
Closure Properties of Certain Classes of Languages under
Generalized Morphic Replication

Z. FANG1 AND J. S. DEOGUN2

'Computer Science Department, The Wichita State University, Wichita, KS 67208, U.S.A.
2 Computer Science Department, University of Nebraska, Lincoln, Nebraska 68588, U.S.A.

In this paper a new language operator, a generalized morphic replication, is introduced. Let £1 be a finite set of
morphisms and reversal morphisms from S* into A*, and w be in Cl*. A morphic replicator is defined as follows: for
each x in E* define w(x) to be hx(x)... hm(x), where \m\ = m and co = hl... hm. A generalized morphic replication
extends a> to languages by u>(L) = {<a(jc): x is in L} and to sets W of morphic replicators, where W <= £1*,
W(x) = {co(x): co is in W) and W(L) = U fV(x), where the union is taken over all x in L.

It is shown that the class of languages accepted in real time by a non-deterministic reversal-bounded multitape Turing
machine, the class of NP, and the class of the recursively enumerable sets, are all closed under the generalized morphic
replication when the morphisms and the reversal morphisms are, respectively, linear-erasing, polynomial-erasing, and
arbitrary.

Received September 1985, revised February 1987

1. INTRODUCTION

In the study of formal languages and abstract automata
one can notice that almost all of the language operations,
such as the Boolean operations, morphism, inverse
morphism, concatenation, Kleene* and reversal preserve
the class of regular sets.7 However, the operation of
morphic replication defined in Book3 does not preserve
the class of regular sets. In fact, the morphic replication
is the concatenation of images of n morphisms or
reversal morphisms of the same string w, weL. The
concept of morphic replication can be generalized as an
operation in which the string of morphisms or reversal
morphisms is replaced by a language, possibly an infinite
set. We call this operation a generalized morphism
replication.

In this paper we define the concept of generalized
morphism replication and study the closure properties of
certain classes of languages under this operation.
Specifically, it is shown that the class of languages
accepted in real time by the non-deterministic reversal-
bounded multi-tape Turing machine LBNP,2'4 the class of
NP, and the class of the recursively enumerable sets are
closed under generalized morphism replication when the
morphism and the reversal morphisms are, respectively,
linear-erasing, polynomial-erasing, or arbitrary.

2. PRELIMINARIES

In this section, preliminary concepts relevant to general-
ized morphic replication are reviewed and the notations
used in this paper are established. Then the concept of
generalized morphic replication is defined and some
primitive features of this operation are discussed.

For a string w,\w\ denotes the length of w. The reversal
reversal wR of a string w is the string obtained by writing
w in reverse order.

A morphism (between two free monoids) is a function
h: E* -> A* such that for all JCJES*, h(xy) = h(x)h(y).
A reversal morphism for a given morphism is a function
g«:I*-> A* such that for all xel,*, gR(x) = [g(x)]R.
Furthermore, a morphism, h: £* -* A*, is nonerasing if

\w\ > 0 implies \h(w)\ > 0 and is length-preserving if
V we!.*, \h(w)\ — \w\. Given a language L c p , the
morphism h is linear-erasing on L if there is a constant
k > 0 such that for all weL with \w\ > k, \w\ < k\h{w)\,
and is polynomial-erasing on L if there is a constant
k > 0 such that for all weL with \w\ ^ k, \w\ < |A(w)|*.

A class L of languages is closed under any morphism
(non-erasing, linear-erasing, polynomial-erasing) if, for
every L e L and any morphism h (that is non-erasing,
linear-erasing, or polynomial-erasing on L), h(L) =
{h(w)\weL}eL.

A generalized morphic replication is defined as follows.
Definition. Let Q be a finite set of morphisms and

reversal morphisms from Z* into A*. We call co a morphic
replicator where co is in Q*. Then for each x in Z* define
OJ(X) to be hx{x)... hm(x), where |<u| = m and a) = hx...hm.
If m — 0 or x = X, were X is the empty symbol, then
o)(x) = X also.

Generalized morphic replication is defined to extend co
to languages L by ct>(L) = {(o(x): x is in L} and to
languages W. of morphic replicators, where W £ Q*,
W(x) = {co(x): co is in W) and W(L) = U W(x), where the
union is taken over all x in L.

The concept of morphic replication by Book3 is based
on a single fixed string of n morphisms or reversal
morphisms. In this paper we extend the concept of
replication by replacing a fixed single string with a
language, which could be an infinite set.

The W{L) defined above is called the generalized
morphism replication of a non-erasing (or linear-erasing,
or polynomial-erasing) morphism, if every element in Q
is a non-erasing (or linear-erasing, or polynomial-erasing)
morphism of L.

Let both L and W be two languages in a class of
languages L, and let Q be the alphabet set of W, such that
each element in Q is a non-erasing (or linear-erasing, or
polynomial-erasing) morphism or reversal morphism on
L. Then if W(L) e L, L is said to be closed under the
generalized morphic replication of a non-erasing (or
linear-erasing, or polynomial-erasing) morphism.

Let L = E* be a regular set. If Q = {g, h}, where
g(p) = 0 and h(p) = 1 for all pel., then W= (ghg)*

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 325

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/325/380511 by guest on 11 April 2024

Z. FANG AND J. S. DEOGUN

is a regular set.7 However, W{L) = {(ghg)* (w) | we2*} =
{0" l"0" 0n ln0n ... 0" l"0"|« 5= 0} is a context-sensitive
language.7 Therefore, it may be noted that the class
of regular sets is not closed under generalized morphic
replication of a length-preserving morphism.

3. SEVERAL IMPORTANT LEMMAS

In this section we present some preliminary lemmas,
proofs of Theorem 3.1 of this section and the main
theorems of Section 4 are based on these lemmas.

Lemma 3.1. A language L is linear context-free if and
only if there is a regular set R and two linear-erasing
morphisms hx and h2, such that L = {h1(w)[h2(w)]R\we

Lemma 3.2. For every recursively enumerable set L,
there exist two linear context-free languages L1 and L2,
and a morphism h, such that L = {h(w) \weL10 L2}.1

Lemma 3.3. For every k ^ 1, a language L is accepted
by a non-deterministic Turing acceptor M with k
pushdown stores as auxiliary storage which operates in
real time if and only if there exist k deterministic context-
free languages L1,...,Lk and a length-preserving mor-
phism h such that L is the image of the intersection of
Lx,...,Lk under h, L = h {Ll (1 ... 0 Lk). Further, if the
rth pushdown store of M(l < i < k) is restricted in its
operation (e.g. is reversal-bounded or is a counter), then
the language Lt can be accepted by a deterministic
pushdown store acceptor A^which operates in real time
and whose pushdown store is restricted in the same way
as the rth pushdown store of M.2

Lemma 3.4. Let L be a language. The following are
equivalent:

(i) L is accepted by a non-deterministic multi-push-
down acceptor which operates in such a way that, in
every computation, each pushdown store makes, at
most, a bounded number of reversals and runs in linear
time.

(ii) L is accepted by a non-deterministic multi-
pushdown acceptor which operates in such a way that, in
every computation, each pushdown store makes, at
most, one reversal and runs in real time.

(iii) L is the length-preserving morphic image of the
intersection of some finite number of linear context-free
languages.

(iv) L is accepted by a non-deterministic acceptor with
three pushdown stores which operate in such a way that,
in every computation, each pushdown store makes, at
most, one reversal and runs in real time.

(v) L is the length-preserving morphic image of the
intersection of three linear context-free languages.2

It is well known that the computation of a single
Turing machine tape can be imitated by two pushdown
stores without any loss of time. If the Turing machine
tape makes r reversals, then each pushdown store will
also make, at most, r reversals.2 Similarly, a multi-tape
Turing machine can be simulated by a multi-pushdown
acceptor without any loss of time or an increase in the
number of reversals. Thus, in part (i) and (ii) of Lemma
3.4 the phrase' multi-pushdown acceptor' can be replaced
by 'multi-tape acceptor', and the statement that (i)-(v)
are equivalent is still true. In the remainder of this paper
only the term multi-tape acceptor will be used. The class
characterized in Lemma 3.4 will be referred to as LBNP.

Theorem 3.1. Let N be the set of natural numbers and

S be a finite alphabet. There exist two linear context-free
languages L1 and L2 and a length-preserving morphism h
such that {{wc)k | we I*, keN} = h(L1 n L2), were c is a
symbol not in S.

Proof. To prove the theorem we construct a non-
deterministic on-line acceptor M such that L(M) =
{{wc)k| we2*, keN}, M operates in real time and M has
two pushdown stores, each of which makes only one
reversal. Therefore, for this acceptor, Lemma 3.3
guarantees the existence of Lx, L2 and h.

The acceptor M has two pushdown stores referred to
as tape 1 and tape 2. Each tape has two tracks. During
the computation M writes a sequence of' blocks' on each
tape. A block consists of the two strings u and v stored
on the top and bottom tracks of tapes 1 and 2. Strings u
and v are of the same length, |w| = \v\, and are terminated
by endmarkers after the last symbol in each string. The
end of strings u and v marks the end of the block. M
reads its input at the rate of one symbol per step of its
computation in order to operate in real time. Let (wc)k be
the input string of symbols that can be accepted by M,
where weL*, keN.

We define two numbers n = \k—2/2] and m = l|w|/2J,
not known to the acceptor M, to prove the theorem.

An accepting computation of M can be described as in
the following three phases.

Phase 1. M reads its input at the rate of one symbol
per step and writes the input symbol on the top track of
tapes 1 and 2. Each time M reads a symbol, M non-
deterministically guesses and writes an arbitrary symbol
from £ on the bottom track of each tape. M writes the
same symbol on the bottom track of tapes 1 and 2. If the
input symbol is the endmarker symbol 'c', then M writes
a ' c' on both the top and bottom tracks of each tape.
Each block consists of a pair of strings, u(c and vt c, in
S*c such that |w,| = \v,\ and u{c is the string tape. Each
block consists of a pair of strings, u(c and vt c, in S*c such
that \u(\ = \Vf\ and utc is the string read from the input
and t!j6l*.

After reading a block, M either non-deterministically
repeats the actions in phase 1 or moves to phase 2.
However, during the computation in which M accepts its
input, after having written such n blocks, M moves to
phase 2. In the case that M moves to phase 2 after it has
written more or less than n blocks, the computation of M
is non-accepting. That is seen in phase 3.

Phase 2. In phase 2, M reads one input symbol per
step, writes it on the top track of tapes 1 and 2, and non-
deterministically writes an arbitrary symbol from £ on
the bottom track of each tape just as in phase 1. After M
reads the portion x of input in this phase, M non-
deterministically begins to perform the following actions.

Let y be the string on the bottom track of each tape
when M has read portion x of the input. Clearly, |x| =
\y\. Then M reads a symbol a el. and copies it onto the
top and bottom tracks of tape 1, while the head of tape
2 doesn't act if \w\ is odd. If \w\ is even, M goes to next
step immediately. In the next step M starts to pop tape
2, copying the symbols from x and y onto the bottom
and top tracks, respectively, of tape 1. Simultaneously,
M continues to read the input symbols and matches the
symbols popped from the bottom track of tape 2 with the
actual input read. If any comparison doesn't agree, M
halts in a non-accepting state. If the next input symbol is
'c ' and the symbol popped from tape 2 is also 'c ' , M

326 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/325/380511 by guest on 11 April 2024

CLOSURE PROBLEMS OF CERTAIN CLASSES OF LANGUAGES

copies it onto both tracks of tape 1. At that time \x\ = m,
and M moves to phase 3. If M reads 'c ' , but the symbol
popped from tape 2 is not' c', M halts in a non-accepting
state. After this operation, the contents of the tapes are
as follows:

If \w\ is odd, tape I: ulcu2c... cun cxayR c

v! cv 2 c... cvn cyaxR c

tape 2: ut cu2c... cun c

Vj CV2 C ... CVn C

If I w\ is even, tape I: ulcu2c... cun cxyR c

v1cv2c... cvncyxRc

tape 2: ux cu2 c... cun c

vlcv2c... cvnc

where the rightmost ' c ' is being scanned. If all the
matched symbols agree, then the input read so far is
recorded on the top track of tape 1.

Phase 3. In phase 3, M pops tapes 1 and 2 simul-
taneously, comparing respective blocks symbol by
symbol. Success of all these comparisons implies:

= u2 = =u = xyR =xyR = (yxR)R = (vn)
R = ... = (v2)

R

if \w\ is even and

ul = ui = ...=un = xayR = (yaxR)R = (vn)
R = ... = (v2)

R

if |w| is odd.
At the same time, M continues to read the remaining

input and compares it with the bottom track of tape 1. M
halts in a non-accepting state if any comparison doesn't
succeed, if the input is exhausted before tape 1 or tape 2
is empty, or if tape 1 and tape 2 are empty before the
input is exhausted (i.e. in phase 1 M would have moved
to phase 2 after having read more or less than n blocks.)
If these comparisons all agree and the input is exhausted,
then tape 1 is empty if k is odd, or tape 2 is empty if k is
even, and M halts in an accepting state. In that case, the
input to M was (we)", weE* and w = xyR if \w\ is even or
w = xayR if \w\ is odd. Clearly, M satisfies the require-
ments of Lemma 3.3.•

4. MAIN RESULTS

In this section we will prove the closure property of
certain classes of languages under generalized morphic
replication using the lemmas established in Section 3.

Theorem 4.1. The LBNP is closed under the generalized
morphic replication of a linear erasing morphism.

Proof. Let L and W be two languages in LBNP and
let L be the alphabet of L, and Q the alphabet of W.
Assume Q is a finite set of linear-erasing morphisms and
reversal morphisms on L. Then, L c £*, for every oneQ,
co: E* -> A*. And there is a constant k > 0 such that for
all coeQ, xeL, with |*| ̂ k, then |x| < k\co(x)\.

W(L) = {co(x)\coe W, xeL}, if <a = At ...hn, x = px...
pm, co(x) = (*,..- K) (A - PJ = Kip,)... ht(pm)... hn(P0
...hn{pm). We want to prove that IV(L) is in LBNP

also.
Since L and W both are in LBNP, there are two non-

deterministic acceptors, ML and Mw, each with three
pushdown stores as auxiliary storage. ML and Mw

operate in real time, each pushdown store makes, at

most, one reversal, and L{ML) = L, L(MW) = W. From
Lemma 3.4 and its description, if we can construct a non-
deterministic multi-tape Turing machine TM such that
TM operates in linear time and each tape makes at most
a bounded number of reversals and W{L) = L(TM),
then W(L) is in LBNP and the theorem is true.

The principal problem is how TM can recognize co(x),
i.e. h1(p1...pjh2(p1...pj...hn(p1...pn) while using
only bounded reversals per tape. Therefore, the problem
is to find the string of morphisms and reversal morphisms
which acts on x, where xeL. We suggest that xN be stored
on one tape and A'f1 A£'... A|f be stored on another tape.
These two tapes then act on each other and TM matches
the result with the input string. It is rather easy to
recognize UfH^ ... A1*1. In order to recognize xM we must
use the technique which was used in proving Theorem
3.1.

Now we construct such a Turing machine. The Turing
machine TM has an input tape that is read from left to
right, a finite-state control unit, and ten storage tapes
referred to as tape 1, tape 2, ..., tape 10.

Tape 1 is used to store the actual input y in order to be
matched with the guessed input co(x) and to control
TMs running time which must be less than t\y\ where t
is a constant. Tape 2 is used to guess xM non-
deterministically. It is divided into two tracks. On the top
track xH is stored and the bottom track has only one
symbol ' c ' which is placed on the cell corresponding to
the last symbol of x in the top track. The other cells on
the bottom track are empty. Tape 3 is used to store (xM)fl.
Its role is the same as tape 2 when h is a reversal
morphism. Tape 4 stores A'f1 Alf1... A1*1. Like tape 2, tape 4
is also divided into two tracks. On the top track of tape
4 the string A'f1... Â 1 is stored. On the bottom track a 'c '
is placed on each cell corresponding to the |x|th h, and all
other cells are empty. Tape 5 is used to store the guessed
input co(x) which is compared with the string in tape 1.
Tapes 6 and 7 are used to simulate two pushdown stores
of the acceptor M as in Theorem 3.1. The endmarker 'c '
is, however, written on the bottom track of tape 2 at the
cell corresponding to the last symbol of each instance of
the string x instead of following x as in Theorem 3.1.
Tapes 6 and 7 are respectively divided into three tracks
each. Tracks .one and two play the same role as the top
and bottom tracks of the two tapes used in Theorem 3.1,
and the third track is used to write the symbol 'c ' . Tapes
8, 9 and 10 are used to simulate three pushdown stores
ML and Mw. The purpose of tapes 8,9 and 10 is to decide
the inclusion of x in L and that of a in W. '.

Since every morphism in Q is linear-erasing, there is a
constant k > 0 for all AeQ and xeL with |JC| ^ k, such
that \x\ < k\h(x)\. Now if the input string y is equal to
co(x) = Aj(x) A2(x)... hn(x), then \y\ = |Ax(x) h2(x)...
hH(x)\ = \h1(x)\ + \ht(x)\ + ...\hn(x)\, so that k\y\=k\h,
{x)\ + k\h2{x)\ + ...k\hn{x)\^n\x\. The length of string
that we store in tape 2 is equal to |x|m|| = \xn\ = n\x\ and
the length of tape 4 is equal to |A'f' Ajf1... A1*1! = «|JC|. It
may be noted that the length of tapes 2, 3 and 4 is less
than or equal to k\y\.

The accepting computations of TM are described
below.

Phase 1. During phase 1, TM reads input string ye A*
and copies it into tape 1. After the input tape is
exhausted the read-write head of tape 1 returns to its
original position (so that it is in the leftmost cell of tape

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 327

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/325/380511 by guest on 11 April 2024

Z. FANG AND J. S. DEOGUN

1). In this phase the read-write head of tape 1 makes one
reversal and the time required is 2\y\.

Phase 2. During phase 2, TM non-deterministically
guesses and writes one arbitrary symbol per step from E
on the top track of tape 2. TM non-deterministically
guesses a symbol from {blank, endmarker 'c'} and
simultaneously writes it on the bottom tracks of tapes 2
and tape 4. TM non-deterministically guesses a symbol
from Q and repeatedly writes this symbol on the top
track of tape 4 until an endmarker symbol appears on the
bottom track. (This symbol is also written in the cell
on the top track of tape 4 corresponding to the cell
containing the endmarker symbol on the bottom track of
tape 4). After having written ' c ' on the bottom track of
both tapes 2 and 4, TM non-deterministically repeats the
actions in Phase 2 or moves to Phase 3. In its finite
control, TM keeps a count k of steps and once every k
steps, the read-write head of tape 1 moves a cell to the
right. If the head of tape 1 moves into a blank cell, TM
halts in a non-accepting state. In this phase no reversals
take place and the time required is at most k\y\. After
finishing this phase, the contents of tape 2 and tape 4 are
as follows:

b b ...c b b ...c ...b ...c

Tape 4: hlhl...h1h2h2...h2...hq...hq

b b ... c b b ... c ... b ...c

where the heads of tapes 2 and 4 are scanning the
rightmost symbol.

Phase 3. The heads of tapes 1, 2 and 4 are returned to
the original leftmost position. Thus tapes 1, 2 and 4 make
one reversal just before the computation starts in phase
3. The TM simulates a computation of the acceptor in
Theorem 3.1 of the contents of tape 2 as input and uses
tapes 6 and 7 to simulate two pushdown stores to check
whether or not the contents of tape 2 is xf, where xel.*,
and qe N. If the computation is accepted, TM turns into
phase 4, otherwise TM halts in a non-accepting state.
During this phase the heads of tapes 1, 2,4, 6 and 7 make
exactly one reversal and the time required is 2k\y\.

Phase 4. As TM moves into phase 4, the head of tape
2 is in the rightmost position and the head of tape 3 is in
the leftmost position. As the computation begins, the
head of tape 2 moves from right to left and that of tape
3 moves from left to right. The contents on the top track
of tape 2 are read from right to left and are written on
tape 3 from left to right. When the head of tape 2 has
returned to its leftmost position, TM writes (x")R on tape
3. Then the head of tape 3 is returned. During this phase
the head of tape 3 makes one reversal and the time
required is 2k\y\.

Phase 5. In phase 5, TM reads the contents on the top
track of tape 2 until the first ' c ' appears on the bottom
track, and TM simulates a computation of ML using
tapes 8, 9 and 10 to simulate three reversal-bounded
pushdown stores to check whether or not x is in L. If the
computation is accepted, then the read-write head of
tape 3 is returned to its original position and TM turns
into phase 6. Otherwise TM halts in a non-accepting
state. In this phase TM moves 2k\y\ steps at most and the
heads of tapes 2, 8, 9 and 10 make exactly one reversal.

Phase 6. In phase 6, the symbols in the cells on the top
track of tape 4 corresponding to the cells in which the

endmarker appears on the bottom track of tape 4 are
read as input. Therefore, input to phase 6 is a> — h1... hg.
TM simulates a computation of Mw using tapes 8, 9
and 10 to analog Mw's three pushdown stores to check
whether or not co = hx... hq is in W. If the computation
is accepted, then the read-write head of tape 4 is returned
to its original position and TM moves to phase 7.
Otherwise, TM halts in a non-accepting state. In this
phase TM moves 2k\y\ steps at most and the heads of
tapes 4, 8, 9 and 10 make exactly one reversal.

Phase 1. During phase 7, TM reads symbols simul-
taneously from tapes 1, 2, 3,4 and 5 working from left to
right. If the symbol read from tape 4 is a morphism, the
TM lets it act on the symbol read from tape 2 and if it is
a reversal morphism, the TM lets it act on the symbol
read from tape 3. Then TM writes h{p) on tape 5.
Simultaneously, TM compares h{p) symbol by symbol
with the contents of tape 1. If this comparison is
successful, TM reads the next symbol from tapes 2, 3 and
4 and repeats the action described above, Otherwise, TM
halts in a non-accepting state. If h(p) is empty, the heads
of tapes 1 and 5 do not move and tapes 2, 3 and 4
continue on to the next symbol. If tape 1 is exhausted but
tapes 2, 3, 4 and 5 are not empty or if tape 1 is not
exhausted when tapes 2, 3, 4 and 5 become empty, then
TM halts in a non-accepting state. TM halts and accepts
string y only if tapes 1, 2, 3, 4 and 5 become empty at the
same time and all of the comparisons are successful. In
this phase the time required is k\y\ at most.

During the entire computation each read-write head
of TM makes at most one reversal in each phase.
Therefore, TM is reversal-bounded. The total running
time is at most

(\0k + 2)\y\.

Since A: is a constant, if t is chosen to be any integer
greater then 10A: + 2, then TM operates in linear time
equal to t\y\. Hence, L(TM) is in LBNP by Lemma 3.4.
Clearly, L(TM) = W(L) so that W(L) is also in LBNP.•

Corollary 4.1. The class LBNP is the smallest class of
languages containing the regular sets and closed under
the intersection and the general morphic replication of a
linear-erasing morphism.

Proof. Suppose L is the smallest class containing the
regular sets and closed under the intersection and the
generalized morphic replication of a linear-erasing
morphism. By Lemma 3.1 every linear context-free
language can be expressed by a regular set, a linear-
erasing morphism and a linear-erasing reversal mor-
phism. From Lemma 3.4, every language in LBNP can be
expressed as the non-erasing morphic image of the
intersection of three linear context-free languages, so
that LBNP c L. By Theorem 4.1 LBNP is closed under
the generalized morphic replication of a linear-erasing
morphism. Obviously LBNP is closed under intersection
and contains all regular sets, therefore, L c LBNP.H

Theorem 4.2. The class NP is closed under the
generalized morphic replication of a polynomial-erasing
morphism.

The proof of Theorem 4.2 is similar to that of
Theorem 4.1 and is omitted.

Corollary 4.2. The class NP is the smallest class of

328 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/325/380511 by guest on 11 April 2024

CLOSURE PROBLEMS OF CERTAIN CLASSES OF LANGUAGES

languages containing the regular sets and closed under
the intersection and the generalized morphic replication
of a polynomial-erasing morphism.

Proof. Suppose L is the smallest class containing the
regular sets and closed under the intersection and the
generalized morphic replication of a polynomial-erasing
morphism. Clearly, LBNP ^ NP. In ref. 1 Baker showed
that for Lx e NP there exists L2 e LBNP and a polynomial-
erasing morphism h such that h(L2) = Lx. Therefore,
NP £ L. By Theorem 4.2 NP is closed under the
generalized morphic replication of a polynomial erasing
morphism. Obviously, the class NP contains regular sets
and is closed under the intersection. Therefore, L s
NP.M

Theorem 4.3. The class of recursively enumerable sets
is closed under the generalized morphic replication of an
arbitrary morphism.

The proof of Theorem 4.3 is similar to that of
Theorem 4.1 and is omitted.

Corollary 4.3. The class of recursively enumerable sets
is the smallest class of languages containing the regular
sets and closed under the intersection and the generalized
morphic replication of an arbitrary morphism.

Corollary 4.3 can be proved by Lemma 3.1 and
Lemma 3.2.

5. CONCLUDING REMARKS
In this paper is it shown that LBNP, the class NP and the
class of recursively enumerable sets are closed under the
generalized morphic replication when the morphism is
linear-erasing, polynomial-erasing, and arbitrary, respec-
tively. Since the generalized morphic replication offers
techniques to handle infinite sets of strings of morphisms
and reversal morphisms, it is therefore, useful in
decomposition of formal languages and automata.

The class of languages accepted in real time by non-
deterministic reversal-bounded multi-tape Turing ac-
ceptors contains some context-sensitive languages such
as {0" 1" 0n | n > 0}. But the question remains whether the
class LBNP contains all context-sensitive languages.

Acknowledgement
We thank Professor R. Book for his comments and
suggestions.

REFERENCES
1. B. Baker and R. Book, Reversal-bounded multi-pushdown

machines. J. Comptr Syst. Sci. 8, 315-332 (1974).
2. R. Book, M. Nivat and M. Paterson, Reversal-bounded

acceptors and intersections of linear languages. SI AMJ. on
Computing 3, 283-295 (1974).

3. R. Book, Simple representations of certain classes of
language. / . ACM 1, 23-31 (1978).

4. R. Book and S. Griebach, Quasi-real time languages.
Math. Systems Theory 4, 97-111 (1970).

5. S. Ginsburg and S. Griebach, Principal AFL. J. Comptr
Syst. Sci. 4, 308-338.

6. S. Ginsburg and E. Spanier, Finite-turn pushdown auto-
mata. SIAM J. on Control 4, 429-453 (1966).

7. J. Hopcroft and J. Ullman, Formal Languages and Their
Relation to Automata. Addison-Wesley, Reading, Mass.
(1969).

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 329

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article/31/4/325/380511 by guest on 11 April 2024

