
A Distributed Algorithm for Mutual Exclusion in an Arbitrary
Network

J. M. HELARY, N. PLOUZEAU AND M. RAYNAL*
IRIS A, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

A distributed algorithm for mutual exclusion is presented. No particular assumptions on the network topology are
required, except connectivity; the communication graph may be arbitrary. The processes communicate by using
messages only and there is no global controller. Furthermore, no process needs to know or learn the global network
topology. In that sense, the algorithm is more general than the mutual exclusion algorithms which make use of an
a priori knowledge of the network topology (for example either ring or complete network). A proof of the correctness of
the algorithm is provided. The algorithm's complexity is examined by evaluating the number of messages required for
the mutual exclusion protocol.

Received June 1986, revised February 1987

1. INTRODUCTION
The mutual exclusion problem consists in ensuring that
at a given time a logically or physically shared object is
accessed by one process at most. This fundamental
problem has to be solved when writing parallel or
distributed systems. As an example of a distributed
mutual exclusion problem, consider a distributed system
made of several processes, each process monitoring some
machine. From time to time processes need to ask a
question of a console operator (for instance upon
machine failure). Once a question from process P has
been printed, P has to wait for an answer, which has to
be given after some delay. While P waits, no other
process is allowed to ask its own question: access to the
console is protected by a critical section. When P's
question has been answered, access to console is allowed
to the other processes (P leaves the critical section). Such
a control scheme frequently occurs in industrial control
applications.

Since 1965 numerous algorithms have been designed
either for centralised systems (i.e. systems with a shared
memory accessed by several processes) or for distributed
systems (i.e. systems where processes interact by the only
means of message transmission). Lamport proposed in
his paper on time and logical clocks, as a use of these
devices, an algorithm for mutual exclusion in a distri-
buted context,5 based on request-queue replication and
event ordering. Several algorithms reducing the maximal
count of the messages involved in the mutual exclusion
protocol were given later. For instance, Ricart and
Agrawala's algorithm9 needs 2(« — 1) messages to per-
form its task, while Carvalho and Roucairol's uses
between 0 and 2(«—1) messages;1 a second algorithm
from Ricart and Agrawala needs either 0 or n mess-
ages10 (interested readers can find a presentation of the
mutual exclusion problem and a survey on existing
mutual exclusion algorithms in Ref. 8).

As far as the authors know, all the algorithms for
mutual exclusion which are based on interprocess
communication by messages make use of an a priori
known topology (either complete or ring network). We
shall focus in this paper on mutual exclusion in a
network with an a priori unknown topology.

* To whom correspondence should be addressed.

Section 2 reveals the required system properties,
Section 3 presents the main principles of the algorithm;
while the algorithm itself if given in Section 4. Section 5
proves some fundamental properties and Section 6
evaluates the efficiency of the algorithm. Section 7
examines the effects of failures.

2. ASSUMPTIONS

2.1 Required network properties

A process is a sequential activity which interacts with
other processes only by sending and receiving messages.
Two processes are said to be neighbours if and only if
they are connected by a direct communication line.
Between two neighbour processes we assume there exists
exactly one direct communication line. Every interprocess
communication line is bidirectional and is endowed with
the following behavioural properties: no loss of
messages; no message alteration; finite transmission
delay. Messages do not need to be delivered in the order
they were sent. No assumption is made about the
network topology, except connectivity.

2.2 Local process knowledge

The only knowledge owned by a process is local - the
name of its neighbours: the global network structure as
well as the total number of processes belonging to it will
remain unknown to any process.

We assume that a process and its neighbours have
distinct names (global properties of the algorithm, such
as fairness, will be established by assuming that the
names of all the processes are mutually distinct, but this
assumption is not used in the definition of a process; in
that sense, the algorithm ensures a totally distributed
control).

3. PRINCIPLES OF THE ALGORITHM
The main feature of the algorithm is the simultaneous
use of well-known distributed algorithmic techniques.
Furthermore, the knowledge-transfer control technique
has been added, in order to reduce the number of
messages required by the message-routeing protocol.4

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 289

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

J. M. HELARY, N. PLOUZEAU AND M. RAYNAL

(i) Every request sent by a process is propagated in the
network with a flooding broadcast technique (also called
wave technique).12 Every time a process receives a
request from one of its neighbours it propagates it to
its other neighbours, thus broadcasting the request
message.

(ii) The knowledge-transfer control method improves
this technique. Every message sent down through the
network carries a control part made of process names.
Upon receiving a request message a process uses the
control part to learn a subset S of the processes which
have received the same request (or are about to receive,
depending on the different message speeds). Thus a
process computes the subset T of its neighbours not
belonging to S, adds T to S and sends the message
(whose control part has been updated with S) to the
processes in T.

(iii) Owning a special message, called the token, is a
necessary condition to have the privilege to access the
critical section. At any time there exists at most one
token in the system (a similar approach can be found in
Refs 6 and 10, where the token travels along a ring and
a complete network respectively).

(iv) Granting the privilege is performed by a single
process, which is the current owner of the token. This
process chooses the next tcfken owner and sends it the
token.

(v) The set of all pending requests is fully ordered,
with a strict order relation. This allows the algorithm to
be deadlock- and starvation-free. To this end we use
Lamport's technique,5 based on logical clocks and
message stamps, to set up a total ordering on the requests
set. Requests with identical stamps will be distinguished
by the mean of the names of the processes which created
them. This is why the process names must be all different
(see Section 2.2).

(vi) The path followed by a request from a requesting
process to the token owner is marked off; the token uses
that path in the opposite direction to reach the requesting
process whose request is the next to be satisfied (as in the
reflecting privilege technique in Ref. 7).

The principles of the algorithm can now be stated.
• When a process wants to enter the critical section it

sends a request message to its neighbours and waits
for the token message (see point i).

• Upon receiving a request message, a process P
broadcasts that request to its neighbours not belong-
ing to the control part of the message; this part is
a subset of the set of process names carried by every
request message (see point ii above). The request is
added to P's set of known pending request.

• If the process P owns the token and is outside the
critical section (see point iv) above), it extracts the
oldest request R from its known requests set (see
point v above). It then sends the token to the creator
of R through N, the neighbour of P which sent him
the request R (see point vi above). If process P is
inside the critical section, it will behave as stated
above upon exiting it.

• Upon receiving the token message, process P keeps it
if the token's addressee is itself. Otherwise P hands it
over to N, the neighbour which sent him the request
being serviced (see point vi).

• A process can enter the critical section only if it owns
the token.

4. THE ALGORITHM

4.1 Messages
Two kinds of message are sent between processes in the
algorithm: request messages and token messages.

(a) A request message has the following structure:
req{req-id,rt_info). Messages of this kind are created and
sent by any process which doesn't own the token and
wants to enter the critical section. They are propagated
by the other processes Pt as pointed out in Section 3
(points i and ii). The parameters have the following
meaning.
• reqAd unambiguously identifies the request in the

whole system's history. The components of req^id are
req-origin and req-time; the first one contains the
request creator process name, the second one the
logical clock value of this process at the request
creation time.

• rt-info contains a request history, from the broad-
casting point of view. The components of rt-info are
sender and already seen. The first one is the name of
the sender of the message; the second one is a set of
process names. Every process whose name is in
already seen has received or is about to receive the
request. This set allows us to control the knowledge
transfers between processes, thereby reducing the
number of messages.

(/?) A token{lud,elec) message has the following
properties:
• At any time there exists at most one such message in

the system.
• The last process which has received and kept the

token message is said to own it. When the token
owner sends the token away, no one will own it until
it reaches its final addressee (which is the next
owner); processes involved in this token transfer are
said to handle it (they don't own it).

• To own the token is necessary to own the mutual
exclusion privilege.

The elec component is the process name of the token
final addressee. The lud component is an array whose
/th subcomponent stores the value that P('s logical
clock had when P{ gave the privilege to another
process (see point iv in Section 3). The lud array is
read and modified under mutual exclusion, because it
is carried by the token. Thus the only process which
can access lud is the token owner or handler. Every
subcomponent of lud is initialised with the value
- 1 .

(y) At initialisation, no message is present in the
network.

4.2 Local variables of processes

The mutual exclusion algorithm used by the processes is
implemented with an abstract object, which is distributed
on every process. Every process Pi is endowed with local
variables, locally implementing the abstract object. It can
use four procedures:
• enter^CS
• exit^CS
% receive ..request
• receive^token
These procedures are atomic except for the wait

290 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

A DISTRIBUTED ALGORITHM FOR MUTUAL EXCLUSION

instruction used in enter-CS. Process Pt uses the first and
the second procedures when it wants to enter and leave
the critical section, respectively. Upon receiving a request
or a token message from the P} part of the abstract object,
process Pt uses the third or the fourth procedure,
respectively. A fifth procedure transmit-token is internal
to the abstract object; it is used by exit-CS and
receive-token.

This abstract object can easily be built with Ada tasks.
The variables which are local to Pt and implement the
abstract object can be accessed (i.e. read or modified) by
P{ only and within the four procedures we have just
mentioned. These local variables are:
const
• neighbours,.: set of processed; initialised with the

names of P('s neighbours.
var

• C (:0 . . + oo initO;
This is .P('s logical clock.

• token-heret: boolean;
This boolean variable is true iff Pt has the token (as
owner or handler). At initialisation time token-here is
false for every process but one.

• in-CSi: boolean ink false;
This variable is true iff .P, is inside the critical section;
Pt is then the token owner (this implies token-heret =
true).

• req-array^. array[neighbours(] of list of
(req-origin,req-time) init nil;
The list of request identifiers that P(received from
P} is stored in req_arrayt[j\.

4.3 Algorithm for process Pi

The following notations are used in the text of the
abstract object procedures. Symbols e, ©, — stand for
the element-of, append, delete list operators, respectively.
The set operator - is also used. If A' is a non-empty
subset of a cartesian product Y x Z of totally ordered
sets, the function min(X) we make use of in procedure
transmit-token gives the couple (y,z)eX such that

V(/,z')eX: (y<y')v(y = y'Az< z')

Elements of X are thus totally ordered. Comments are
introduced by . Symbols A and -> stand for the and
and not boolean operators respectively.

procedure enter_CS;
begin

if tokenJ\ere%

then in-CSt: = true
else

broadcast a request
Vkeneighbourst: send req((i,C?),(i,neighbourst\l

«))to P,,
endif;
wait m_C5(;

May be interrupted upon receiving a
message.

end enter_CS;

procedure exit-CS;
begin

in-CS(:= false;
transmit-token;

end exit-CS;

procedure receive_request(req((req_origin,req-time),
(sender,already seen)));

begin
if 3(req-origin,t) such that(req_origin,t) e req_array(

A (t < req_time)
then

Delete this old request
req_arrayi:= req^array\-(req^origin,t);

endif;
if (req_origin,req_time) $ req^array, A ->

(3(req_origin,x) such that x > req_time)
then

The request just received is a new
one and is the youngest that P1 ever
received from process Prtq_mttin

Ci: = max(C(,req-time) + 1;
req-arraylsender]: = req^arrayt[sender] ©

(req_origin,req_time);
Broadcast the request

VA: e neighbourst — already seen:
send req((req^origin,req_time),{i,already-

seen U neighbours^)) to Pt;
if token Jiere% A -> in^CSi then transmit_token;
endif;

endif;
end receive-request;

procedure receive-token(token(lud,elec));
begin

token-here (: = true;
if elec = i
then in_CSi: = true
else

The token is following the path
that the corresponding request
established.

let via be such that (elec,x) e req-array([via];
token Jieret: ~ false;
send (token(lud,elec)) to Pvia;

endif;
end receive-token;

procedure transmit-token;
begin

Compute the set X of the processes
owning a pending request then find
the oldest and send i t the token.

let A'be {(orig,t) such thnt((orig,t) e req_arrayt

A(lud[orig]<t))};
if X+{ }then

(elec,x): = min (X);
let via be such that (elec,x) e req^array([via];
req-arrayt[via]: = req^array^via] — (elec,x);
lua\i\:= Cf;C(:=C4+l; Line ref-

erenced (A) in the proof.
token Jxeret: = false;
send token(lud,elec) to Pvia;

endif;
end transmit-token;

5. PROOFS

5.1 Mutual exclusion

Theorem 1: the algorithm ensures mutual exclusion

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 291
10-2

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

J. M. HELARY, N. PLOUZEAU AND M. RAYNAL

Proof

We have to prove that the number of processes which are
inside the critical section is less than or equal to 1.

Cara\{Pt such that in-CSt = true}) < 1 (ME1)

A process cannot enter the critical section if it doesn't
own the token. Indeed, as stated by the text of the
algorithm:

(ME2)

We show that the following predicate ME3 is a system
invariant:

Card({Pt such that token Jieret = true}) < 1(ME3)

(ME2) and (ME3) will prove (ME1) and hence Theorem
1.

Initially predicate (ME3) is true and no message exists
in the network; there is one process P} and only one such
that token-here) is true; no other process can send a
token message. When P} gives the token to another
process Pk, the following statements are executed:
In P} (in procedure transmit-token or receive-token)

O token-here].= false;
O send token(lud,elec) to Pk

in Pk (upon the reception of the token)
O token-herek: = true

The variables token-here are modified in no other parts
of the algorithm. Thus we conclude that predicate (ME3)
is a system invariant. This proves Theorem 1.

5.2 Request routeing

Lemma 1

Let R = (i, rtt) be a request created and broadcast by
process Pt. For all j different from i, if R reaches Pj then
this occurs after a finite delay along an elementary
network path. If R never reaches P} then there exists a
request R' = (i, rt't) with rt\ > rt(, which has overtaken R
while R and R' were moving in the network; hence R has
been satisfied.

Proof

To prove Lemma 1 we will show that the following
property is an invariant.

Property

If P} receives a message req({i,rt^,(k.,alreadyseen)) then
already seen = za U ze, where za is the set of the names of
the processes on the path followed by request (/, rtf) from
P(to Pk, and ze is the set of the names of the neighbours
of every process in zo. Indeed, if /) is a neighbour of P(

then we have (see procedure enter-CS): (k = i)A
{alreadyseen = neighbours, U {/'}). Thus the property is
verified in that case.

Now assume that the property is verified for Pk. The
control information received by Pk is alreadyseenk. As
stated by the procedure receive-request, the already seen
parameter of the message received by Pt is (cf. procedure
receive-request):

already seen = already seenk U neighbours k

Thus / is an element of already seen iff:

there exists some Pm on the path followed by R from
Pt to Pk such that / = m or P, is a neighbour of Pm

(recurrence hypothesis).
or Pm = Pk

or Pm is a neighbour of Pk.
This proves the asserted property for Py

As a consequence of this property the path T followed
by a request R{i,rt^ issued by P, and reaching P} is
acyclic, because a process never forwards a request to
another process which is on T or is a neighbour of a
process on T. Paths followed by a request are thus of
finite length. From this fact, together with hypotheses on
the network (connectivity, finite transmission delays),
and since there is no loop in the procedure receive-request,
request R is propagated throughout the network, building
up a spanning tree (with root P{); every process will
belong to this tree, unless a process P discards R, that is
to say doesn't pass this request on to its neighbours not
belonging to alreadyseen (if any). By the procedure
receive-request, such a deletion will happen if and only if
a younger request R' = {i, rt't), (i.e. with rt\ > rt(), reached
P before R did (/?' can overtake R along communication
lines); now this implies that P(has been allowed to issue
R', in other words that R was satisfied (a process is not
allowed to issue a new request while its last one is not
satisfied). QED.

5.3 Token routeing

Lemma 2

When a process P, owning the token grants another
process Pt the privilege to enter the critical section (and
then P} will own the token), i.e. when answering to a
request R = (J, rt}), the token follows in the opposite
direction the path built by R from P} to Pt.

Proof

Let Pk be a process on the path yR used by R to go from
P} to Pt. Since Pk is involved in the broadcasting of R,
Pks local context upon receiving R is as follows: either
no request created by P} is in req^arrayk or there is a
request (J, rt't) with rt's < rt} (i.e. a request already
satisfied). Thus process Pk stored R in req-arrayk[l],
where P, is Pk's predecessor on path yR and R is the only
request with origin P} stored in req-arrayk. Request R is
kept in req-arrayk until one of the following events
occurs:
Pk receives the token (lud,j) message
Pk receives a req(j, rt]) message, where rtj > rtt

The second event cannot occur before the first one
because Pt is not allowed to send a new request until it
enters and exits the critical section. Moreover /> transmits
the token to process Pvia which sent him request R; thus
Pvia is on path yR and it hands the token over to its
predecessor on yR. This behaviour is the same for all Pk

on yR, as stated by the text of procedure receive-token.
QED.

From Lemmas 1 and 2 it follows:

Corollary

The path followed by the token from its sender Pi to its
final addressee P} is acyclic.

292 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

A DISTRIBUTED ALGORITHM FOR MUTUAL EXCLUSION

5.4 Absence of deadlocks

Lemma 3

If a request R(i, rtt) sent by P(is not satisfied we have
lud[i] < rtt.

Proof

If process Pt never owned the token before it sends R then
lud[i] = — 1 A rtt ^ 0. If P(owned the token at least once, it
must have left it in order to send a new request. The
statements at line (A) in procedure transmit-token imply
that rtt Ss lud[i\ + 1. QED.

Theorem 2: the algorithm is deadlock-free

Proof

Deadlock means that, whilst no process is in the critical
section, one or several processes wish to enter it and no
one will be allowed to do it within a finite delay. Thus, at
least one pending request R = (prig, rt) has been issued
and is not satisfied; by Lemma 1 it will reach every other
process within a finite delay, in particular the owner of
the token, say Pt; Pt executes the procedure transmit_token
either upon receiving R or upon exiting the critical
section. If Pt decides not to give the token, for all requests
(J, rtj) stored in req^arrayi we must have lud[j\ ^ rtt (see
procedure transmit-token). In particular, lua\orig] > rt;
but, by Lemma 3, (orig,rt) being not satisfied we have
rt < lud[orig]. This contradiction shows that no process
owning the token can keep it for ever if there exists a
pending request. Finally, Lemma 2 shows that a token
sent in the network will reach its addressee within a finite
delay. QED.

5.5 Absence of starvation

Theorem 3: there is no starvation

Proof

It is assumed that every process having entered the
critical section eventually executes the exit-CS pro-
cedure.

We have to prove that every request is satisfied within
a finite delay. If a request R is never satisfied, Lemma 1
shows that every process in the system knows R within a
finite delay after its creation. Upon receiving R, a process
Pt updates its logical clock, whose value is then greater
than R's stamp. Thus every request created by P(after
this update has stamps greater than R's. The number of
requests satisfied before R is finite. Moreover, when the
token is moving to satisfy a request R' this one is deleted
from the request table req-array of every process on the
path yR, followed by the token and the token transfer is
done within a finite delay (Lemma 2 and Corollary).
Thus request R will become the oldest within a finite
delay and process P, which created R, will then be chosen
as the new token addressee. Consequently a request R
cannot be 'never satisfied'. QED.

exit-CS sequence. Moreover, if the maximal transmission
delay A on a network line is known we can compute the
maximal delay needed to perform that sequence. Four
network shapes will be considered: the tree, ring,
complete network and general case topologies.

Whatever topology we consider, there is no need to
send any request message when the token's owner wants
to enter its critical section. The required number of
messages is then zero. This is not the case if process P(
wants to enter its critical section and doesn't own the
token. The total number of messages sent is the sum of
the number required to broadcast the request and the
number required to move the token back. Let d be the
diameter of the network; broadcasting a request to every
process or moving the token from the current owner to
the new one takes at most dA units of time. Thus the
total transmission time of a complete request operation
takes at most 2dA units of time. The longest acyclic path
in a graph of n vertices has a length of n— 1. This is also
the longest path that the token may follow to find its new
owner. Therefore moving the token requires at most
n — 1 messages. We will now consider four particular
network topologies.

Tree topology

Broadcasting a request requires exactly n — 1 messages.
Moving the token takes between 1 message (if the sender
and the addressee are neighbours) and d messages, where
the diameter d is here the length of the longest path (1 <
d^n — l). Thus the total number of messages varies
from n to n — 1 + d. A particular case is the line topology,
where d = n— 1: bounds are then n and 2(n— 1).

Ring topology

Broadcasting a request requires at least n — 1 messages
and at most n +1 messages. Thus the total number of
messages varies from n to In. When the algorithm is used
on a ring topology, its behaviour is similar to the second
algorithm presented in Ref. J7 (the one called reflecting
privilege algorithm). Whatever the relative locations of
the token owner and the token addressee, the token
moves along a path that the request followed in the
opposite direction.

Complete network

The knowledge transfer control principle allows us to use
exactly n — 1 messages to broadcast a request. Moving
the token requires a single message. Thus the total
message number is n. If the complete network topology
is a priori known by all the processes, we can simplify the
algorithm and obtain a new one whose behaviour is
similar to the one of Ricart and Agrawala's algorithm.10

We use logical clocks instead of request counters and we
send the token to the creator of the oldest request known
instead of using a logical ring built on the set of the
processes waiting for the token (these two techniques are
two different ways of ensuring the fairness property).

6. MESSAGE TRAFFIC
A complexity measure of a distributed algorithm is the
number of messages it needs to perform an enter_CS and

General case

A request message can be sent at most twice on a given
transmission line (once in each direction) which connects

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 293

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

J. M. HELARY, N. PLOUZEAU AND M. RAYNAL

two neighbours. The total request message number lies
thus between n — 1 and 2e, where e is the number of edges
(e < n(n —1)/2); let us point out that this theoretical
upper bound is often over-evaluated, since the control
knowledge transfer technique reduces the actual number
of messages in a wave-broadcasting protocol according
to the density of the graph.4 On the other hand, moving
the token requires at least 1 message and at most n — \
messages. Thus the total message number is at least n and
at most 2e + n—l.

7. ENHANCEMENTS

Although fault-tolerance is not the main topic of this
paper, we examine in this section effects of failures on the
proposed algorithm and consider how assumptions
about the network behaviour may be violated in a real
distributed system. We assumed that no transmission
line can lose or alter messages. But, although a real (i.e.
physical) channel cannot own these properties, it is easy
to achieve such a high transmission quality by using
protocols for error- and loss-free transmission. Such
protocols are known;1314 they are implemented at the
transport level in the network. Our algorithm doesn't
require message-order preservation.

7.2 In case of failure
We now consider a system where messages are safely
transmitted on communication channels. These channels
may fail at any time: if this occurs while some message is
being transmitted, the message is considered not to be
sent by the transport level of the underlying network,
and its sender is notified that its message could not be
sent because of channel failure.

7.7.7 Channel failure

We consider one particular mutual exclusion request, say
from P(, and we assume that some channel Cjk connecting
Pj to Pk goes down; then several situations may occur.

(1) If channel Cjk is a minimal cut then deleting Cjk
breaks network connectivity: in that case we have two
separate sub-graphs (we recall that the communication
graph is an unoriented one: strong connectivity is
equivalent to connectivity). The token is in one of these
sub-graphs: there is no violation of the mutex invariant
because there is at most one token in the system.
Completion of request broadcasts is not possible, nor
token routeing if the token addressee is in the other sub-
graph. Some action has to be performed upon recovery
of Cjk, in order that pending requests broadcasts flood
the other part (which was unreachable before) and that
pending requests complete. This may be achieved by
restarting a broadcast for every request which was
pending at the time of the failure using the original
timestamp of that request (this gives it a high priority
compared to requests submitted after the failure). Thus
every neighbour P} of a recovering channel Cjk or Ckj
sends to process Pk every pending request in req^arrayr
Note that if some process P had a pending request then
it couldn't broadcast another request: if a failure
postpones completion of a request then the requester
implicitly waits for recovery.

(2) If suppression of Cjk doesn't split the graph then

we have the following situation. Broadcasts complete
normally (because the network is still strongly con-
nected). When the token is travelling to its final addressee
Pt, it follows a spanning tree branch to the root. If Cjk
wasn't on this path, then its failure doesn't prevent the
token from reaching the root. If Cjk was on the path from
token to Pt at the time of failure then the token cannot go
through Cjk and reach Pt. It is possible to strengthen the
routeing protocol if several different exits to the root are
computed to every node: in case of failure of one exit,
another may be available. We modify the algorithm as
follows: during the request broadcast phase, every
process Pt forwarding a request to its neighbours not in
already seen gives them the identities of P('s brothers in
the request spanning tree, as well as the identities of P/s
children (in order that every child knows the identities of
its brothers). Upon receipt of a request message from
Pf, process Pt learns several items of information: identity
of its father in the spanning tree; identity of its uncles;
identity of its brothers. Its parents are its father and
every process which is in the intersection of its uncles' set
and neighbours' set. During the token routeing phase,
Pj has to transmit the token to one of its reachable
parents in the spanning tree. This enhancement makes
use of the possibility of more than one path from every
node to the root of the spanning tree; at every node there
may exist more than one exit for the token. It is still
possible that no exit towards the root Px is available at
some node (even if the failed channel is not a minimal
cut): in that case, this node has to compute a new
addressee using procedure transmit ̂ .token and send the
token to the new root. The interrupted request from Px is
still pending but won't be forgotten (because only a new
request from Px can erase the spanning tree built by the
previous one): the new addressee will take it into account
upon releasing the mutual exclusion and choose Px as
next token addressee.

7.1.2 Process failure

We assume that process failure follows the fail-stop
scheme.12 Effects of P/s failure are very similar to those
of every P}'s channel failure. Moreover, if P} owns the
token at the time of the failure the token is lost. Some
protocol has to discover this event and provide a new
token: election algorithms are usually used to perform
this task.86 Detection of token loss is not a trivial task,
because token loss cannot easily be distinguished from
system connectivity loss. If a failure breaks the system in
two parts, say A and B for instance, the token being in A,
then B discovers that none of its processes owns the
token but must not decide that the token was lost and
regenerate it. This problem is usually solved by a
majority consensus algorithm :3t 15 a process starts execut-
ing the election algorithm if there is a majority of
processes which agree with it.

Recovery of a process Pt is performed by updating its
internal database (req-array(, etc.) upon recovery of its
outgoing channels: as indicated above, every neighbour
of Pt sends its known pending request table.

7.2 Dynamic network reconfiguration

Initial configuration of the system is simple because there
is no pending request: every node has to learn the

294 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

A DISTRIBUTED ALGORITHM FOR MUTUAL EXCLUSION

identity of its incoming channels, but need not learn the
number of processes in the system. Reconfiguration of
the system while some requests are pending is more
difficult. Suppression of a channel has effects similar to
channel failure, but some shutdown phase is required in
order to empty the channel. Insertion of a channel can be
regarded as channel recovery. Suppression of a node
must wait until the token leaves the node, or must force
it to leave. Node insertion is handled in a way analogous
to node recovery.

8. CONCLUSION

The exposed algorithm owns noteworthy features; as we
pointed out, it generalises existing algorithms which
work on particular topologies (such as ring and complete

network) while being as efficient as these algorithms are.
Its most interesting and characteristic feature is the
absence of particular assumptions on the network
topology (apart from the network connectivity require-
ment) and the fact that no process needs to learn this
topology. The algorithm is said to be fully distributed in
the following sense: it uses distributed communication
techniques (communication by messages); distributed
control (there is no central controller); local knowledge
only (at any time, no process knows global information
such as the network topology).

Acknowledgements
The authors thank an anonymous referee for his valuable
comments on the analysis of the algorithm's fault-tolerance.

R E F E R E N C E S

1. O. Carvalho and G. Roucairol, On mutual exclusion in
computer networks. Comm. ACM 26 (2), 147-148
(1983).

2. H. Garcia Molina, Elections in a distributed computing
system. IEEE Trans, on Computers C 31, 48-59 (1981).

3. H. Garcia Molina and D. Barbara, How to assign votes in
a distributed system. J. ACM, 32 (4), 841-860 (1985).

4. J. M. Helary, A. Maddi and M. Raynal, Controlling knowl-
edge transfers in distributed algorithms: application to
deadlock detection. Research report INRIA 427 (1985),
submitted for publication.

5. L. Lamport, Time, clocks and the ordering of events in
a distributed system. Comm. ACM, 21 (7), 558-565
(1978).

6. G. Le Lann, Distributed Systems: Towards a Formal
Approach. IFIP Congress, Toronto (August 1977), pp.
150-160.

7. A. J. Martin, Distributed Mutual Exclusion on a Ring of
Processes. Science of Computer Programming 5, 265-276
(1985).

8. M. Raynal, Algorithms for Mutual Exclusion, MIT Press
(and also North Oxford Academic), 160 pp. (1985).

9. G. Ricart and A. K. Agrawala, An optimal algorithm for
mutual exclusion in computer networks. Comm ACM 24
(1), 9-17 (1981). Corrigendum, Comm. ACM 24 (9).

10 G. Ricart and A. K. Agrawala, Author's response to 'On
mutual exclusion in computer networks' by Carvalho and
Roucairol. Comm. ACM 26 (2), 147-148 (1983).

11. R. D. Schlichting and F. B. Schneider, Fail-stop pro-
cessors : an approach to designing a fault-tolerant computer
system. ACM TOCS 1 (3), 222-238 (1983).

12. F. B. Schneider, Paradigms for Distributed Computing,
468-480. LCNS 190. Springer Verlag, Heidelberg (1985).

13. W. Stenning, A data transfer protocol. Computer Networks
1, 99-110 (1976).

14. A. S. Tanenbaum, Computer Networks. Prentice-Hall,
Englewood Cliffs, NJ, 518 pp. (1981).

15. R.W.Thomas, A majority consensus approach to con-
currency control for multiple copy databases. ACM TODS
4 (2), 180-209 (1979).

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 295

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/289/380471 by guest on 10 April 2024

