VDM: Axiomatising its Propositional Logic

P. F. GIBBINS

Faculty of Mathematics, The Open University, Milton Keynes MK7 6AA, England

The 3-valued truth-tables of LPF, which is both the logic of partial functions and also the logic of VDM, do not
determine the logic unless the appropriate notion of logical consequence is specified.
Three alternative notions of logical consequence are considered and LPF is axiomatised as a sequent calculus for each such
notion. The three axiomatisations employ the same introduction rules for the connectives and differ only in their axiom sequents.
The axiomatisations lead naturally to automatic theorem-provers for LPF.

Received April 1987, revised May 1987

1. INTRODUCTION

Users of VDM may well be dismayed to find that the
current version of that formal specification system!
employs a three-valued logic LPF — the logic of partial
functions — as the vehicle for its proofs that a direct
definition of a function or operation satisfies its implicit
specification.

Proofs of correctness are central to the development
method that VDM sponsors. But LPF, the logic of
VDM, is non-standard. LPF is a restriction of classical
logic: every valid argument of LPF is a valid classical
argument, but not conversely.

The software engineer who uses LPF in his proof
obligations therefore has a weaker logical apparatus at
his disposal than his less fastidious colleague who avails
himself of the full might of classical logic. Worse, LPF is
more unwieldy than classical logic. Proving results in
LPF is inherently more difficult.

How should be axiomatise LPF? And what can be
done to unburden the software engineer? The second
question suggests a large research programme which
should result in a collection of software tools making
VDM more easily usable. Among these tools should be
a theorem-prover for LPF. In this paper we first consider
the preliminary problem of axiomatising LPF.

In fact we consider several different versions of
propositional LPF. Each version of LPF that we consider
adopts the usual LPF three-valued truth-tables but each
embodies its own particular notion of logical consequence.
We axiomatise each of these versions of LPF as a sequent
calculus. Strikingly, the different versions of LPF have a
fixed set of introduction rules for the connectives and
differ only in their axiom sequents. Re-working the
various versions of LPF as sequent calculi has the
following benefits.

An anonymous referee has pointed out that two of
these three logics, LPF-1 and LPF-3, have been treated
in the publications by Cheng? and Kolestos.® A logic
similar to LPF-3, the third version of LPF, has been
studied by Blamey.*

First, proofs of the soundness and completeness of
each version of LPF become almost trivial.

Secondly, it is very simple {o obtain algorithms for
LPF versions of Wang’s algorithm.

Thirdly, sequent calculus axiomatisations of LPF are
readily transformed into resolution theorem provers. In
resolution theorem proving, one can think of the
resolution rule of inference as handling the purely

propositional aspects of classical first-order logic and the¥

unification algorithm as handling the quantificationals
aspects. One can take a similar view of quantlﬁcatronal
LPF.

o]
2

o

(‘D

Most of what is characteristically non-standard about‘“

LPF shows up at the purely propositional level.
Therefore, in this paper we concentrate on proposrtronal
LPF and leave the connection with resolution theorem
proving in propositional LPF and its extension to%

3

-

2

o

quantificational LPF to later papers. §
3
2
2. THE TRUTH-TABLES OF LPF g
In LPF the interpretations of the three logical connectives§

‘and’ (A), ‘or’ (v) and ‘not’ (=) are given by thes

O

following truth-tables in which T stands for true, Fg

stands for false and L stands for undefined. They are,=

=

incidentally, the strong truth-tables that Kleene gives forz.

his three-valued logic of partial functions.’ In Barrlnger

Cheng and Jones® the tables also appear, as does a2

proposed natural deduction axiomatisation of LPFg
which, in that paper, lacks soundness and completeness
proofs.

For A we have

A|T L F
T|T 1L F
111 L F
F|F F F
for v
viT 1 F
T|IT T T
1T 1 1
F|T 1 F
and for -
TI|F
111
F|T

We use Bool, and Bool to denote the following sets.
Bool, ={T, L, F}
and

Bool = {T, F}

510 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

(]

o

202 Iudy 60 uo 1senb Aq y0E8Y Y/

VDM: AXIOMATIZING ITS PROPOSITIONAL LOGIC

As Jones remarks (see ref. 1, p. 77) these truth-tables
are the strongest monotonic extensions of the classical
two-valued truth-tables for the corresponding connectives,
given a partial ordering on Bool, in which only L is
properly less than T and F. Just why this makes for an
appropriate choice for the thirty-tables is a matter of
philosophy as much as software engineering and we leave
the question to a later paper.

It is important to recognise that fixing the logical
connectives via these true-tables does not fix LPF. A
logic describes a class of valid arguments, and we must
define what we mean by logical consequence in LPF, a
binary relation which holds between propositions, or
between sets or lists of propositions. Note that a logic is
not concerned merely with logical truth, or, in a
propositional logic, ‘tautologyhood’. In LPF there are
no tautologies in the ordinary sense, but there are
nevertheless valid arguments.

3. NOTIONS OF LOGICAL
CONSEQUENCE

In this paper, we consider logical consequence to be a
relation between sequences of well-formed formulae
(wffs). We naturally demand that the sequences of wifs
be finite. A sequent is a pair, each element of which is a
finite sequence of wffs, so we have objects of the
following types

WiHilist = Seq of WIf
Sequent = Wfllist x Wilist

A sequent is a pair (I', A), but we employ the more
usual, and more graphic notation

I'-A
We write the concatenation of two wfflists I" and A as
A

and, given that ‘4’ is a wff, we write the concatenation
of I' and [4] and A as

I,4,A
We also abbreviate [> A and I’ -»[] as
—=A
and
r-
respectively.

A wfflist A is said to be a logical consequence of a
willist I if and only if the sequent

r-A

is valid. So what do we mean by the validity of a sequent ?
(Notice that a sequent

r-A

is valid only with respect to a definition of validity.) We
consider the following three definitions of the validity of
a sequent. The sequent

I'-A

[Valid-1] iff whenever all the wffs in T are true, then at
least on of the wffs in A is true,

[Valid-2] iff whenever all the wffs in A are false, at least
one of the wffs in I is false,

[Valid-3] iff whenever all the wffs in I are true at least one
of the wffs in A is true, and whenever all the wffs in A are
false, at least one of the wffs in I is false.

There are several notions here that need to be made
more precise, nevertheless it is clear that [Valid-1],
[Valid-2] and [Valid-3] yield different logics. (We say that
they yield different versions of LPF, namely LPF-1,
LPF-2 and LPF-3). To see this, let P and Q be atomic
wifs. (Note that all atoms are logically independent.)
Then, given the LPF truth-tables, the sequent

P,ﬂP—)Q

is valid according to [Valid-1] since ‘P’, ‘-~ P’ can never
both take the truth-value true. But it is invalid according
to [Valid-2], since ‘Q’ may be false while both ‘P’ and
‘-~ P’ are undefined. Similarly, the sequent
P-Q,-0

is valid according to [Valid-2] since ‘Q’ and ‘-~Q’ are
never both false. But it is invalid according to [Valid-1]
since ‘P’ may be true while both ‘Q’ and ‘-~Q’ are
undefined. Clearly, neither of these sequents is valid
according to [Valid-3]. It is also clear that [Valid-1],
[Valid-2] and [Valid-3] are equivalent in classical two-
valued logic.

It is worth noting that LPF-2 has the strange feature
that some sequents of the form

- A

are valid, even though ‘4’ is not an LPF tautology.
Actually there are no LPF-tautologies, if by ‘tautology’
one means a wif which always takes the truth-value T for
all assignments of truth-values to its component atoms.
Thus in LPF-2 we have

- PVv-P

so that one cannot say that a tautology of LPF-2 is a
special case of a valid sequent whose premises are null
(Cp. ref. 1, p. 8). There is naturally a dual feature in
LPF-1 in which there are no inconsistencies in the clas-
sical sense — no wffs which always take the truth-value F
for all assignments of truth-values to its component
atoms —even though there are valid sequents of the
form IR

In none of the LPF’s do we have a wff which always
take the truth-value T, or which always takes the truth-
value F, or indeed which always takes the truth-value
1.

In this respect the LPF’s are expressiveness-incomplete,
a point which I owe to an anonymous referee. Those
truth-functions which always take a fixed truth-value
cannot be expressed. The situation can easily be remedied
by extending the syntax of the LPF’s with propositional
constants which always take one of the three truth-values
for all assignments of truth-values to the atoms of the
language of the LPF’s.

4. RULES OF INFERENCE AND Wffs

A rule of inference is a set of pairs. The first element of
each pair is a sequent, the conclusion of an instance of the

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 511

¥20¢ I4dy 60 U0 1senb Aq $0€811/015/9/1L €/8101e/|ulWwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

P. F. GIBBINS

rule, and the second element is a list of sequents, the
premises of the instance of the rule. In our versions of
LPF the premises of an instance of a rule will be either a
one- or a two-list. We graphically represent a rule of
inference by listing the form of the premises above the
form of the conclusion with a line (representing ‘infer-
ence’) separating premises from conclusion.

If a sequent is valid according to a definition of
validity, we say that it is valid under that definition of
validity. A rule of inference is then valid (under a
definition of validity) iff for all its instances, whenever the
premises of an instance of the rule are valid, the
conclusion of that instance of the rule is valid.

Some classically valid rules of inference fail to be valid
in some versions of LPF.

Thus consider

I,A-A
I'->A -4

This is a version of the standard classical ‘ —-introduction
on the right’ rule. It could only be invalid if for one of its
instances, the premise ‘I, 4 - A’ were a valid sequent
and the conclusion ‘T" —» A, =4’ were an invalid sequent.

Classically, the conclusion would be an invalid sequent
iff it is possible for all the wffs in I" to be true and all the
wffs in A, -4 to be false. But in that case ‘A’ would be
true, as would all the wffs in I', A. Therefore ‘I, 4 > A’
would be invalid.

However, given the definition [Valid-1], the rule (-:
right) is invalid. For consider the instance

A—- A
—)A, —|A

(~: right)

The premise is clearly valid under [Valid-1], but the
conclusion is not since both ‘4’ and ‘-4’ may be
undefined.

(-:right) is a valid rule of inference under [Valid-2].
But the classical rule (—:left)

r-4,A

F oA Al

is not, as may be seen by an argument similar to that
above. (-:left) is valid under [Valid-1], but neither (-:
right) nor (-:left) is valid under [Valid-3]. Therefore, if
the introduction rules are to be common to LPF-1, LPF-
2 and LPF-3, they must look somewhat different from
the standard classical rules.

In a sequent calculus, there is usually a rule of
inference dealing with the introduction of a formula
dominated by each connective on the ‘left’ and the
‘right’. However, the introduction rules common to all
the LPF’s take a slightly different form. We have the
usual classical rules for v and A . But the rules involving
- are different, as the examples above might suggest.

We now make clear what we mean by wff, and also
literal sequent, rule of inference, deduction tree, and proof
of a sequent.

Wils
The abstract syntax of wffs is given by
WIif::= ATOM | -Wf{f| Wff Bin_Op Wff
Bin_Op:= A|V

But it is worth giving a concrete syntax which reflects the
precedence and associativities of the binary operators.

(WIF):: = (Conj_WIF) | (Conj_WIF) A {WHT)
{Conj_Wff)::= (Neg_WI) | (Neg_WIf) v {Conj_WI{f)
(Neg_WIT)::= (Factor) | ~(Neg_wff)
(Factor)::= {Atom) | ({Wf))
(Atom):=A4|...|Z

from which the precedence of A over v follows, as does
the right associativity of both. More importantly, it
follows by structural induction that any wff which
contains a connective, has a dominant connective and
there is an unique occurrence of that connective which is
the dominant occurrence. This fact is important in the
soundness and completeness proofs that follow.

A literal is a wff which is either an atom or the
negation of an atom. So we have

Literal = Atom|-~Atom

A sequent whose wifs are all literals is a literal sequent so
that

Literal_Sequent = (Seq of Literal) x (Seq of Literal)

We pick out some of the literal sequents and label
them axiom sequents.

5. AXIOM SEQUENTS

A literal sequent S satisfies

[Axiom-1] if and only if for some literal L, S is of the

form
I,LLA-O,L Y

that is, if and only if there is a literal common to both
sequences of wffs in the sequent;

[Axiom-2-left] if and only if for some atom A, S is of the

form
I'A,A,-4,0->VY¥

that is, if and only if an atom and its negation appear in
the ‘left’ sequence of wffs in S;

[Axiom-2-right] if and only if for some atom A4, S'is of the

form
F->AA,0,-4,%¥Y

that is, if and only if an atom and its negation appear in
the ‘right” sequence of wffs in S.

LPF-1, -2 and -3 differ not in their introduction rules,
but only in their axiom sequents, which are as follows:

LPF-1

A literal sequent is an axiom sequent of LPF-1 if and
only if it satisfies either (1) Axiom-1 or (2) Axiom-2-
left.

LPF-2

A literal sequent is an axiom sequent of LPF-2 if and
only if it satisfies either (1) Axiom-1 or (2) Axiom-2-
right.

512 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 60 U0 1senb Aq $0€811/015/9/1L ¢/8101e/|ulwoo/woo dnoolwsepeoe//:sdiy wolj papeojumoq

VDM: AXIOMATIZING ITS PROPOSITIONAL LOGIC

LPF-3

A literal sequent is an axiom sequent of LPF-3 if and
only if it satisfies either (1) Axiom-1 or (2) both Axiom-
2-left and Axiom-2-right.

A rule has the type
Rule = (Seq of Sequent) x Sequent

so that a particular rule of inference is an object of type
Rule. It will be a set of pairs, the first element being a
sequence of sequents — the premises of the rule — and the
second element being a single sequent — the conclusion of
the rule. The best way of describing the rules of a sequent
calculus is as a collection of such items which follow a
pattern. Each of the patterns is given a name and is
associated with a particular rule. So we have the
introduction rules of LPF, so-called because the con-
clusion ‘introduces’ an occurrence of one (or more) of
the connectives. In effect, we have a predicate true of the
rules of LPF, namely what we call (A :left),
right), of type

ey (072

Is_Introduction_Rule: Rule — Bool

which we define in the conventional way as follows.

6. THE INTRODUCTION RULES

F,A,A,B—»@)(A.left)
TLAANBA—®

@—»F,A,A;@—»FA,B(A. ight)
O—T,4AANB A ‘ng

INAJA-0O;T,A,B->0 .
VB Ao (Vi
@-T,AAB, .
@>T,AvB ALY misht)

I'A,-4A-0;T',A,-B->0

Ty VY R
@-T,A,~4,-B .
®@=T,~(AnB), A/ rieht)
I'A -4, -B—>0© .
l",ﬂ(AvB),A—»G)(_‘V'left)

@-T,A-4;0 5T,A,-B, . ht)
®~T,~(AvB,A L VTE

[LAA-©
T, A, A6 e
0T, A 4 .
O-T, 4, A0 TEN

7. PROOFS IN LPF

Our discussion of the meta-theory of LPF is informal.
Notice that though LPF is a non-standard logic in which
there are three truth-values, its meta-theory is formulable
in a standard two-valued meta-language. For example, a
sequent is either probable or not provable in LPF, its
provability is never ‘undefined . Therefore we can reason

informally in the meta-language and sketch the proofs of
our main results. (It would be possible to obtain the
following results using LPF in the metalanguage since
each of our lemmas and theorems employs only inductive
and constructive reasoning. The meta-theory of LPF is
describable using LPF and so LPF is auto-descriptive.’
We begin with the important notion of a deduction
tree. A deduction tree is a tree of sequents. A literal
sequent is a deduction tree. So is a tree whose root is a
sequent and whose subtrees are deduction trees, provided
that the root of the tree together with the roots of its
immediate subtrees are an instance of one of the
introduction rules. In the style of VDM, we have

Deduction_Tree = Literal_Sequent|
Compound_Deduction_Tree

Compound_Deduction_Tree:: seq:
Seq of Deduction_Tree
s:Sequent

where

inv-Compound_Deduction_Tree(mk-Compound_
Deduction_Tree (seq, s))
A Is_Introduction_Rule (Roots (seq), s)

and

Roots: Seq of Deduction_Tree — Seq of Sequent
Roots (seq) A
cases seq of
[1-11]
cons (mk-Literal_Sequents (s), t/) » cons (s, Roots
)
cons (mk-Compound_Deduction_tree (seq, s), t/) -
cons (s, Roots (t))
end -

A proof is a special case of a deduction tree, in which

all the leaves of the tree are not merely literal sequents,
but axiom sequents.

Is_Proof_Tree: Deduction_Tree — Bool
Is_Proof_Tree (1) A
cases ¢ of
mk-Literal_Sequent(s) — Is_Axiom_Sequent(s)
mk-Compound_Deduction_Tree (seq, 5) —
Is_Seq_Proof_Trees (seq)
end

Is_Seq_Proof_Trees: Seq of Deduction_Tree — Bool
Is_Seq_Proof_Trees (seq) A

cases seq of

[1-1]

mk-Seq_Deduction_Trees (cons (hd, tl))

—Is_Proof_Tree (hd) A Is_Seq_Proof_Trees (¢/)
end

This leads to
Lemma 1

To every sequent there corresponds a deduction tree.

Proof. By structural induction on deduction trees.

If a deduction tree is a literal sequent then it is its own
deduction tree.

If a sequent is not a literal sequent then the wffs in its
premises and conclusion may be dismantled using the

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 513

CPJ 31

¥20¢ I4dy 60 U0 1senb Aq $0€811/015/9/1L €/8101e/|ulWwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

P. F. GIBBINS

introduction rules applied in reverse, that is, from
conclusion to premises. The process can be iterated until
termination, at which point the leaves of the tree are
literal sequents.

If the wff processed at a given state is an atom, then it
needs no dismantling. If the wff is either a conjunction or
a disjunction then it generates either one or two subtrees
each of whose root sequent(s) has one less occurrence of
a logical connective. If finally, the wff is a negation, then
if it is the negation of an atom, its dismantling terminates
in a literal, else if it is a double negation, both negations
may be removed by the - rules, else it is the negation of
a conjunction or a disjunction in which case one of the
‘mixed’ (- A, etc.) rules may be used. In each case, the
number of occurrences of logical connectives in the root
sequent(s) are reduced. Hence the process terminates in
a deduction tree.

8. SOUNDNESS AND COMPLETENESS

In what follows we employ the method set out in
Cleaves treatment of the logic of indefiniteness.®

We need definitions of a valuation of WFFS and a
definition of validity in LPF.

We define a class of atomic valuations, each of which
is of the type

Atomic_Valuation = ATOMS - Bool,

Each admissible atomic valuation is a total function.
Admissible valuations have a larger domain than atomic
valuations, each being of type

Valuations = WFFS — Bool,

A sequent is valid, according to the definitions LPF-1,
-2, -3 iff it is true for all the appropriate admissible
valuations. The important point is that the admissible
valuations and the atomic valuations are in 1-1 corres-
pondence. Every atomic valuation generates, and may be
extended to, an admissible valuation. Equally, every
admissible valuation may be restricted to an atomic
valuation. This follows (by structural induction) from the
facts that in the BNF grammar for well-formed formulae,
the class of wffs is freely generated, and the fact that LPF
is truth-functional. Therefore a sequent is valid iff it is
valid for all atomic valuations.

Lemma 2

A literal sequent L is valid <> L is an axiom sequent.

Proof
LPF-1

(<=). If a literal sequent I — A is an axiom sequent then
either there is a literal common to both I" and A, in which
case whenever all the wffs (literals) in I are true so is at
least one in A, or there is a pair of complementary literals
in T, in which case at least one wff (literal) in A is true
whenever all the wffs (literals) in T are true, since the wffs
in I" never are all true.

(=) We show that if a literal sequent I" = A is not an
LPF-1-axiom sequent then I' - A is not LPF-1-valid.

Let I' - A be a literal sequent which is not an LPF-1-
axiom sequent.
Then

(1) there is no literal L such that LeI and LeA,
and
(2) there is no atom P such that PeI and -PeTl.

We show that there is a total function v: ATOMS —
Bool, as defined below which, since it is a function may
be extended to a valuation val which refutes I’ - A.

Let v(a) =if a €l then T
else
if €T then F
else 1

Note that by the final ‘else’ all atoms which fail toO
occur in both I" and A take the value L. Note also that:
by (2) I contains no complementary literals, so all them
literals in I" may be ass1gned T.

Note that by (1) there is no literal common to both 1"‘“
and A, so none of the literals in A need be assigned T. 3
However, if a literal L in A is the negation of an atom inZ
T, or if it is an atom whose negation is in ', then L must 2
be assigned F. In all other cases it may be assigned 1.

Clearly v is a function. Since v is a function it may be &
extended to an admissible valuation val on WFFS. 3
Under val all the literals in I" are true while none of theo
literals in A is true. Therefore val refutes I' — A which 1s1j
therefore not valid.

pap

apeoe//:s

0

LPF-2

(<=). If a literal sequent I"' - A is an axiom sequent then2
either there is a literal common to both I" and A, in which ©
case whenever all the wffs (literals) in A are false so is atg
least one in A, or there is a pair of complementary literals 2
in A, in which case at least one wff (literal) in I is false &
whenever all the wffs (literals) in A are false, since theg
wifs in A never are all false.

1IHe/|uflwoo/woo:

(=). We show that if a literal sequent I' — A is not an
LPF-2-axiom sequent then I' — A is not LPF-2-valid.

As before, let I" — A be a literal sequent which is not an
LPF-2-axiom sequent. Then >

(1) there is no literal L such that LeI" and LeA
and

(2) there is no atom P such that P such that Pe A and =
-PeA.

Again we show that there is a total function v:
ATOMS - Bool, as defined below which, since it is a
function, may be extended to an admissible valuation val
which refutes I' — A.

N
o
<
«Q
c
(]
[%2]
—_
o
5
O

Let v(a) = if €A then F
else
if ~acA then T
else 1

An argument similar to that for the LPF-1 case shows
that v is a function. As before, since v is a function it may
be extended to an admissible valuation val on WFFS.
Under val all the literals in A are false while none of the
literals in T is false. Therefore I' — A is not valid.

514 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

VDM: AXIOMATIZING ITS PROPOSITIONAL LOGIC

LPF-3

(<=). If a literal sequent I' — A is an axiom sequent then
either there is a literal common to both I" and A, in which
case whenever all the wffs (literals) in A are false so is at
least one in A, or there is a pair of complementary literals
in I' and a pair of complementary literals in A. In the
latter case at least one wif (literal) in A is true whenever
all the wffs (literals) in I" are true, and one wff (literal)
in I is false whenever all the wffs (literals) in A are false,
since the wffs in I" never are all true and the wffs in A are
never all false.

(=). We show that if a literal sequent I' = A is not an
LPF-3-axiom sequent then I' — A is not LPF-3-valid.

As before, let I' — A be a literal sequent which is not an
LPF-2-axiom sequent.

Then

(1) there is no literal L such that LeI’ and LeA,
and

(2) it is not the case that there are atoms P, Q such
that PeI’ and -PeT’, and Q€A and -Q€eA.

Again we show that there is a total function v:
ATOMS - Bool, as defined below which, since it is a
function, may be extended to an admissible valuation val
which refutes I — A.

Let v(a) = if a €I then if ~a €l then L

else T

else

if o€l then F

else

if €A then if ~a €A then L
else F

else

if ~acAthen T

else L

The function v is, incidentally, elegantly displayed as a
matrix in ref. 8, pp. 320-321. According to v, comple-
mentary literals both of which appear in either I" or A
(but not of course in both) are assigned L. v may be
extended as before to a function val which refutes I' — A.

Lemma 3

The LPF introduction rules are validity-preserving in
both directions.

Proof. Consider the following linear ordering < on
Bool, :

where the (reflexive, transitive closure of the) arrow ¢ -’

represents <. This is of course not the partial ordering of

Bool, considered by Jones in his remarks on the

monotonicity of the LPF connectives (ref. 1, pp. 76-77).
Define the functions

min: Bool, x Bool, — Bool,

max: Bool, x Bool, — Bool,

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 515

to conform to the truth-tables, so that
min (b,, b,) = b, A b,
max (b,, b,) = b, Vb,

where b,, b, € Bool,. These definitions do conform to our
linear ordering, in that max (T, F) = T and max (F, 1) =
1 etc., etc.

By analogy, we can define the functions mingg, and
maXgge, each of which takes a Wfflist and a Valuation
and yields an element of Bool,.

mingg, : Willist x Valuations — Bool,
minggo(/, v)A
cases / of

[1-T

cons(hd, tl) — min (v (hd), mingg,(¢))
end

and similarly

maxgy,: Whlist x Valuations — Bool,
maxggo(/, V) A
cases / of

[(1-F

cons(hd, tl) - max(v(hd), maxggo(tl))
end

It is easy to see that we can re-write the conditions on
the validity of an LPF sequent I' - A in the following
ways:

[Valid-1] (Vve Valuations) . (mingg,
(T, v) = T=>maxgg(A, v) =T)

[Valid-2] (Vve Valuations).(maxggq
(A, v) =F =>ming (I, v) = F)

[Valid-3) (VYve Valuations) . (mingq
(T, v) < maxggq(A, v)

Now we can check that each of the introduction rules
preserves validity in both directions for each of the three
definitions of sequent validity.

This is quite straightforward for rules like (A :left)
whose premises consist of a single sequent. In this
particular case the result is obvious because

(Vve Valuations). (mingo(T', 4, B, A, v) =
mingg (I, AA B, A, v))

For the rules which have two sequents in their premises
we take (V :left) as typical. Here we have

(Vve Valuations). (mingo(I', AV B, A, v) =
max (minggo(T, 4, A, v), mingo(T', B, A, v)))

so that if
I',AvB,A—>0®

is valid, so are
I'A,LA-® and I,A,B—>0

and vice versa.

A similar calculation handles the remaining rules of
inference.
Theorem (Soundness and Completeness)

A sequent S is the root of some proof tree <> is
valid.

17-2

¥20¢ I4dy 60 U0 1senb Aq $0€811/015/9/1L €/8101e/|ulWwoo/woo dno-olwsepeoe//:sdiy wolj papeojumoq

P. F. GIBBINS

Proof. From Lemma 2 and 3.

A sequent generates a deduction tree. A sequent is
valid iff the deduction tree it generates has leaves which
are all and only axiom sequents.

Finally, notice that the relationship between LPF-1,
-2 and -3 and classical logic is as illustrated in the
following diagram. The class of valid sequents of LPF-3
is clearly the intersection of the classes of valid sequents
of LPF-1 and LPF-2.

Of these logics, the current version of VDM chooses
LPF-1. Just why is a matter of the philosophy of
software engineering, a subject we leave to another

paper.

REFERENCES

1. C. B. Jones, Systematic Software Development
VDM. Prentice-Hall International (1986).

Using 6. H. Barringer, J. H. Chengand C. B. Jones, A logic coverin
infiniteness in program proofs. Acta Informatica 21 251-26

Classical logic

\elo-g

2. J. H. Cheng, A logic for partial functions, Ph.D. Thesis, (1984). 2
University of Manchester (1986). 7. N. Rescher, Many-Valued Logics, pp. 84 ff. McGraw-Hig
3. G. Kolestos, Sequent calculus and partial logic, M.Sc. (1969). =
Thesis, University of Manchester (1976). 8. J. P. Cleave, The notion of logical consequence in the logig

4. S. R. Blamey, Partial valued logic. D.Phil. Thesis, Oxford

University.

20, S.307-324 (1974).

5. S. C. Kleene, Introduction to Metamathematics, p. 334.

North-Holland Publishing Co. (1952).

Q
-
-
=1
]
>
8
a
L
2
Q@
=
&
8
-
2
w2

N
>
=
~
~
3
8
&
S
%
»
NG
3
>
&

>

Announcement

3-6 JuLy 1989

Seventh International Conference on Software
Engineering for Telecommunication Switching
Systems, Bournemouth.

Aims

To provide a forum for the exchange of ideas
and the discussion of problems concerning
software for telecommunication systems. The
conference seeks to examine future trends and
needs based on current practical experience. It
also seeks to encourage contact with practi-
tioners in related fields of application.

Based on the successful format of the six
previous conferences, the programme will be
limited to a maximum of about 35 papers.
Emphasis will be on achievements of technical
interest and advanced ideas rather than on
reports of a routine nature. In addition there
will be an opportunity to demonstrate and
discuss software engineering tools and support
environments outside the formal sessions.
Facilities for the ever-popular informal dis-
cussions will also be available.

Scope

Since the last conference, there have been
many changes in the world of telecom-
munications. The Organising Committee
would welcome practical and theoretical sub-
missions that address some of the issues raised
by the following, deliberately provocative,
discussions of those changes.

Liberalisation of the marketplace and rapid
technological progress have changed the
nature of the product and have placed new
stresses on its deployment and exploitation.
Software is playing an increasingly important
part but remains among the least understood
of the disciplines involved.

The duration of the product life cycle is
decreasing. New services must be conceived,
developed and deployed in shorter timescales,
and have correspondingly shorter sales lifes.
There are also moves towards ‘unbundling’
software and offering, both to the customer
and to third party suppliers, the opportunity
to add new services to existing products.
These, in turn, raise new issues in requirements
analysis, service specification, security, in-
tegrity, validation, cost estimation, metrication,
and the integration of the support software for
all of these which cannot be resolved solely by
the processes of international standardisation.

The concept of the ‘layered’ architecture,
popularised through the OSI framework, is
being invoked throughout the system, but it
lacks analytical power. Synthesis, of correct
implementation from requirement, is eagerly
sought, through the use of declarative (logical
and applicative) languages, object-oriented and
process-based architectures and computer-as-
sisted transformation techniques. However,
the conceptual and theoretical foundations
involved are insufficiently understood and not
mature enough to be used ‘methodically’ at
the appropriate scale.

The introduction of large-scale and infor-

516 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

/0o dno-pispese//:sdp

mation system management, internationa
‘integrated’ (ISDN, IBCS) systems poses n
problems in strategic planning and decision-
analysis which will require the widespread use:
of sophisticated computational and heuristig
systems. <

B

¥/0LG/9/L€E

Working Language

N
The working language of the conference i§
English, which will be used for all printed®
material, presentations and discussions. Simule
taneous translation will not be provided.

Venue and Date

The Conference will be held in the Bourm%>
mouth International Centre (BIC) from 3 to &:
July 1989. Hotel details will be sent with thé3

provisional programme details. N

60 U0 }senb

Registration

Registration forms and further programme
details will be made available a few months
before the event.

For further information contact:

Conference Services, The Institution of Elect-
rical Engineers, Savoy Place, London WC2R
OBL, United Kingdom.

