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A Computer-Assisted Mathematical Programming (Modelling) System (CAMPS) is described in this paper. The
system uses program-generator techniques for model creation and contrasts with earlier approaches, which use a
special-purpose language to construct models. Thus no programming skill is required to formulate a model. In designing
the system we have first analysed the salient components of the mathematical programming modelling activity. A
mathematical programming model is usually constructed by progressive definition of dimensions, data tables, model
variables, model constraints and the matrix coefficients which connect the last two entities. Computer assistance is
provided to structure the data and the resulting model in the above sequence. In addition to this novel feature and the
automatic documentation facility, the system is in line with recent developments, and incorporates a friendly and
flexible user interface.
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1. INTRODUCTION AND MAJOR ISSUES

During the last thirty years algorithms and computer
programs for solving optimisation problems have wit-
nessed sustained and accelerated development. Today
large-scale problems can be processed robustly and
successfully, yet our ability to construct models and our
understanding of many facets of these models are in
contrast less developed. This issue has received the
attention of many practitioners. According to Geoffrion:
' Modelling as done today is a much lower productivity
process than it ought to be. It takes too long to build,
verify and document models. It is too hard to maintain
and make evolutionary improvements.'11 Krabek,
Sjoquist and Sommer pointed out that the steps of man-
aging data, building the model and reporting and ana-
lysing results are much more expensive than that of
optimisation.22 Furthermore, these steps prove to be a
barrier to the effective use of LP. Greenberg observed
that 'comprehension is the present bottleneck in using
large-scale models. '12

During the seventies MPSX established itself as the de
facto standard for Linear Programming and Integer
Programming (LP/IP) and as a result its input format is
also accepted as the standard for specifying LP/IP model
input data.16 High-level languages such as FORTRAN
and PL 1 were used to generate MPSX input files:
although this is model-specific and burdensome it is still
widely used. During the seventies matrix generator and
report writer (MGRW) systems became well estab-
lished: MAGEN,15 GAMMA3,33 and DATAFORM21

are among the best known of these. These introduced
flexibility and productivity in creating LP applications
and are still heavily used today. The next generation of
tools may be broadly classed as ' Matrix languages', and
these bear more resemblance to the way a modeller
would describe a problem. Early 'matrix languages'
include LP MODEL,20 MGRW,17 MGG/RWG,31

UIMP27 and GAMS.1 In contrast to special-purpose
programs and MGRW systems, which require con-
siderable understanding of the input data formats, the

* To whom correspondence should be addressed.

matrix languages require only a 'limited' knowledge of
these. Fourer provides a comprehensive discussion of the
major issues as seen in the early eighties.10 Since the
paper by Fourer three other systems, ULP,36 MAGIC5

and EXPRESS LP4 of the same genre have been
developed and reported. An alternative approach to
describing LP models uses the concept of flows and flow
balances in networks. LOGS is perhaps the most widely
known of these systems.3

Application of these systems to substantial models in
the corporate context brings out a number of other
considerations. Murphy and Stohr28 highlight the rel-
evance of block structuring and block connectivity of
such models, and Geoffrion has addressed the question
of aggregation in considerable depth.11 Bradley and
Clemence2 report a mathematical programming im-
plementation (LEXICON) of the structured modelling
framework of Geoffrion. The most well-known im-
plementations of LP in corporate modelling are
PLATOFORM29 and PLANETS.7

During the last three years personal computers have
become established, and there has been a considerable
upsurge of interest in teaching/training systems for
Operational Research (OR) in general and LP in
particular. Of these systems LINDO is the best-
established teaching system.30 For a discussion and
evaluation of a number of micro-based LP optimisers
readers are referred to Ref. 32. On the model-building
front there has been a strong trend towards using well-
known spreadsheet systems such as LOTUS 1-2-3 and
SYMPHONY.23196 These entry-level systems are ex-
cellent for training and for breaking down barriers to
modelling, but their use and applicability in large
structured models remain questionable.

In this paper we describe a new mathematical
programming modelling system called CAMPS. It is an
interactive system and comprises a set of integrated
' program generation' and data-management tools which
are controlled by a series of menus and screenforms. Our
design objectives are broad: the system is set out to help
non-expert LP users to come to grips with the task of
conceptualising and describing LP models, whereas the
expert LP user is also supported in his requirements to
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construct large and complex models. The contents of this
paper are organised as follows. Section 2 describes the
salient and novel features of CAMPS, an example of
model construction using CAMPS is illustrated in Section
3, the logical analysis of the modelling task and the
derivation of mathematical statement are set out in
Section 4. The method of automated reformulation of
separable and 0-1 integer programming is considered in
Section 5. The problem of Section 3 is reformulated
using ULP36 and OMNI14 in the appendix, and contrasts
our approach with these well-known systems.

2. SALIENT AND NOVEL FEATURES OF
CAMPS

Computer-Assisted Mathematical Programming (Model-
ling) System (CAMPS) is an interactive system designed
to aid model formulation, matrix generation and model

management. The system comprises a set of integrated
'program generation' and data-management tools which
are controlled by a series of menus and screenforms. The
main menu shown in Display 2.1 together with the
information flow diagram Display 2.2 provide an outline
of the structure and the major functions of the system. A
full user specification of the system is given in Ref. 24.

The INPUT (and AMEND) option is used to construct
and/or update all aspects of a model created entirely
within CAMPS. Display 2.3 illustrates the options under
this subsystem and reflects the modelling methodology,
which is stated succinctly as a sequence of three logical
steps. Step 1: define the subscripts and their ranges (sets
and dimensions). Step 2: define input data tables, model
variables and model constraints, in terms of these sub-
scripts. Step 3: specify the linear relationships in a row-
wise fashion which connect the items defined in Step 2.

. . . C A M P S . . . USER:
MODEL:

USER: DATE:
MODEL: TIME:

SEC: MAIN

1.INPUT
2.GENERATE
3.OPTIMISE
4.REPORT
5.UTILITIES
6.LOGOUT

TYPE NUMBER« » :

Display 2.1 Display 2.3

IA GM

Q INPUT )

NAMES
DIMENSIONS
TABLES
VARIABLES
CONSTRAINTS

RO

(GENERATE)

INTERNAL MODEL
EXTERNAL MODEL
PROGRAM INTERFACE
SUMMARY

. . C A M P S .

SEC: INPUT

1.NAMES
2.DIMENSIONS
3.TABLES
4.VARIABLES
5.CONSTRAINTS
6.RETURN

DATE:
TIME:

TYPE NUMBER« » :

AR

( OPTIMISE )

PREPARE
RUN
SUMMARY

Hierarchical relationship of main menu options
j

c
UT

REPORT )

VARIABLES

ROWS

information flow through the five master files as
effected by the subsystems

(UTILITIES}

LIST
RENAME
DELETE
PRINT
DOCUMENT
DEBUG

MODEL
DOCUMEN-

TATION

Display 2.2
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The subscripts correspond to 'basic entities' which are
elements of' sets', and in actual models these ' sets' could
represent geographical regions, materials and time
periods. This progressive approach to model definition
allows us to dispense with a procedural language and
replace it with an option-driven program-generator
approach. The syntax of commands is captured in their
context, and thus mistakes introduced by erroneous
keystrokes are kept to a minimum. This is because
predefined indices, sets and variables are prompted at the
appropriate fields of the screenforms. For instance, at the
time of defining variables and tables currently defined
sets are displayed. At the time of entering the linear
forms the operators (-I-, —, *) are prompted and a linear
term is forced to comply with the dimensions of the
summation indices and the row indices. We discuss this
point further in the example given in Section 3.

The first four options of the main menu are designed
to facilitate construction and investigation of a model
whereas the fifth, the UTILITIES option, provides
model-management support. In CAMPS the usual
model-management functions such as DELETE, RE-
NAME, LIST and PRINT are augmented by a further
option called DOCUMENT. Tabular displays of the
input data, variable (MPSX) names and row (MPSX)
names, and tabulated results, are essential aspects of
documentation as supplied by all known systems. In
addition to these a mathematical formulation of the
model is also provided by CAMPS. This mathematical
statement can be enhanced by textual annotations specific
for a given application. These explanatory texts are
introduced at the input stage.

The REPORT subsystem allows information relating
to the rows, columns and reduced costs to be examined.
The analysis module within REPORT is now designed to
interface with the interactive model and solution analysis
system ANALYZE by Greenberg.12 For each 'basic
entity' a textual annotation may be supplied and a
unique two-character identifier called ' stub' is extracted
out of this text.13 This stub is used to create the 'syntax
file' of ANALYZE. The OPTIMISE option uses the
FORTLP system.34 For all practical purposes this is
treated as a black box, although a few algorithm control
parameters can be set under this option.

LP/IP models are created in MPSX format under the
GENERATE subsystem. Within the GENERATE sub-
system externally created models are also accepted, but
REPORT and DOCUMENT options cannot be used in
this case. Whereas CAMPS itself is designed for high-
level interaction in the modeller's form, at the GEN-
ERATE subsystem level a programmer's interface for
model generation is also available. Thus it is possible to
create MPSX models using data tables and model
descriptions not held within CAMPS. In this approach
the system-held subroutine library for model generation
is used. We note that this approach is somehow similar
to the ideas put forward by Forrest.9 We have used this
approach to create set-covering models in MPSX
format.8 These models were supplied to us in a non-
standard format.

In order to deal with well-known model structures or
restrictive modelling situations a compendium of reserved
words has been introduced in the TABLES and ROWS
section of the system. A reserved table RESTRICT with
appropriate dimension is created by default as an internal

table of 0-1 entries. It is used subsequently to deal with
undefined entries in the primary tables. NETWORK,
CONVEX and REFER are reserved row names. NET-
WORK is used to create a compact network model with
balanced flows. CONVEX and REFER are used to
achieve separable programming (set type one and set
type two) model reformulation within the system.26

3. AN ANNOTATED EXAMPLE

In this section we consider a problem taken from the
book by Jensen and Barnes.18 This example is specially
chosen as it displays the typical structure of an integrated
production and distribution model. The example is also
adopted by Geoffrion11 and Bradley2 to illustrate their
systems.

The Tanglewood Manufacturing Co. has four plants
located around the country. The fabrication and as-
sembly cost per chair and the minimum and maximum
monthly production for each plant are shown in Table
3.1.

Table 3.1. Fabrication cost and production restrictions by
plant

Plant

Washington
Philadelphia
Denver
Buffalo

Cost
($)

5.00
7.00
3.00
4.00

Production

Maximum

500
750

1000
250

Minimum

0
400
500
250

The company obtains the 201b of wood required to
make each chair from two suppliers who have agreed to
supply any amount ordered. In return, the company
guarantees the purchase of at least 8 tons of wood per
month from each supplier. The cost of wood is $0.10/lb
from supplier 1 and $0.075/lb from supplier 2. The
shipping cost in $/lb from each supplier to each plant is
shown in Table 3.2.

Table 3.2. Shipping cost from source to plant (unit cost $/lb
of wood)

Supplier

Ontario
Quebec

Plant

Washington

0.01
0.04

Philadelphia

0.02
0.03

Denver

0.04
0.02

Buffalo

0.04
0.02

The chairs are sold in New York, Houston, San
Francisco and Chicago. Transportation costs in $/chair
between the cities and plants are listed in Table 3.3.
Finally, Table 3.4 shows the minimum demand that must
be satisfied, the maximum demand that must be satisfied
and the selling price for chairs in each city.

It is desired to find the optimal production and
shipment so as to maximise profit. A mathematical
statement of this problem is set out below.
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Table 3.3. Transportation cost between plants and cities (unit
cost $/chair)

A mathematical statement of the objective function and
linear constraint relations

Plant

Washington
Philadelphia
Denver
Buffalo

City

New York

1.00
3.00
3.00
8.00

Houston

1.00
6.00
1.00
2.00

San
Francisco

2.00
7.00
5.00
1.00

Chicago

0.00
3.00
3.00
4.00

Maximise profit

4 4

^^ *^ \pk yik j yjk jk yik/
i-l k-l

subject to the constraints:
minimum order amount of the

2 zy ^dt i=\,2

2 4

- 2 I
i-ii-

timber

Table 3.4. Selling price and demand restrictions by city

City

New York
Houston
San
Francisco

Chicago

Selling
price
per chair
($)

20.00
15.00

20.00
18.00

Demand

Maximum

2000
400

1500
1500

Minimum

500
100

500
500

Subscripts and dimensions

Let
i = 1,2 denote the timber merchants (suppliers),
j = 1, 2, 3, 4 denote the wood fabrication units (plants),
k = 1, 2, 3, 4 denote the chair retailers (cities).

Model coefficients (descriptors)

Let
Cj denote the cost of producing one chair at wood

plant j ,
n} denote the minimum production of chairs at

wood plant j ,
q} denote the maximum production of chairs at wood

plant j
denote the selling price of chairs at chair retailer k,
denote the minimum amount of chairs required by
chair retailer k,
denote the maximum amount of chairs that can be
handled by chair retailer k,
denote the shipment cost between wood plant j and
chair retailer k,
denote the shipment cost between timber merchant
i and wood plant j ,
denote the cost of wood at timber merchant i,
denote the minimum order amount at timber
merchant i.

Pic

'}*

Model variables
Let
z0 denote the quantity of wood bought from timber

merchant / and processed in wood plant j ,
yjlc denote the number of chairs bought by customer

chair retailer k from wood plant j .

production at plant j within allowable range,

2 y,k 2* n,
k-l

4

2j
k-l

7=1 ,2 ,3 ,4
q,

meeting customer demand at k within allowable range,

2
k= 1, 2, 3, 4

2 yit
3-1

stock balance at plant j ,

= 0 7=1,2 ,3 ,4 .
k-\

This problem was created using CAMPS, and descriptive
names for tables and variables were used instead of one-
character algebraic symbols. For example, ct is replaced
by PLNTCOST(J). Displays 3.1-3.5 provide a selection
of screenforms which were used to construct the model.
The method of defining names and the associated text is
illustrated by the table names screenform (Display 3.1).
The sets, indices and their ranges are defined as shown in
Display 3.2. Displays 3.3 and 3.4 illustrate how the data
tables and model variables are dimensioned. A typical
model equation (the objective function) is set out in
Display 3.5.

In order to illustrate the method of specifying linear
forms and the interactive syntactic support (of CAMPS)
which ensures consistency of dimensions, consider the
SEC: NAMES SECTION

TABLE NAME

MODEL: TANGWOOD

TEXT

PLNTCOST
PLNTMIN
PLNTMAX
CUSTPRCE
CUSTLDMD
CUSTHDMD
TCSTPTC
TCSTPTP

PLANT COST
MIN PRODUCTION
MAX PRODUCTION
CUSTOMER PRICE
MIN CUST DMND
MAX CUST DMND
TRAN COST TO CST
TRAN COST FR SRC

HIT ALPHA COMMAND« » :

Display 3.1
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SEC:

SET NAME

1. I-
2. J-
3. K-
4. —
5. —
6. —
7. —
8. —

C. L U C A S A N D G. M I T R A

INDICES SECTION

TEXT INDICES LLIM

TIMBER MERCHANTS
WOOD-PLANTS
CHAIR RETAILERS-

MODEL: TANCWOOD

ULIM STEP

2 -1

HIT ALPHA COMMAND« » :

SEC: TABLES SECTION

TABLE NAME

1. PLNTCOST
2. PLNTMIN-
3. PLNTMAX-
4. CUSTPRCE
5. CUSTLDMD
6. CUSTHDMD
7. TCSTPTC-
8. TCSTSTS-

TEXT

PLANT-COST-
MIN-PRODUCTION—
MAX-PRODUCTION—
CUSTOMER-PRICE—
MIN-CUST-DMND
MAX-CUST-DMND
TRAN-COST-TO-CST
TRAN-COST-FR-SRC

Display 3.2

TYPE

-REAL—
-REAL—
-REAL—
-REAL—
-REAL—
-REAL—
-REAL—
-REAL—

MODEL: TANGWOOD

INDICES

J
j
j
k
k
k
j-.k-
i-.j-

HIT ALPHA COMMAND« » :

Display 3.3

SEC: VARIABLES SECTION

VARIABLE NAME TEXT TYPE

1. WOFSTP— TIMBER-SHIPPED— -REAL—
2. CHFPTC— CHAIRS-SOLD -REAL—
q _^t

4
5
6.
7.
8.

MODEL: TANCWOOD

INDICES

i-J-
j-.k-

SEC: ROWS SECTION

HIT ALPHA COMMAND«

Display 3.4

ROW NAME PROFIT

MODEL: TANGWOOD

SUM
SUM
SUM
SUM
SUM

OVER
OVER
OVER
OVER
OVER

j
j
j
i
i

,k
,k
,k
.j
. j

-PLNTCOST(j
CUSTPRCE(k
-TCSTPTC (j
-TCSTSTS (i
-SCRPRCE (i

)*CHFPTC (j
)*CHFPTC (j
,k )*CHFPTC
,j )*WOFSTP
)*WOFSTP (i

,k )
,k )
(j ,k )
(i ,j )
,j )

Display 3.5

objective function (Display 3.5) which is made up of a
few (5) summation terms. For each term once the
(summation) indices are chosen (out ofi,j, k) only tables
(or constants) and model variables with matching indices
can be chosen to construct the term.

A mathematical statement of the problem is obtained

using the documentation facility of the UTILITY sub-
system and is illustrated in Displays 3.6 and 3.7. This
documentation is suflBciently detailed and can be used for
communication between analysts. In the linear ex-
pressions for the objective row and the constraint rows
each term is annotated: a feature also found in GAMS.1
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4. CAMPS AND LP MODELLING TACTICS
The modelling support provided by CAMPS follows

closely the logical steps that a modeller goes through to
formulate an LP/IP application. The first task is to
consider only the modelling requirements and extract the
quantitative relationships which are germane to model
definition. Having identified these items a compact
statement of the problem is set out with only these
pertinent details.

After identifying the key components of the model the
next task is to discover the underlying structure in the
model. This amounts to finding a way of defining
categories. The following is an illustrative list of typical
categories that are found in practical problems. Number
of (decentralised) geographical locations, number of
planning periods, number of different products, number
of grades of people, number of age groups, and so on.
Within CAMPS categories are called 'basic entities'.

*****************************************

INDICES

i -1, 2
j - I . 4
k -1, 4

TABLES

PLNTCOST(j)
PLNTMIN(j)
PLNTMAX(j)
CUSTPRCE(k)
CUSTLDMD(k)
CUSTHDMD(k)
TCSTPTC(j,k)
TCSTSTP(i,j)
SCRPRCE(i)
SCRLDMD(i)

VARIABLES

WOFSTP(i.j)
CHFPTC(j,k)

ROWS

WMINSRC(i)
MPROD(j)
XPROD(j)
CLOW(k)
THIGH(k)
BSTOCK(j)
PROFIT

CONSTRAINTS

*
* Model Documentation

* Prepared by
*
* Problem name

* Date
*
* Time
*

.CLucas

.TANGWOOD

.07/01/86

.11:45

*
*

*
*
*

*
*
*
*

*****************************************

# .. TIMBER MERCHANTS .
# .. WOOD PLANTS
# . . CHAIR RETAILERS .

# PLANT COST
# MIN PRODUCTION
# MAX PRODUCTION
# CUSTOMER PRICE
# MIN CUST DMND
# MAX CUST DMND
# TRAN COST TO CST .
# TRAN COST FR SRC .
# SOURCE PRICES
# SOURCE DEMANDS

# TIMBER SHIPPED
# CHAIRS SOLD

# MIN AMT SHIPPED .
# MIN AMT PRODUCED .
# MAX AMT PRODUCED .
# MIN CUST DEMAND .
# MAX CUST DEMAND .
# STOCK BALANCE
# MAXIMISE PROFIT #

• by.
.by.
•by.
•by.
• by.
•by.
-by.
by.
• by.

by.

• by.
•by.

.by.
•by.
by.
by.
.by.
•by.

. #

. #

. #

. WOOD PLANTS

. WOOD PLANTS

. WOOD PLANTS

. CHAIR RETAILERS

. CHAIR RETAILERS

. CHAIR RETAILERS

. WOOD PLANTS

. TIMBER MERCHANTS

. TIMBER MERCHANTS

. TIMBER MERCHANTS

. TIMBER MERCHANTS

. WOOD PLANTS

. TIMBER MERCHANTS

. WOOD PLANTS

. WOOD PLANTS -

. CHAIR RETAILERS

. CHAIR RETAILERS

. WOOD PLANTS

. . #

. . #

. . #

. . #

. . #

. . #

..and..

. .and. .

. . #

. . #

..and..

..and..

. . #

. . #

. . #

. . #

. . #

CHAIR RETAILERS
WOOD PLANTS

WOOD PLANTS
CHAIR RETAILERS

. . #

. . #

. . #

. . #

Row name WMINSRC(i)
Sum over j [ +1.000000*WOFSTP(i,j)

..ge..SCRLDMD(i)

Row name MPROD(j)

Sum over k [ +1.000000*CHFPTC(j,k)

..ge..PLNTMIN(j)

# MIN AMT SHIPPED ..restriction.. #
]

# ..for.. TIMBER SHIPPED #

# .. SOURCE DEMANDS .. #

For all i

# MIN AMT PRODUCED..restriction.. #

# ..for.

# .. MIN

For all j

Display

. CHAIRS SOLD

PRODUCTION

3.6
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4.1 Model variables

Once the ' basic entities' are defined the model (decision)
variables or the unknowns are broadly identified. An
analysis of the decision variables may also suggest new
'basic entities' at this stage. This is because the model
variables are generally detailed by 'basic entities'. For
the purpose of illustration a number of decision variables
taken from different contexts are considered below.

Production planning. The quantity Xpm of a certain
product p manufactured on a machine m. Distribution
planning. The quantity Xprn of a product/? that is shipped
from a source r to an outlet n. Inventory scheduling. The
quantity Xpt of a product p that is kept as closing stock
at the end of a period /. Project analysis. Whether one
should invest in project p at the beginning of time period

/, or not invest in this project Ypt = 1 or 0 may be
represented by this zero-one variable Ypt.

4.2 Model constraints

The constraints connect the decision variables and
express the physical restrictions of the problem. By and
large these are also detailed by 'basic entities'. A few
representative examples of these are set out below.

Material balance equation

XOt + XPt~XCt = Dt, t=l,2,...,T.

In this equation XOt represents the opening inventory,
XCt represents the closing inventory, and XPt the

Row name XPROD(j) # MAX AMT PRODUCED..restrict ion.. #

Sum over k [ +1.000000*CHFPTC(j,k)

..le..PLNTMAX(j)

# ..for.. CHAIRS SOLD #

# .. MAX PRODUCTION .. #

For all j

Row name CLOW(k) # MIN CUST DEMAND ..restriction.. #

Sum over j [ +1.000000*CHFPTC(j,k) ]
# ..for.. CHAIRS SOLD

..ge..CUSTLDMD(k) # .. MIN CUST DMND

For all k

Row name THICH(k) # MAX CUST DEMAND ..restriction.. #

Sum over j [ +1.000000*CHFPTC(j,k) ]
# ..for.. CHAIRS SOLD

..le..CUSTHDMD(k) # .. MAX CUST DMND

For all k

. . #

Row name PROFIT # MAXIMISE PROFIT ..no restriction.. #

..for.. CHAIRS SOLD

..for.. CHAIRS SOLD

Sum over j ,k [ -PLNTCOST(j)*CHFPTC(j ,k) ]
# PLANT COST

Sum over j ,k [ +CUSTPRCE(k)*CHFPTC(j,k) ]
# CUSTOMER PRICE

Sum over j ,k [ -TCSTPTC(j,k)*CHFPTC(j,k) ]
# TRAN COST TO CST ..for.. CHAIRS SOLD

Sum over i ,j [ -TCSTSTP(i,j)*WOFSTP(i,j) ]
# TRAN COST FR SRC ..for.. TIMBER SHIPPED #

Sum over i ,j [ -SCRPRCE(i)*WOFSTP(i,j) ]
# SOURCE PRICES ..for.. TIMBER SHIPPED #

. . f r. . 0

Row name BSTOCK(j) # STOCK BALANCE ..restriction.. #

Sum over i [ +1.000000*WOFSTP(i,j) ]
# ..for.. TIMBER SHIPPED #

Sum over k [ -20.000000*CHFPTC(j,k) ]
# ..for.. CHAIRS SOLD #

..eq..0

For all j

Display 3.7
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quantities to be produced. They are all decision variables
pertaining to the time period t. Dt represents the customer
demand for the product and is an input information.

Capacity restrictions
p

\Am, w = l , 2 , . . . ,M.

Here p = 1, 2, ..., P indicates the range of products
which are manufactured on machines m = 1,2, ..., M.
The rate of production is indicated by tpm, that is, the
time taken to produce one unit of product p on machine
m. Am indicates the number of hours that machine m is
available. Xpm is the production variable, and the
constraints express the capacity of production for the
machine m as limited by the number of hours of its
availability.

variable types (to define special ordered sets of type 1 and
type 2 variables) and row names (CONVEX*, REFER*)
are used to construct separable programming problems.
These facilities have been used to reformulate ten
representative nonlinear optimisation problems; our
investigations are reported in Ref. 25. In Ref. 26 we have
shown how the analysis of bounds for linear forms plays
a key role in reformulating mixed-integer, separable and
fuzzy programming problems. For instance, the algebraic
relations which are used to separate variables are also
used to derive bounds35 on the new variables introduced
in the reformulation. These bounds are essential for
piecewise linear approximation. The bounds on linear
forms are also used in transforming propositions (which
take logical forms) to equivalent mixed-integer linear
forms. Computer support in these areas offers increasing
scope and applicability of mathematical programming.

Blending requirement

In this case c—\,...,C indicates the number of
components which are used to blend p — I, ..., P
products. The components for instance could be different
crudes and products could be different types of gasoline.
The range of the index r = I, ..., R indicates quality
requirements. Typical requirements are maximum
vapour pressure, minimum volatility index, etc. Thus
bcr, Qpr are input information pertaining to linear
blending rates and quality requirements respectively. Xcp
is the decision variable indicating fractions (by volume
or weight) of component c that are blended to derive
product p. Thus

In the discussion of the model variables and model
constraints the subscripts p, m, n, c, r, t which have been
introduced indicate'basic entities', which are meaningful
in the context of the model. This highlights why it is first
necessary to define these ' basic entities' and then define
model variables and restrictions.

5. SUPPORT FOR SEPARABLE AND
LOGICAL PROGRAMMING
REFORMULATION26

CAMPS has been designed to provide support for
reformulating separable and logical (integer and fuzzy)
programming problems. For instance special table types,

6. DISCUSSIONS
CAMPS and its underlying modelling methodology have
been presented in this paper. A number of other modelling
systems have command and syntax structure whereby
the model description follows closely the mathematical
statement of the LP. The motivation behind this approach
is to force the modeller to communicate his model in a
form that serves also as a full documentation. Whereas
model documentation is essential, we believe it is
unnecessary to tie the method by which the modeller
communicates his model to the documentation require-
ments. In CAMPS the model is communicated and
updated using menus and screenforms, and documen-
tation is obtained under a separate option. In our
experience CAMPS menus and screenforms capture a
model in far fewer keystrokes than by using a modelling
language. Errors introduced due to mistyping are also
reduced. Our experimentations with the system suggest
that reformulation support and programmer's interface
are important features which should be part of any
complete modeling system.
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Two special issues of the IMA Journal of Mathematics in
Management, edited by G. Mitra will be devoted to the topic
of Mathematical Programming Modelling Systems. Four of
the references, namely, 4, 13, 28, 36 are to appear in these
volumes.

APPENDIX: A COMPARISON OF CAMPS
WITH OTHER SYSTEMS

Using the sample problem of Section 3, a comparison of
CAMPS' problem specification method with those of
ULP and OMNI is presented here. ULP is a recently
developed modelling language and incorporates many
ideas also found in CAMPS. Thus the data entry which
is separate from model definition follows the logical
sequence whereby the sets are first defined and then the

data tables. The model is then conceived in the equation
form and generated using row statements. OMNI is a
well-established matrix-generator system in which the
linear program is specified in column sequence. The
problem formulations in ULP and OMNI have not been
tested but were developed by reading user manuals;
however, the CAMPS formulation has been tested and
the resulting model optimised.

TANGLEWOOD - ULP

*RANGES

MERCHANTS:ONTARI0,QUEBEC;

PLANTS:WASHINCTON,PHILADELPHIA,DENVER,BUFFALO;

RETAILERS:NEW YORK,HOUSTON,SAN FRANCI SCO,CHICAGO;

*TABLES

PLANT COSTS(PLANTS): 5 7 3 4;
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COMPUTER-ASSISTED MATHEMATICAL PROGRAMMING SYSTEM

MIN PROD(PLANTS): 0 400 500 250;
MAX PROD(PLANTS): 500 750 1000 250;
SELL PRCE(RETAILERS):20 15 20 18;
MIN CUST DMND(RETAILERS): 500 100 500 500;
MAX CUST DMND(RETAILERS): 2000 400 1500 1500;
TRAN COST CUST(PLANTS>RETAILERS): 1.0 1.0 2.0 0.0

3.0 6.0 7.0 3.0
3.0 1.0 5.0 3.0
8.0 2.0 1.0 4.0;

TRAN COST DLR(MERCHANTS,PLANTS): 0.01 0.02 0.04 0.04
0.04 0.03 0.02 0.02;

SCR PRCE(MERCHANTS): 0.1 0.075;
SCR DMND(MERCHANTS): 8 8

UNKNOWN (X(MERCHANTS.PLANTS),Y(PLANTS.RETAILERS))
COMMENT (X(MERCHANTS.PLANTS)-AMOUNT TIMBER FROM MERCHANT TO

PLANT)
COMMENT (Y(PLANTS.RETAILERS)-AMOUNT CHAIRS FROM PLANT TO

RETAILER)

LPMAX (SELL PRCE(RETAILERS)*Y(PLANTS.RETAILERS)
-PLANT COSTS(PLANTS)*Y(PLANTS,RETAILERS)
-TRAN COST CUST(PLANTS,RETAILERS)*Y(PLANTS,RETAILERS)
-TRAN COST DLR(MERCHANTS,PLANTS)*X(MERCHANTS,PLANTS)
-SCR PRCE(MERCHANTS)*X(MERCHANTS,PLANTS))

CONSTRAIN (PLANTS:X(MERCHANTS,PLANTS)>SCR DMND(MERCHANTS))
CONSTRAIN (RETAILERS:Y(PLANTS,RETAILERS)>MIN PROD(PLANTS))
CONSTRAIN (RETAILERS:Y(PLANTS,RETAILERS)<MAX PROD(PLANTS))
CONSTRAIN (PLANTS:Y(PLANTS,RETAILERS)>MIN CUST DMND(RETAILERS))
CONSTRAIN (PLANTS:Y(PLANTS,RETAILERS)<MAX CUST DMND(RETAILERS))
CONSTRAIN (MERCHANTS.RETAILERS:Y(PLANTS.RETAILERS)

-20*X(MERCHANTS,PLANTS)-0)

TANCLEWOOD - OMNI

DICTIONARY

CLASS MER Set of timber merchants:

ONT Ontario
QUE Quebec

CLASS PLA Set of plants:
WAS Washington
PHI Philadelphia
DEN Denver
BUF Buffalo

CLASS RET
NEW
HOU
SAN
CHI

Set of retailers:
New York
Houston
San Francisco
Chicago

DATA

TABLE A

WAS
PHI
DEN
BUF

TABLE

WAS
PHI
DEN
BUF

COSTS
5
7
3
4

B
MIN
0

400
500
250

Plant costs for production of
CHAIRS

Minimum production level at each plant
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TABLE C
MAX

WAS 500
PHI 750
DEN 1000
BUF 250

C. L U C A S A N D G. MITRA

Maximum production level at each plant

TABLE

NEW
HOU
SAN
CHI

D
PRC
20
15
20
18

Selling prices to retailers

TABLE E
MIN

NEW 500
HOU 100
SAN 500
CHI 500

Minimum retailer demands

TABLE F
MAX

NEW 2000
HOU 400
SAN 1500
CHI 1500

Maximum retailer demands

TABLE

WAS
PHI
DEN
BUF

G

NEW
1.0
3.0
3.0
8.0

HOU
1.0
6.0
1.0
2.0

SAN
2.0
7.0
5.0
1.0

Cost

CHI
0.0
3.0
3.0
4.0

of transport
each

from
retai

each plant to
ler

TABLE H Costs of transport from each
merchant to each plant

WAS PHI DEN BUF
ONT 0.01 0.02 0.04 0.04
QUE 0.04 0.03 0.02 0.02

TABLE

ONT
QUE

I

PCE
0.1
0.075

Costs of timber at each timber
merchant

TABLE J Minimum demand at each timber
merchant

ONT
QUE

MIN
8
8
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FORM ROW ID

*Maximlse operating profit

OBJ-OBJ

*Satisfy minimum production at plants limit

PLN(PLA)-MIN

*Satisfy maximum production at plants limit

PLX(PLA)-MAX

•Satisfy minimum order quantity

MEN(PLA)-MIN

•Satisfy minimum customer demand limit

CUN(RET)-MIN

•Satisfy maximum customer demand limit

CUX(RET)-MAX

•Satisfy balance of wood stock at each plant

WOB(PLA)-FIX

COLUMNS

•Shipping activity for wood from merchants

FORM VECTOR X(MER)(PLA)

*The amount of timber bought from merchant

MEN(PLA)-1

•The amount of wood consumed in making chairs

WOB(PLA)—20

•The cost of buying and shipping timber

•Shipping activity for chairs from plants to retailers

FORM VECTOR Y(PLA)(RET)

•The amount of chairs produced at the plant
PLN(PLA)=1

•The amount of chairs produced at plant
PLX(PLA)-1

•The amount of chairs retailer buys
CUN(RET)=1

•The amount of chairs retailer buys
CUX(RET)-1

•Amount of chairs produced at plant
WOB(PLA)-1

•The effective profit of selling chairs
OBJ-TABLE D (PRC.(RET)) - TABLE A (COSTS,(PLA))

-TABLE C ((RET),(PLA))
RHS
FORM VECTOR RHSIDE
•Minimum plant production

PLN(PLA)-TABLE B (MIN.(PLA))
•Maximum plant production

PLX(PLA)«TABLE C (MAX,(PLA))
•Minimum order amount

MEN(PLA)-TABLE J (MIN.(MER))
•Minimum customer demand

CUN(RET)-TABLE E (MIN.(RET))
•Maximim customer demand

CUX(RET)-TABLE F (MAX, (RET))
•Note the right hand sides for the balance rows and
•objective are zero

ENDATA
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