proof. If the algorithm never involves the loser of a
comparison in further comparisons then it already
corresponds to a tournament. Otherwise select a path in

“ the decision tree of the algorithm such that a previous

loser always loses (or if two losers compete choose
arbitrarily). Recall that every path in such a decision tree
must have n—1 first-time losers. It is easy to see that the
irredundant comparisons done on the path we selected
can be represented by a tournament. Clearly the entire
algorithm dominates the algorithm defined by this one
tournament. []

How is a worst-possible outcome of a tournament
calculated? Recall that in this type of analysis the
outcomes are sorted to test for domination. So the
leading largest terms are the most important. Informally
this implies that in the tournament the players at the
deepest levels (in both subtrees) should continue to win
until the final round. Formally, the cost can be found by
labelling each internal node of the tournament with the
minimum of the heights of its two subtrees. Combine
with these n— 1 numbers the height of the entire tree; call
this set F. Let the sorted values of F be (f}, f;’,..., f.))-
Note that an outcome corresponds to an arrangement of
wins at the internal nodes.

Lemma 3. Each worst-possible outcome for a
tournament is such that the subtournaments had worst-
possible outcomes.

Proof. Suppose there were a counterexample. It is easy
to see that if the outcome of the offending subtournament
was replaced by its worst-possible outcome then the
outcome of the entire tournament would dominate the
previous outcome. []

Corollary 1. For each worst-possible outcome the
winner of each comparison is the comparand with the
most previous wins, with ties broken arbitrarily.

Proof. A formal induction proof can be posed using
Lemma 3 and the definition of dominating outcomes.
O

Lemma 4. For any worst-possible outcome ¢ of a
tournament

(clla Cz,, AR cn,) = (fi,’ fé” Tt fn/)'

Proof. From corollary 1 we see that before a match the
number of wins for each player is the height of their
respective subtrees. It follows that the corresponding set
of comparison counts is F. Note that each internal node
was labelled with the lifespan of the loser at that point,
while the number of games of the ultimate winner is the
height of the tree. Fig. 1 illustrates the correspondence.
(It is an interesting exercise to show with graph-
theoretic arguments that the sum over Fis 2(n—1), as it
must be.) [J

In the sequel we will speak of ‘the’ worst-possible
outcome of a tournament, since it is essentially unique. It
is the simple structure of the worst-possible outcome in
the preceding proof that permits us to study tournaments.

THE COMPUTER JOURNAL, VOL. 31, NO. 3, 1988 277

¥20Z I4dy 01 uo 1senb Aq 821/ L1/9/2/S/L /81 e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq



D. RICHARDS

J
Fig. 1.
— ~ J
Td
Fig. 2.

We now want to show that among all tournaments H will
prefer tourneys. The next lemma shows, for example,
that it does not matter if the tourney for n = 19 splits
elements initially so that we get the best of 16 against the
best of 3, 8 against 11, or 4 against 15.

Lemma 5. The worst-possible outcome for every
tourney on n keys is the same.

Proof. If n = 2* there is only the one perfect tourney,
otherwise consider the tourney in Fig. 2. We let n, be
the number of leaves in tree T,, and so on. In Fig. 2
n, = 2" je. it is as large as possible. It is easy to
verify that every tourney is isomorphic to one formed by
the following interchange: switch some perfect sub-
tourney T, of T, with T,, when n, > n,. Note that
this interchange does not affect F. ]

The next result is the key lemma, and it is easily
verified for small n, n < 6. For example, for n = 6 if we
end with the best of 4 against the best of 2 the (sorted)
outcome is (322111); however, 3 against 3 gives the
undesired outcome (331111).

REFERENCES

1. M. Ajtai, J. Komlos and E. Szemeredi. Sorting in c log n
parallel steps. Combinatorica 3, 1-19 (1983).

2. F. K. Hwang, Several problems on knockout tournaments.
Proceedings of the 8th S.E. Conference on Combinatorics,
Graph Theory, and Computing, 1977, pp. 363-380.

3. F. K. Hwang, Three versions of a group testing game.
SIAM J Alg Disc Meth 5, 145-153 (1984).

4. D. Knuth, The Art of Computer Programming : Sorting and
Searching, Addison-Wesley (1973).

Fig. 3.

Lemma 6. The worst-possible outcome of every
tournament that is not a tourney strictly dominates the
(unique) outcome of any tourney on the same keys.

Proof. Suppose n is the least number of leaves leading
to a counterexample. From the preceding discussion
we see n> 6. Without loss of generality assume this
tournament is as shown in Fig. 3, where T, and T, are
perfect tourneys, n, + n,, n, + n,, and n, > n,. Recall by
Lemma 3 and the minimality of » that the sub-
tournaments must be tourneys. By Lemma 5 we can
assume n, > n, and n, > n,. Now, as in Fig. 2, we cut a
perfect subtourney T, out of T, and switch it with T,
where the heights of 7, and T, are the same. Note that
F is unchanged. Now the left subtree is not a tourney.
The left subtree with Lemma 3 contradicts the minimality
of n. O

Theorem 1. Every max-finding algorithm dominates
any tourney in the worst-possible case.

Proof. This follows from Lemmas 2 and 6. []

Finally we remark that the J version, where the prices
are assigned randomly, can be easily solved. H will use a
‘balanced tournament’,® which has every leaf at depth
[log, n] or [log, n]—1. (It is not necessarily a tourney).
The reasoning is that any tournament with greater height
would dominate this. Further, among tournaments of
the same height this one has the fewest nodes at depth
[log, n] and therefore minimises the chances of having
expensive records assigned to them. It is interesting that
the same type of tournament has been conjectured to
give the best average performance for stochastic tourna-
ments; this has been shown for a few probability
distributions.>® It would be interesting to investigate any
connection between those studies and J version problems.

5. W. Maurer, On the most effective tournament plans with
fewer games than competitors. Annals of Statistics 3,
717-727 (1975).

6. D. Richards, Sorting with expensive comparands. Inter-
national Journal of Computer Mathematics, 16, 23-45
(1984).

7. C. Zhang, Optimal alphabetic binary tree for a nonregular
cost function, Discrete Applied Mathematics 8, 307-312
(1984).

278 THE COMPUTER JOURNAL, VOL. 31, NO. 3, 1988

¥20Z I4dy 01 uo 1senb Aq 821/ L1/9/2/S/L /81 e/|ulwoo/wod dno-olwspeoe//:sdiy wolj papeojumoq



