Short Notes

Comparing Conceptual Models and Data
Flow Diagrams

In ‘Towards a tool kit for the systems analyst’,
Benyon and Skidmore discuss various ap-
proaches to systems analysis and include a
comparison of De Marco’s data flow diagrams
and Checkland’s conceptual models. This note
compares the two in greater detail and concludes
that the underlying methodologies are much
further apart than Benyon and Skidmore
suggest.

Received November 1987

1. Introduction |

A recent article by Benyon and Skidmore!
described various methods and techniques of
systems analysis, using the metaphor of a tool
kit. As part of this, they compared Data Flow
Diagrams (DFDs), as developed by De
Marco,? and Conceptual Models (CM), part
of Checkland’s Soft Systems Methodology
(SSM)* in the following terms. ‘The DFD and
the activity model of the soft systems approach
have enough common ground for .the tech-
niques to be linked together’ (p. 3).!

and concluded

‘The similarities between the approaches...
enable[s] SSAD to be used as the conceptual
modelling tool once the system has been
defined by the root definition. The visual
attractiveness of the DFD makes it more
effective than verbs’ (p. 3).!

There are, however, significant differences
between the two, and this note is intended to
outline both similarities and differences in a
more detailed way and to dispute the claim
that a DFD is to be preferred to a conceptual
model. To make the contrast sharp, the note
deals strictly with the style of DFD as
described by De Marco, although it is rec-
ognised that in practice DFDs may have
developed in different ways.

An example of a DFD, taken from De
Marco’s book, is shown in Fig. 1 together with
what is called its context diagram. A CM
based on the same situation is shown in Fig. 2,
although it is rather artificial to create a CM
without a concept, as expressed in a root
definition, from which to derive it.

2. Data Flow Diagrams

De Marco’s work is mainly concerned with
the analysis phase of a project, and here DFDs
play a central role. Analysis is seen by De
Marco as part of an overall methodology

which, in overview, involves first a survey or
feasibility study of the possible benefits and
constraints of the project, secondly a struc-
tured analysis of the existing information
system and changes to it. Thirdly, a more
detailed structured design of the system to-
gether with a study of the necessary hardware
and finally, implementation of the system
(p. 26).2

Looking in more detail at the analysis
phase, it involves the following. First, the
present situation is studied and depicted in a
Current Physical DFD which describes how
the information system works currently. This
DFD will include, for example, individual
departmental or personal names as processors
of information. The Physical DFD is then
converted into the Current Logical DFD
which shows what is done, stripped of the
particular way it is done. It is one of these
which is shown in Fig. 1. Any new re-
quirements, identified in the survey stage, are
then incorporated to produce a New Logical
DFD which can then be used to create a
number of possible realisations of this in
different New Physical DFDs. The best of
these is then selected and used to form a
structured specification which is the basis of
the design stage (pp. 27-31).2

Looking in more detail at DFDs, we can see

Old-
master
record
New-master
record
Update-
card

Diagram 0

Update-
card

Old-master
record

Build
valid
update

master

Diagram 2

Formatted-

update

New-
Master-
record

3
Replace
record
2.1
Validate
check

sum
area

master-
record Reject

Master-
area

Diagram 3

Formatted-
update Reject

Unmatched
master

Formatted
master

Formatted-
update

New-
master-
record

Figure 1. Data Flow Diagram. (This diagram is reproduced from Tom De Marco,
Structured Analysis and System Specification © 1979, p. 73, reprinted by permission of

Prentice Hall, Inc.)

376 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

¥202 14dy 60 U0 3senb Aq L6G08E/9.E/P/ L E/e101ME/|UlWOod/ W0 dno olWepeoe//:sdiy Wol) papeojumoq



Old
master

Update
information

Update
information

oud
master

from diagram 0 (Fig. 1) that a DFD consists
of blobs and arrows —the arrows showing
flows of data and the blobs the processes
which convert the input flow into the output
flow. Two other elements can be shown in a
DFD although they do not appear in this
example — files which are seen as temporary
stores of data, and sources/sinks which are
the origin and destination of the data.

The processes, being activities, should all be
verbs and De Marco stresses that both the
flows and the processes should be accurately
named. Each process can then be decomposed
into a lower-level DFD showing that par-
ticular process in more detail — so diagrams 1,
2, 3 show processes 1, 2, 3 respectively. The
whole forms what is called a levelled DFD.
Consistency between the levels is emphasised
as in, for example, a correspondence between
their inputs and outputs. The context diagram
is really the top-level diagram showing the
overall input(s), transformation and output(s)
of the system.

In constructing a DFD, primary importance
is placed on the data flows rather than the
processes — it should depict the situation from
the data’s point of view. The arrows are seen as
pipes through which packets of data flow, and
these are laid out first. The processes are then
the transformations necessary to convert the
input into the output. DFDs are not supposed
to show control as in a flow chart, nor any
operations of the people processing the data,

Validate
checksum

SHORT NOTES

Update
masterfile
record

Check
card
sequence

Re-format
card

Match
records

Re-format
output

Expand
record
area

Replace
record

Figure 2. Conceptual Model.

merely the possible paths taken by an item of
data.

3. Conceptual models

The SSM* is a general methodology for
improving problem situations in which the
CM plays a central role. Briefly, after devel-
oping a rich picture of the situation, various
ideas or concepts of potential relevance are
explored by way of root definitions (RDs) and
CMs. Whilst these are born out of the actual
situation, their exploration is done in an
essentially logical or conceptual way, removed
from reality, in order to form a contrast with
the real world. This contrast forms the basis
for a discussion, among the actors involved, of
possible beneficial changes.

The RD is a concise but detailed description
of a system relevant to the problem. This
definition is then expanded into a list of the
activities which such a system must necessarily
perform. The activities will all be verbs
describing what must be done, not how it
could be or is implemented. The list of the
minimum necessary activities and the logical
relations between them are drawn in a dia-
gram. These relations show only the logical
ordering of the activities —i.e. which go in
sequence and which may carry on in parallel.
They do not particularly show flows of

checksum

New master

Update
information

Add

New
master

materials, information, control, etc., although
any of these may be the reason why one
activity must be completed before another.

Having produced a first-level CM showing
the minimum necessary set of activities, further
levels of resolution can be obtained by treating
each of the activities in turn as a named system
and generating an RD and set of activities.
These can be shown on the same diagram, as
in Fig. 2.

4. Similarities

Clearly there are many obvious parallels.

(i) First, there is an overall diagram show-
ing the basic input, transformation and output
of the system, and both emphasise that this
must be consistent — the input must logically
be capable of being converted into the output.
De Marco does not consider this diagram
vital, merely saying:

‘Drawing a context diagram may seem like a
trivial formality. It serves only one purpose
...to delineate the domain of our study...I
propose, however, that you take the extra five
minutes to draw the (admittedly redundant)
Context Diagram’ (p. 75).2

The SSM would place more importance on
this diagram, as it shows the central activity of
the conceptual system being developed.

(i) In the main diagrams, the blobs are

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 377

¥202 14dy 60 U0 3senb Aq L6G08E/9.E/P/ L E/e101ME/|UlWOod/ W0 dno olWepeoe//:sdiy Wol) papeojumoq



activities or processes of transformation and
50 must be described by verbs. Both emphasise
that the logical consistency of the diagram is
important. 4/l the blobs should be activities
described by verbs, unlike many systems
diagrams which indiscriminately mix all
manner of categories, and it is important that
the names accurately reflect the transform-
ation of input to output — difficulty in naming
activities or flows usually indicates a poorly
conceived model.

(iii) In a DFD, the arrows represent flows
of data as if they were actual pipes with
chunks of data flowing through them. They
are named ‘to represent not only the data
which moves over the pipeline, but also what
we know about the data’ (p. 54). In a CM,
the arrows are more general, representing the
logical relations between activities —i.e. the
dependence of one activity on others. Such
dependence might, of course, be because one
activity requires-the information produced by
another, so that a CM could be made specific
to a set of information-processing activities
and their flows. Both diagrams, however,
show logical flow, not a flow of control as in a
flow chart. ‘ A data flow is not a representation
of a flow of control...another thing a data
flow is not is an activator of a process’ (p.
54).2

(iv) Both involve the same top-down de-
composition approach. Beginning “with the
top-level diagram, each bubble can be split up
into its own set of activities and flows. These
can be shown either in different diagrams or
the same one. In the SSM this process of
splitting up an activity is helped by defining a
root definition for each higher-level activity
and then expanding this into its own set of
minimum necessary activities. There is no
equivalent approach in DFD, although guide-
lines are offered (p. 82).% Both stress that the
lower-level diagram must match up logically
with the rest of the higher-level diagram.
Thus the inputs and outputs of a lower-level
diagram must correspond exactly with its
parent activity.

(v) Finally, both emphasise developing
models which depict what happens logically,
rather than how it happens to be realised in a
particular situation. In some ways this is the
heart of the SSM — the logical development of
a concept away from the actuality of the
situation in order to provide a contrast or
comparison. As Checkland states:

‘In order to service this debate [about potential
changes - JM] it should be clear that the
“below the line” models of some human
activity systems are not models of “ what is” in
the real world. Real world manifestations of
human activity are of a quite extraordinary
richness and complexity. “Below the line” a
model will contain a structured set of activities
which expresses with great purity a particular
view of the system named in the Root
Definition’ (p. 42).6

Similarly, after describing the current situation
in a physical DFD, De Marco’s next step is
to

““logicalize” our model of the current en-
vironment ... we remove the physical check-
point items, replacing each one with its logical
equivalent... A particular implementation of
policy is replaced by a representation of the
policy itself. The underlying objectives...are
divorced from the methods of carrying out
those objectives’ (p. 28).%

SHORT NOTES

5. Differences

Despite the undoubted similarities, there are
fundamental differences, most of which stem
from the methodologies as a whole and their
respective philosophies.

(i) In De Marco’s DFD the flows of data
have primacy, the activities are merely those
processes which convert the input flow into
the output flow. In SSM, in contrast, it is the
activities which play the central role. The
development of a CM begins by specifying a
list of the activities necessary for the named
system to be as described. If information is
involved, it would be that produced by, or
necessary to support, the activities. This seems
much better as a means of justifying the
particular data flows. It must surely be the
case that the activities of a system come first
— it is, after all, the activities which it carries
out that are the whole reason for the or-
ganisation’s existence. A company exists to
make and sell products, not to transform form
PT 11 into form OY 76. To the extent that
this is lost sight of in actual organisations,
problems develop, and to formalise this dis-
placement of ends by means in a methodology
is surely to demand trouble.

(i) The DFD, and De Marco’s whole
approach, is based on a description of the
current situation as if is even though it is
expressed in logical rather than physical
terms. It appears to take for granted that it is
largely the current system (warts and all) that
is to be reproduced, albeit with some extra
facilities. Indeed, it explicitly limits itself to the
process of analysis and has very little to say
about the design of systems or the generation
of agreed objectives. It offers no help in
addressing questions such as: Why does the
system exist as it does? Is it the best system? Is
there agreement about what the system should
be doing? What if this is an entirely new
development with no existing system? It may
be argued that logical DFD could be entirely
new, but there is little guidance or help in De
Marco’s method for developing one.

A CM, on the other hand, is not intended as
a model of what exists, nor even a model of
what ought to exist, but a model of a concept
or notional system that may be helpful in
agreeing beneficial changes. It could be that
the concept is intended to match what is there
(Wilson’s approach® recommends developing
an agreed model of the ‘primary task’ of the
organisation or department) but it could
equally well be something radically new. What
is important, however, is that it is the result of
the development of a single concept from a
relevant system through an RD to a CM, and
as such is likely to provide a much more
coherent and consistent model than the re-
production of the inevitable vagiaries of the
historical contingencies of the existing system.

(itf) DFDs take a strongly objectivist stance
towards the data. In common with the data
analysis approach in general, it assumes that
there is only one way of looking at or
organising the data. Indeed, that the data
contains its own unique and unambiguous
structure. In contrast to this, it can be argued
that data by itself is intrinsically meaningless.
It only becomes information when it is invested
with meaning by people. Information is not
therefore an objective fact, but dependent on
the meanings and practices of the people,
organisations and societies which use it. This
is a deep philosophical issue beyond the scope
of this article (for a useful discussion see Klein
and Hirschheim),® but it is the case that the

378 THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988

basic philosophy of the SSM is one that takes
this subjectivist viewpoint seriously.

(iv) Most generally, the whole SSAD ap-
proach essentially restricts itself to defining
problems as ‘how’ problems and then pro-
ducing well-structured technical solutions. It
is a hard as opposed to a soft systems
approach, assuming a well-defined problem,
perceived in the same way, and agreed on by
all involved - including the operators of and
users of the system — which merely requires an
efficient solution. Whilst it is admitted that the
politics and culture of the organisation are
important, De Marco explicitly (and honestly)
recognises that they are ignored in this
approach.

‘Of course, analysis is an intensly political
subject ... But most political problems do not
lend themselves to simple solutions... Political
problems aren’t going to go away and they
won’t be *“solved . The most we can hope for
is to limit the effect of disruption due to
politics’ (p. 13).%

It is precisely this which the SSM recognises
and is designed for...to attempt to bring
rationality to bear on politics (in its broadest
sense). As is being realised, computer systems
exist as part of human activity systems in
which a complex and often contradictory
pattern of perceptions and meanings have to
be structured and organised in order to achieve
successful change. A failure to recognise this
explains the lack of success of many computer
systems.

6. Conclusions

DFDs and conceptual models do have a
number of strong resemblances both in what
they portray and in how they portray it.
However, there are also major differences,
stemming mainly from the different philo-
sophies of the methodologies in which they
are embedded. The points outlined above
suggest that the Conceptual Model, developed
within the SSM, provides a much more flexible,
consistent and realistic approach to the an-
alysis of computer systems. Benyon’s con-
clusions that they are more or less the same,
with the DFD to be preferred because it is
diagrammatic, seem to stem from some mis-
taken ideas. First that CMs are merely lists
rather than diagrams. In fact a CM is most
centrally a diagram, as a look at the published
work would show.®” Secondly, a lack of
awareness of the gulf separating the phi-
losophies behind the two approaches.

Having said that, however, DFDs are more
specialised towards computer systems, with
for example files, sources/sinks and the links
into data dictionaries and structured English.
This can be very valuable in the more detailed
stages of analysis and design, and so a well-
constructed and detailed Conceptual Model
might usefully and easily be converted into a
DFD.

J.MINGERS

School of Industrial and Business Studies,
University of Warwick, Coventry CV4 7AL.

References

I D. Benyon and S. Skidmore, Towards a
tool kit for the systems analyst. The
Computer Journal 30 (1), 2-7 (1987).

¥202 14dy 60 U0 3senb Aq L6G08E/9.E/P/ L E/e101ME/|UlWOod/ W0 dno olWepeoe//:sdiy Wol) papeojumoq



2 T. De Marco, Structured Analysis and
System Specification. Yourdon, New
York (1980).

3 B. Wilson, Systems: Concepts, Method-
ologies and Applications. Wiley, New
York (1984).

4 P. Checkland, Systems Thinking, Systems
Practice. Wiley, New York (1981).

SHORT NOTES

5 H.Klein and R. Hirschheim, A com-
parative framework of data modelling
paradigms and approaches. The Computer
Journal 30 (1), 8-15 (1987).

6 P. Checkland, Techniques in soft systems
practice, part 2: building conceptual
models. Journal of Applied Systems
Analysis 6, 41-49 (1979).

7 P. Checkland, Achieving ‘desirable and
feasible’ change: an application of soft
systems methodology. Journal of the
Operational Research Society 36 (9),
821-831 (1985).

Information Systems Development: A tool kit
is not enough

In the paper ‘Towards a tool kit for the systems
analyst’, Benyon and Skidmore® make a useful
contribution to the present debate concerning
information systems methodologies.

Received October 1987

The paper develops the taxonomy work in
Wood-Harper and Fitzgerald,? incorporating
the important later work of Mumford!'®-'® on
participation and Dearnley and Mayhew? and
others on prototyping. Benyon and Skidmore
later suggest that the systems analyst, rather
than follow a particular methodology, in
effect produces a unique method for every
project. This is an interpretation of inform-
ation systems development which is inde-
pendently supported by our own action re-
search, and argued, with reservations, in
Avison and Wood-Harper? and evidenced in
Wood-Harper.?! The flexibility provided by a
‘cut and paste’ approach to developing in-
formation systems has many attractions which
Benyon and Skidmore do well to emphasise.
However, there are issues that ought to be
raised in the debate, and in particular we
consider a tool kit an insufficient basis on
which to develop information systems.

The classification of five approaches. 1t is
particularly difficult to classify information
systems development methodologies (see Ref.
1 for a discussion of the problem). However,
Benyon and Skidmore’s classification omits
general systems theory, expert systems, plan-
ning approaches and formal methods alto-
gether, and prototyping is not regarded as a
separate approach. The paper of Cookson®
provides support for the inclusion of general
systems theory. However, even if it is conceded
that general systems theory may not be
considered as a separate approach (it is
frequently argued that it provides only a
philosophical basis for a methodology) its
influence is pervading in information systems
methodologies. It is perhaps too early to
suggest expert systems as an approach to
developing information systems, even if
methodologies which are expert systems-
based are likely to be evident in the next few
years. However, planning approaches such as
Business Information Analysis and Inte-
gration Technique (BIAIT), described in Burn-
stine,> IBM’s Business Systems Planning
(BSP), described in Martin,? and ends/means
analysis!® are important because they empha-
sise top management needs in information
systems development. The omission of formal
methods as an information systems method-
ology is hardly unusual, indeed the present
authors would readily admit to avoidance
measures here. The area is not one where
practitioners of systems analysis adapt easily.
However, extensions of Vienna Development
Method'! and Rigorous Method? could
broaden its present sphere of influence wider

than that of software development. There is
also a good case for looking at prototyping
and also the related theme of automation as a
separate approach or separate approaches.
The MetaSystems product,'® for instance, is
much more viable than the original ISDOS
products of the 1960s. Further, although
Dearnley and Mayhew perceive prototyping
in their 1983 paper as being an added
sophistication to the traditional life-cycle
approach,” and Benyon and Skidmore regard
it as part of the participative approach,? it is
also being used as a separate methodology
(with or without participation), if that is the
‘acid test’. The later paper of Mayhew and
Dearnley!? discusses many alternative proto-
typing approaches. Should prototyping not
then have at least equal status to that of
participation, which can be used as a separate
approach (as in ETHICS),'® but in our view is
an important aspect of any sensible approach?
People ought to influence their own working
lives and should influence decisions made,
whatever approach to information systems
development is adopted.

The necessity to consider the underlying
philosophies. Benyon and Skidmore, in their
analysis of various approaches,® do not con-
sider the underlying assumptions and philoso-
phies which we believe are important. The five
approaches discussed in Benyon and Skid-
more, and other approaches to information
systems development, are (or should be) more
than mere sets of techniques (or tools and
techniques). Indeed, it was a discussion of the
various viewpoints embodied in the ap-
proaches that enabled the six approaches in
Wood-Harper and Fitzgerald,?® three within a
science (or reductionist) paradigm and three
within a systems paradigm, to be identified.
The philosophy may be implicit rather than
explicit, but it represents an important aspect
of each approach. We are particularly sur-
prised that Checkland’s work is featured in a
discussion of structured systems analysis and
design. The philosophies of the two ap-
proaches are in our view very different. Aspects
of both may be included in the same frame-
work, but not at the same stage, and they are
not equivalent. Conceptual models and data
flow diagrams are described in Benyon and
Skidmore as being equivalent. They certainly
have resemblances but, as Mingers has
shown, they are very different because of
their underlying philosophies. Adjectives such
as ‘technical’, ‘computer systems orientated’,
‘data and data flow orientated’ and ‘claims to
be objective’ could be used to describe data
flow diagrams. Adjectives such as ‘concep-
tual’, ‘systems orientated’, ‘activity orien-
tated’ and ‘overtly subjective’, respectively,
are more appropriate to conceptual models. It
is particularly interesting that Benyon and
Skidmore’s paper in The Computer Journal is
followed by one that does look at these
fundamentals in the context of the data-
modelling approach (Klein and Hirschheim)®
and this describes, through a discussion of the

underlying philosophy, the appropriateness of
various data-modelling views.

Weaknesses of tool kit approach. The idea of
a tool kit for the systems analyst is a useful
contribution and does counteract the ‘one
best way’ which Benyon and Skidmore argue
leads to ‘elaborate and bureaucratic method-
ologies’. But there are problems with this
approach, many of which are readily identified
by management services people in the ‘real
world’. Benyon and Skidmore’s ‘D.1Y. an-
alysts’, as with the ‘tradition and common
sense analysts’ (described in Veryard)!” that
operated before, are likely to produce idio-
syncratic and unmaintainable systems of vari-
able value. The tools themselves are useful,
and they might be appropriate in different
situations, but choosing which tools are
appropriate (and when they are appropriate)
is a very skilled job, and those with these skills
are few and far between. The Multiview
approach recorded in Ref. 22, which Benyon
and Skidmore mention, is a contingency ap-
proach offering alternatives, but the tools and
techniques described have to hang together
within a framework, in this case the Multiview
framework. As Wood asserts,? we must
establish ‘general principles by which we can
choose and develop tools, techniques and
methods for information systems develop-
ment’. He emphasises the need for an episte-
mological and methodological foundation —
we return to the philosophical aspects! Per-
haps we will have to wait for the development
of an expert systems approach, which might
eventually be sophisticated enough to dictate
when and which tools are appropriate. In the
meantime, we suggest that the tool kit has to
be used within a framework such as those
described in Ref. 8 or within a rather looser
framework such as the ‘explorative frame-
work’ described in Ref. 2. A reflective practi-
tioner, who may not want to follow a rigid
methodology, still needs to use a coherent
approach.

Despite the above comments and criticisms
of the paper, the work of Benyon and
Skidmore belongs to the movement in inform-
ation systems which reflects fourth-generation
languages, prototyping and participation and
which will, perhaps, break systems analysis
away from the rigid strait-jacket with which
many of the present-day methodologies re-
strict systems analysts. This limits both the
practitioners and the usefulness of the inform-
ation systems developed. Every situation is
different, and analysts should have the oppor-
tunity to explore and create a unique method
for each situation, but this can only be
achievable within an information systems
definition framework, with the analysts aware
of the underlying philosophies and assump-
tions.

D.E. AVISON*, G.FITZGERALD+t anND
A. T. WOOD-HARPER}

*Department of Computer Science, Aston
University, Birmingham, B4 7ET; 1School of

THE COMPUTER JOURNAL, VOL. 31, NO. 4, 1988 379

¥202 14dy 60 U0 3senb Aq L6G08E/9.E/P/ L E/e101ME/|UlWOod/ W0 dno olWepeoe//:sdiy Wol) papeojumoq





