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1. INTRODUCTION

The discussion on ‘ambiguity’, ‘incompleteness’ and the
related concepts ‘redundancy’ and ‘contradiction’ in the
context of decision tables is almost as old as the decision
table technique itself (see, for example, Refs 24, 7, 8 and
9). In a more recent article, Schneider®® argues in favour
of the expulsion of ambiguities by the introduction of a
rather complex set of weighting schemes.

A decision table is said to be ambiguous if ‘there is a
logically permissible piece of data which satisfies the
condition entries of two (or more) rules having different
action sets’.” Rules 2, 3 and 4 of Table 1 (and hence
Table 1 itself) are ambiguous since they contain the
combined condition state (A =Y, B=Y and C =N),
and the action sets I (rule 3), II (rule 2) and III (rule 4)
are different.

If the implied action sets are proven to be mutually
exclusive, which means that they cannot be executed for
the same piece of data, then we call the decision rules in
question contradictory. If, on the other hand, the action
sets of the overlapping rules are equal or equivalent, then
the decision rules are called redundant. Note that in the
(most common) case of not completely overlapping
rules, the redundancy is partial. Rules 4 and 5 of Table
1, for example, are (partly) redundant by the fact that
both rules specify that the common action set III has to
be executed for the case (A =Y, B =N, C = N). These
definitions are summarised in Table 2.

A decision table is defined to be incomplete if there are
some logically possible combinations of condition states
that are not included in the table. Table 1, for example,
is incomplete by the fact that the combination of
condition states (A = N, B =Y, C = Y) is not contained
in this table (supposing the latter combination is logically
feasible).

Two common features of the above-mentioned and
many other publications on decision tables are (1) their
purely theoretical point of view and (2) their exclusively
negative attitude towards both ambiguity and in-
completeness. By their theoretical nature, these publi-
cations almost completely disregard the pragmatic
context in which, and hence the reasons why, decision
tables are used. This attitude is stressed by the self-
evidence by which any problem-oriented extended-entry
decision table is replaced by the logically equivalent yet

* To whom correspondence should be addressed.

pragmatically inconvenient limited-entry decision table.

The occurrence of ambiguities is said (as, for example,
in Ref. 30) to be a degeneration of decision tables, only
existing in badly formed tables and posing basic
constraints on the applicability of the decision-table
technique. In many cases, incomplete decision tables are
complemented by the introduction of an ELSE-rule,
capturing any combination of condition states not
explicitly mentioned in the other, so-called ‘normal’
decision rules. A common practice to exclude any
confusion about ambiguities and at the same time to
facilitate completeness checking is to confine the decision-
table format to mutually exclusive, non-overlapping
decision rules.

It is our belief that the discussion on ambiguities,
incompleteness and the value of the restricted decision-
table format should be carried on in the light of the
pragmatic use of the decision table at issue. One rather
traditional classification of the use of decision tables is by
application area. In actual practice, decision tables are
used for representing program logic (as is advocated in
Refs 12 and 13) and for determining information
requirements as they are found in managerial decision
processes, prescriptive texts, etc. (as is argued in Refs 3
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and 19). The former use was criticised in Ref. 15, while
the latter use is very near to the application of formalisms
for the rule-based representation of knowledge. A
vigorous argument against the application of these rule-
based formalisms for representing law was given by
Leith.°

Another, less conventional classification of decision-
table pragmatics is by the object pursued by the person
using and/or manipulating the table. In general, one can
distinguish between the use of decision tables as (active)
tools for modelling decision processes and as (passive)
expedients for making decisions. It will be shown in the
following sections that both ambiguities and in-
completeness play a positive role in the modelling phase
(where the decision table is gradually built up), whereas
they have to be excluded from the execution phase
(where the decision table is merely interpreted). Their
positive contribution is mainly exploited when dealing
with the analysis of complex decision logic, where the
introduction of computer assistance is almost obligatory
(see also Ref. 31).

It will be argued in Section 2 that one and the same
decision situation has successively to be represented by
different formats, if one wants to fully exploit the
advantages of decision tables. This observation leads to
the notion of a ‘decision table life cycle’.

A further application of our observations is made by
comparing decision tables with rule-based representation
formalisms. It can be observed, for example, that both
terms are defined in a very similar manner when dealing
with rule-based systems (see, for example, Refs 14 and
22). Detecting ambiguities, contradictions and in-
completeness is a research area of growing importance in
designing rule-based systems.5: 14-22. 23, 26,33

In Section 3 we compare rule-based systems with
decision tables. This enables us to discuss the use of
ambiguities and incompleteness in the design of decision
tables and rule-based systems in Section 4.

2. THE LIFE CYCLE OF A DECISION
TABLE

The conventional way of discussing the merits of decision
tables is by testing them against the demands made by
users (humans and computers) of the final version of the
table. These demands are dictated by the general demand
for quick and correct decision making (i.e. interpretation
of the decision table). In what follows we call this ready-
to-use version the ‘interpretation time’ version of a
decision table; its features are discussed in Section 2.4.

Quite different demands are made by the persons in
charge of the decision modelling process and hence of the
construction of the ‘interpretation time’ version of the
decision table. Their demands are dictated by their needs
for tools that systematically and thoroughly support the
problem analysis process. Similar observations are made
by Levesque with regard to the design and use of
knowledge-based systems: ‘It is shown how different the
use of the language must be, depending on whether the
interaction involves querying or defining the knowledge
base’.’* The features of the successive ‘construction
time’ and ‘test time’ versions of a decision table are
discussed in Sections 2.2 and 2.3 respectively. In Section
2.1 we first discuss the form of the original problem
description.

2.1 Stage 0: the unanalysed problem description

Before starting the decision-modelling process, one has
to carefully examine whether decision tables are the most
appropriate tools for representing and analysing a given
problem. The answer to this question, however, is
beyond the scope of the present paper; in what follows,
we assume that this preliminary consideration has been
made.

The original description (that has to be converted into
its decision-table equivalent) can exist, as has been stated
in Ref. 3, in two different forms ; often these forms will be
intermixed.

(@) In many cases, there exists a more or less explicit
description of the decision logic. This description can
either be available in written form (as is regularly the case
when dealing with prescriptions, regulations, procedures,
etc.) or it can exist in a (quasi)structured manner in the
mind of the expert(s). In these cases, the purpose of the
use of decision tables is to analyse and eventually correct
the existing description and to standardise and speed up
the ultimate decision-making process. In essence, the
decision table is applied as a vehicle for knowledge
debugging.

(b) In other cases, there merely exists an implicit
description of the decision process to be modelled. This
situation is sometimes called an ‘a priori unstructured’
situation. By the introduction of decision tables (for
example in an interview session), one tries not only to
pursue the objectives mentioned in (a), but also to make
the decision process explicit : the decision table is used as
a vehicle for knowledge explication.

The first step in decision modelling is to make the
description as transparent and formalised as possible.
This can be done by translating the original perception of
the decision situation into an intermediate decision-
modelling language, an example of which was presented
in Ref. 20. In this language the given situation is split up
into a number of conditions (constraints), actions
(outcomes) and decision logic. Further, each chunk of
decision logic is converted into a conditional expression
(a rule). This intermediate description is a (partly)
formalised, yet unanalysed model of the given decision
situation. In many situations this model will be in-
complete, inconsistent and/or partially redundant.

Example

In the following fictitious example, we are restricting
ourselves to introducing the decision logic of an English-
like variant of the decision-modelling language proposed
in Ref. 20. We assume that there exist 3 conditions (with
respectively 3, 4, and 3 values each) and 4 actions.
Conditions are indicated by the prefix ‘CON’, condition
values by the lower-case letters ‘a’, ‘b’, ‘c’ and ‘d’
(where ‘ab’ means ‘a OR b’) and actions by the prefix
‘ACT".

<1> ACT_1 ALWAYS IF CON_2a

<2> ACT_2 IF (CON_la OR CON_2b) AND
CON_3ab

<3> NOT ACT_2 IF CON_2b AND CON_1b

<4> CON_2c IMPLIES CON_3c

<5> ACT_1 IMPLIES ACT_3 OR ACT_4

<6> CON_lab AND CON_3b AND CON_2d IS

IMPOSSIBLE
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Table 3
Conditional expression no.

1 2 2 2 2 3 7 7 8 8 8
CON_1 —a a — — b a ¢ — — —
CON_2 a — — b b b — — — — —
CON_3 — a b a b — — — ¢ ¢ ¢
ACT_ nm 2 2 2 2 — — — — — _
NOTACT. — — — — — 2 4 4 1 2 4
Rule no. 1 2 3 4 5 6 7 8 9 10 11

Note. !l = EXECUTE ALWAYS ACT_l - no exception
allowed.

<7> ACT_4 ONLY IF CON_1b

<8> ONLY ACT_3 IF CON_3c

This list of conditional expressions is thought to be a
literal translation of (part of) the original problem
statement.

End example

2.2 Stage 1: the ‘construction time’ decision table

The unanalysed description of stage 0 is first transformed
into a ‘construction time’ decision-table format. The
successive ‘construction time’ versions of a decision
table are primarily used for analysing a given problem
situation. In the optimal case, the decision modeller is
assisted by a decision-table generating program, examples
of which are given in Refs 4, 17, 19 and 34. These
generators not only manipulate and ultimately transform
the table into its ‘test time’ and ‘interpretation time’
versions, yet also give the modeller substantial support
and feedback by exploiting the decision-table format : the
decision table is used as a discipline of thought. Examples
can be found in Refs 3, 17 and 19, while the specific role
of both ambiguities and incompleteness in the design of
decision tables and other rule-based systems will be
discussed in Section 4.

Both Maes and Van Dijk* and Puuronen?® argue in
favour of the use of the extended decision grid chart in
this stage of the modelling process. A decision grid chart
is nothing but a multiple-hit decision table (i.e. a decision
table with mutually non-exclusive rules); the relations
between the conditions as well as between the actions are
added as extensions in separate tables.

Example

The logical expressions given in Section 2.1 are trans-
formed into a ‘construction time’ decision table (Table 3).

The impossible combinations and the implications of
conditions (conditional expressions <4> and <6>)
and of actions (conditional expression <5>) are put in
two separate ‘IMPOSSIBLE ’-tables:

Table 4a. Impossible combinations of conditions

Conditional expression no.

4 4 6 6
CON_1 —_ — a b
CON_2 [ [ d d
CON_3 a b b b

Table 45. Impossible combinations of actions

Conditional

expression no. 5
ACT_1 Exe
ACT_2 —
ACT_3 NExe
ACT_4 NExe

An analysis (preferably by means of a decision-table
generating program such as the ones presented in Refs 4
and 17) reveals that there exists, among other things, a
contradiction between rules no. 1 and no. 9 of table 3.
End example

In general, ‘construction time’ decision tables are
analytical in that they help the decision modeller to
analyse, to complete and to correct the decision
description being gradually built up. It will be shown in
Section 4 that both ambiguity and incompleteness play a
vital role in this analysis and debugging process. This
general nature can be translated into the following
features.

(1) Problem- and action-orientated

At each moment of the modelling process, a ‘construc-
tion time’ decision table is the translation of the instant-
aneous problem logic into its disjunctive normal form.
The conditions of a single rule have to be ‘AND’-ed,
whereas the rules themselves are interlinked by an
implicit ‘OR’-operator. This means that an expression
in the decision-modelling language containing one or
more ‘OR’-operators results in more than one rule in
the ‘construction time’ decision table. Negations in the
conditional part of the expressions are replaced by the
complementary values of the conditions.

Because of this, each rule of the table is an elementary
conditional expression, linking an action to (some of) its
controlling conditions, see also Ref. 27. An action can be
governed by more than one rule, whereas two or more
rules can be mutually contradictory. Basically, a ‘con-
struction time’ decision table shows under which
conditions the individual actions have/have not to be
executed. The same remark applies to the decision-
modelling language®* and to many texts describing
procedures or regulations.!®

The problem- and action-orientated nature of the
‘construction time’ decision table also means that the
traditional way of specifying actions (‘execute’/‘don’t
execute’) has been extended into the more subtle set of
five values:

@ cxecute (no exception allowed) (‘!” in the above
example);

@ execute unless otherwise specified in another rule;

@ undetermined for the moment;

@ don’t execute unless otherwise specified in another
rule;

@ don’t execute (no exception allowed).

This extension of the set of action values is comparable

to the distinction made by Sridharan:3 ‘rules can be

used to communicate not only permissions, but also to

specify obligations as well as prohibitions’.

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 483

16-2

¥202 I4dy 60 U0 1senb Aq 9G2811/181/9/1L £/8101e/|ulwoo/woo dno-olwsepeoe//:sdpy wolj papeojumoq



R.MAES AND J.E. M. VAN DIJK

Table 5

Rule no. 1 2 3 4 5 6 7 8 9 10 11 12
Con-1 —a a — — a ¢ — — b a ¢
Con-2 a —— b b — — — — — a a
Con-3 —a b a b —— ¢ ¢ — — —
Act nm2 2 2 2 — — — — 3 3 3
Not Act — — — — — 4 4 2 4 — —

(2) Incomplete

By its instantaneous nature, each version of the ‘con-
struction time’ decision table is in itself an incomplete
description of the decision situation. The decision-
modelling process is transformed into the process of
building the complete decision table step by step.

(3) Multiple hit

In fact, the ‘construction time’ decision table is an
intermediate form between the original insights as they
are uttered by the decision modeller and added to the
instantaneous description at one side, and the ultimate
decision model to be used by the decision maker at the
other side. By opting for a multiple-hit representation
format (i.e. a decision table with mutually overlapping
rules), one allows for the manipulation of the original
utterances. A typical manipulation is the compaction of
rules, for example by applying the iterative consensus
algorithm developed in Ref. 18. This manipulation helps
the decision modeller in clarifying his/her insight into
the problem situation (see, for example, Ref. 25 for a
discussion of this aspect).

2.3 Stage 2: the ‘test time’ decision table

The successive versions of a ‘construction time’ decision
table ultimately lead to a problem description in the form
of a huge collection of decision rules. The relation
between these rules (and between the rules of the main
decision table and those of the ‘impossible’ tables) are
implicit: there exists no synthetic view of the set of
actions to be executed for a given combination of
condition values.

A ‘test time’ decision table is the translation of a
‘construction time’ table together with its accompanying
‘impossible’ tables into its condition-orientated equiv-
alent. This means that, for the first time, a decision

modeller is confronted with a synthetic view of the
decision in which a rule no longer tells under what
conditions an action has/has not to be executed, yet
which set of actions has to be executed for a given
combination of condition values.

In actual practice, ‘test time’ decision tables are
mainly constructed at the end of the analysis phase. In
that case, they give a synthetic overview of the actual
implications of the combined conditional expressions that
are entered in the previous modelling stage and hence
they can lead to a further tuning of the decision model
under development.

Example

Suppose that during Stage 1 the ‘construction time’
Table 3 was ultimately altered into the version seen ing
Table 5 (we deliberately omit the references to the=
conditional expressions).

All obviously detectable contradictions have been %
removed from Table 5 and the ‘impossible’ tables 4a and =
4b remain the same. g

The corresponding
looks like Table 6.
End example

eoju

w

‘test time’ decision table then=

lwapeoe//:sdy

Table 6 immediately reveals the inherent drawback of &
‘test time’ decision tables, namely their compre- S
hensiveness. ‘ Test time’ decision tables, however, appear 3
to be a valuable intermediate format for finishing the =
decision-analysis process; for the first time, the decision E)
modeller is confronted with a visual, condition-orientated =
overview of the complete set of individual situations that &
can occur. Typical examples of interventions to be
undertaken by the modeller include the specification of
empty rules (where no action was specified during the
previous stage) and checking for impossible combinations
of actions (a decision-table generating program can deal
with this problem based on the ‘construction time’
representation and the impossible action table, for
example Table 4 ). On many occasions the confrontation
with a test-time decision table seems to be an eye-
opening exercise, even for the experienced decision
modeller (see also Ref. 2).

A ‘test time’ decision table is built by taking the
Cartesian product of all the previously specified condition
values. Each rule indicates the combined set of actions to
be taken for one particular combination of condition
values. Hence, ‘test time’ decision tables are (1) complete ;

202 Iudy 60 uo 1senb Aq 9G2811/18%/9/LE/810

Table 6

Rule 111 1111111222222 222223331313173:3
no. 1 23456 78901234567890123456789¢0123456
Con-1 a a a aaaaaaaaabbbbbbbbbbbbcccceccecceccececeec
Con-2 aaabbbcccdddaaabbbcccdddaaabbbcececddyd
Con-3 abcabcabcabcabcabcabecabecabecabecalhb c abc
Act-1 X X X . . . X X X . X X X .

Act-2 X X X X X X X X . X X . X X

Act-3 X X X X X X X X X X X X X X X X X X

Act-4 e, .

Impos S D S X X X X X
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Table 7

Rule 111 11111112222222222133333133
no. 1 23 456 7 89 0 1 34567890123 45678901234°56
Con-1 4 a aaaaaaaaaabbbbbbbbbbbbccecccececcececececee
Con-2 aaabbbcccdddaaabbbccocdddaaahb bbcccddd
Con-3 abcabcabcabcabcabecabecabecalhb c abcabzcabc
Act-1 X X X . . . X X X . X X X . X .0X X
Act-2 X X X X X X X . X X .0X

Act-3 X X X . . X . . . X . X X X X X X X X X . X X X X X X X X X X
Impos S ¢ X X X X X

Table 8

Rule 1 1 1 1 1 1 1 1 1 1 2 2

no. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 0 1

Con-1 a a a a a a a a b b b b b b ¢ ¢ ¢ ¢ ¢ ¢ ¢

Con-2 a a a b b b ¢ d a b b b ¢ d a — a b b d d

Con-3 a b ¢ a b ¢ — — — a b ¢ — — a b ¢ a ¢ a ¢

Act-1 X X X . . X X X X . .

Act-2 X X X X X . X X . . X

Act-3 X X X X X X X X X X X X X x X X X

(2) single hit; (3) condition orientated; (4) expanded.
Expanded ‘test time’ decision tables that are too
comprehensive can be split up into a hierarchy of smaller
decision tables.

2.4 Stage 3: the ‘interpretation time’ decision table

The final version of a decision table is merely interpreted
by its users. Both humans and computers can make use
of decision tables in order to execute a given decision
process. It has been noted elsewhere (for example, in
Refs 3 and 17) that the applicability of decision tables for
human decision making has thus far been under-exposed.

The general nature of ‘interpretation time’ decision
tables is synthetic, as opposed to the analytical nature of
‘construction time’ tables. The following characteristics
are commonly mentioned when dealing with the former
kind of decision tables.

(1) Complete. All logically feasible combinations of
data a user can be confronted with should be anticipated
in the decision table.

(2) Solution-orientated. The decision table should
contribute to correct decision making. This means that,
in the case of a human user, extended-entry decision
tables are preferable to limited-entry tables for the simple
reason that they are much more user-orientated and
hence lead to fewer interpretation errors.

(3) Optimally compressed. The use of decision tables
should also lead to fast decision making (in the case of
human users) or to minimal interpretation/execution
time (in the case of computer programs). It should be
observed that, in general, algorithms for compressing
decision tables only lead to optimal results in the case of
a decision table that is not too complex. These algorithms
take care of the interpretation time of the individual
conditions and of the rule frequencies: condition tests
demanding a great amount of time and occurring
frequently are removed by preference from as many as

possible rules of the ‘interpretation time’ version of the
table. A detailed description of compressing decision
tables is beyond the scope of the present paper. This
subject will be dealt with in a forthcoming paper, see
Ref. 21.

(4) Unequivocal. In the case of human users, both fast
and correct decision making is highly stimulated by the
use of single-hit decision tables with mutually exclusive
decision rules. It is rather unclear from the literature
whether the compression of decision tables into multiple
hit tables (with mutually overlapping rules) can lead to
decision tables that can be interpreted by computers in a
faster way than their single-hit equivalents. In the case of
multiple-hit tables, a supplementary convention should
be made on the interpretation one has to give to mutually
overlapping rules in order to avoid ambiguities. In Ref.
8 King gives five alternative conventions, four of which
represent cases where no more than one action set is
executed on each occasion the decision table is inter-
preted.

Example

Suppose Table 6 is converted into Table 7 during the test
stage.

The “test time’ decision Table 7 can be converted into
the ‘interpretation time’ decision Table 8.

The rules have been maximally contracted. Condition
3, for example, is irrelevant for Rules 7-9 of Table 7 (the
same action set Act-2 applies). These three rules have
been contracted in Rule 7 of Table 8. We further suppose
that a combination of condition values that is logically
impossible does not in fact occur during the interpretation
of the table. By this means, rules with an impossible
action can be deleted or can be contracted with other
rules.

End example

The attention paid to the decision-table format in the
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Table 9

Construction time Test time Interpretation time
Main orientation Action Condition Condition
Combinatorially complete No Yes Yes
Single or multiple hit Multiple Single Single
Compressed — No Yes

past was almost exclusively devoted to this type of
decision table. It can be concluded from the foregoing
discussion that we fully agree with the common opinion
that both ambiguity and incompleteness should be
excluded from ‘interpretation time’ decision tables.

2.5 Conclusion

Each stage of the decision modelling process requires a
dedicated decision table format. The main features of
these formats are summarised in Table 9.

Each stage in the modelling process may include some
major or minor revisions of the decision table in the
actual or in a previous format. In a further stage, the
maintenance of the decision model results in an update
of one or more of the stages described in Sections
2.1-2.4.

3. A COMPARISON OF DECISION TABLES
AND RULE-BASED SYSTEMS

The similarity of decision tables and rule-based systems
is mentioned by several authors (for example Hart®), and
more thoroughly compared in Refs 5, 26 and 34. The
most interesting points of comparison, i.e. the reasoning
mechanism, the knowledge-representation structure and
the induction process, are dealt with in the following
subsections. The motivation behind this comparison is
our belief that advances in both research fields can be
mutually fructifying. An example of this mutual interest
is given in Section 4, where the role of ambiguity and
incompleteness in the design of decision tables and rule-
based systems is discussed.

3.1 Reasoning in decision tables and rule bases

Two methods of reasoning frequently used in rule-based
systems are forward reasoning (data driven) and back-
ward reasoning (goal driven). Forward reasoning consists
of two cycles; first the known facts are looked up, then
these known facts are used to deduce new facts from the
rules. Backward reasoning consists of three cycles; first a
goal or a subgoal is chosen, secondly the rules that have
that (sub)goal as a conclusion are looked up, thirdly it is
determined whether these rules apply, and if not a new
subgoal is chosen.

Reasoning in ‘interpretation time’ decision tables is
always data driven: during the interpretation process, no
hypotheses are made concerning the actions to be
executed. We further suppose that during that stage, all
necessary condition values can be obtained from the user
(the decision maker) or can be searched for in a database.
The interpretation process is straightforward and uni-
directional: the number of known condition values
successively increases, and the number of rules that

satisfy that particular combination of condition values
steadily decreases until only one rule is still applicable, at
which moment the set of actions to be executed is
determined. If the system consists of a hierarchy of
decision tables, one or more of the actions can activate a
decision table of the next level in the hierarchy.
Further, the reasoning process in interpreting decisiong
tables is generally interrupted when encountering as
condition value that cannot be determined. The easy,5
static way around is to try to contract the decision table%
during the design of the ‘interpretation time’ version in=
such a way that as many tests as possible of that3
particular condition value are removed from the decision=
table, see Refs 21 and 25. A more advanced, dynamic®
way would be to recontract the decision table during the§
interpretation stage and hence to avoid the test of that2
condition value in the column on hand. In a lot of cases,
both approaches are unsuccessful and hence the inter-9
pretation of the decision table does not lead to theS
execution of a set of actions. 8
The reasoning mechanism of rule-based systems, on%
the contrary, is more flexible in that encountering a§
condition value that cannot be determined does not=
necessarily lead to the interruption of the reasoning S
process. The inference engine then tries to reach%
conclusions via another path by chaining rules that do®
not contain undeterminable condition values.

3.2 Rule structure in decision tables and rule bases

8 ¥/1L8Y/9/

Suppose we have a decision situation that is described by
the following seven rules: if B then F, if A & C & D then ©
G, if B& G then J, if F & H then X, if J & K then X, if <
G & E then K, if E then H.

In this example A, B, C, D, E are ‘basic’ conditions g-
(they only turn up at the left-hand side of the rules). We 2
further suppose that only the values of the basic ©
conditions can be obtained from the user or can be%
looked up in a database. All other conditions and actions
must be determined by applying the rules. Terms F, G, J, ©
H and K are ‘intermediate’ terms (they turn up at the
left-hand side of some rules and at the right-hand side of
other rules), and X is the only final goal.

This decision situation can be implemented in one
decision table (see Table 10). This decision table is
similar to a ‘construction time’ decision table (as
discussed in 2.2), with many terms appearing both in the
condition part and in the action part. Therefore the
execution of this ambiguous decision table is iterative
and hence rather laborious.

Converting this decision logic to a test time’ decision
table containing only the ‘basic’ conditions A, B,C,D
and E and the final conclusion X reveals that in fact only
conditions B and E are relevant in order to determine
whether action X has to be executed. These relations are
shown in Table 11.

anb

ve
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Table 10
A —_ Y - - - - —
B Y — Y _ - = —
C - Y - - - - —
D - Yy - - - - —
E _ - - — — Y Y
F —_ — — Y _ - —
G — — Y — — Y —
H _ = - Y - - —
J _ - - — Y —_ —
K — - — Y —_ —
F G J X X K H
Table 11
B Y Y N
E Y N —
X = Yes X —_  —
X = undetermined — X X

This example demonstrates the advantages of the life-
cycle approach. An inference engine would need to chain
rules to reach the final conclusion if the original rules
were implemented without further analysis. The analysis
results in a single-hit table that does not contain any
redundancy and therefore can be efficiently executed.
The life-cycle approach gives the decision modeller a
deeper understanding of the decision situation and
supports better decision making.

3.3 Induction and the design of decision tables and rule
bases

Several authors (see, for example, Arbab,’ Hart® and
Quinlan?® %) propose induction as an alternative method
for the design of rule bases. The advantages of their
approach are that the human expert can restrict himself
to the specification of a number of examples. These
examples are picked up by an induction mechanism that
automatically generates the more general rules of the rule
base.

The examples given by these authors, however, are
very near the concepts of decision tables and decision
trees: there is a strong separation of conditions and
actions, the rules are contracted to avoid unnecessary
condition testing and uncertainty is not allowed in the
rules. This might mean that induction is the appropriate
way of knowledge elicitation in those cases where decision
tables are well-suited alternative representations. In Ref.
20 it is indicated that knowledge generalisation can be
achieved by applying common decision-table techniques
to rule-based systems. The application of these techniques
to the induction process seems to be a promising research
area.

The induction process frequently involves the use of
probabilistic rule bases. Decision tables, oh the contrary,
are purely deterministic forms. It should however be
remarked that the impossibility of using uncertainties
and probabilities in rules is less severe than is often
stated. The rules of probabilistic rule bases are mostly
derived from examples taken from large databases (for
example patient data) and are not provided by any
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expert. Both the use and the maintenance of this type of
rule base are restricted by the inadequacy of human
experts matching their knowledge to the generated
knowledge.

4. AMBIGUITY AND INCOMPLETENESS
IN DECISION TABLES AND RULE-
BASED SYSTEMS

Both ambiguity and incompleteness are recognised as
major problems in the design of decision tables and
(more recently) of rule-based systems. A rising number
of publications on knowledge engineering is explicitly
devoted to this topic (see, for example, Refs 5, 14, 22, 23,
26 and 33). We firmly believe that the explicit recognition
of the occurrence of ambiguity and incompleteness
during the successive stages of the design process adds to
the value of the final model (whether a decision table or
a rule base). One can further infer that we argue in
favour of the application of the ‘life cycle’ concept, as
explained in Section 2, to the design of rule-based
systems.

In what follows, we discuss a number of design
problems related to different appearances of redundancy,
ambiguity and incompleteness. For each problem, the
stage of the life cycle in which it is detected and a solution
are given. Note that both the problem and the solution
are valid, independent of the question whether the
‘interpretation time’ model will be implemented as a
decision table or as a rule base. For ease of survey, we
refer to the stages of the life cycle as follows: 0 means the
unanalysed problem description, 1 the ‘construction
time’ stage, 2 the ‘test time’ stage, 3 the ‘interpretation
time’ stage.

Problem 1. No action is specified for one or more
combinations of condition values.

Occurrence. Stage 2.

Solution. Specify which action set has to be executed
for that combination of condition values, or establish
that that combination is logically impossible. One of
these two options has to be entered in the ‘construction
time’ decision table.

Problem 2. One of the actions specified is never used as
one of the executable actions in the decision table.

Occurrence. Stage 1 (or 2).

Solution. Remove the action from the set of actions or
add the appropriate action entries by entering (a) new
rule(s) (Stage 1) or (an) action entr(y)(ies) (Stage 2).

Problem 3. One of the conditions appears to be
irrelevant in the decision situation (see example in Table
13, con-2 is irrelevant).

Occurrence. Stage (2 or) 3, during the contraction of
the decision table.

Solution. Remove the irrelevant condition from the set
of conditions.

Problem 4. A decision situation is specified in a
conflicting way in two or more overlapping rules. The

Table 13

CON-1 a a a b b b
CON-2 a b c a b c
Act 1 1 1 2 2 2
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following ambiguities are possible (ACT-1 and ACT-2
are supposed to be mutually exclusive; we refer to the 5-
valued logic as presented in 2.2).

(a) ACT-1 ! and ACT-2 ! Serious contradiction that
has to be removed from the specification.

(b) ACT-1 ! and ACT-2. ACT-1 overrules ACT-2
because ‘ACT-2’ means ‘execute ACT-2 unless otherwise
specified’. This occurrence may be an indication of an
unclear understanding of the decision situation and has
in general to be further examined.

(c) ACT-1 and ACT-2. This ambiguity has to be
resolved by the decision modeller: there is no indication
of which action overrules the other one.

(d) ACT-1 (or ACT-1!) and IMPOSSIBLE. See (a),
unless one adopts the convention that ‘IMPOSSIBLE’
always overrules any other specification.

Occurrence. Stage 1 or 2. Remark that the same
problems occur when ACT-2 in the above examples is
replaced by the negation of ACT-1.

Problem 5. Not all the relevant conditions or condition
values are specified.

Occurrence. Stage 1, 2 or 3.

Solution. Add the condition or condition values to the
condition list and extend the decision tables in the
different stages in accordance. It is clear that remedying
this omission is a time-consuming activity.

Problem 6. An action that is important in the decision
situation is not specified.

Occurrence. All stages.

Solution. Add the action to the action list and to the
appropriate rules.

Problem 7. Redundancy.

Occurrence. Stages 1 and 2.

Solution. The problem of redundancy is ‘auto-
matically’ solved when the decision table is compressed.
Optimally compressed decision tables that are single hit
do not contain redundant information.
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