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We examine higher-order program transformations in the context of a typed, pattern-directed, higher-order, lazy
Sunctional language. We introduce the notions of higher-order accumulation and type simulation as transformational
techniques. Our main illustration of these techniques concerns the transformation of a description of a small
programming language into a code generator. In this example we show how our techniques tackle important questions
regarding the circumstances under which data, in a functional program, can be destructively updated with impunity.
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1. INTRODUCTION

In this paper we illustrate two techniques for program
development by transformation. These are ‘ higher-order
accumulation’ and ‘type simulation’. We introduce
these ideas in the next section by examining a fairly small
and elementary example concerned with tree processing.
In the remainder of the paper we tackle a more substantial
example: we derive a compiler (more exactly a code
generator) from the functional semantics of a toy
programming language. We shall pay particular attention
in this example to the interesting and important topic of
identifying data, in a functional program, which can be
destructively updated with impunity.

Transformational programming is a methodology for
program development in which specifications or in-
efficient programs are massaged into efficient final forms
by a number of correctness-preserving program trans-
formations. Perhaps the most influential work in this
area was pioneered by Burstall and Darlington.’®* A
central concern is that all the permitted transformational
steps preserve meaning. In this way we can be sure that
the final program and the original specification are
equivalent. Under certain conditions Burstall and Dar-
lington’s transformations do preserve correctness. In fact
it has been realised for some time that such trans-
formations are essentially inductive proofs of program
equivalence in another guise. The advantage of the
transformational approach is evident: with trans-
formation the proof and program are derived simul-
taneously, whilst with an inductive proof of equivalence
we already need the target program to have been
(somehow) constructed.

The heart of program transformation in the Bur-
stall-Darlington paradigm is the notion of a eureka
definition. Such definitions are crucial to successful
program improvement but are by no means easy to
construct. To be sure, a number of techniques or styles of
eureka definition have been discovered, often cor-
responding to well-known programming techniques, but
in general eureka definitions isolate the creative input
which is necessary for successful programming.

Higher-order accumulation is one such style of eureka
definition. It has its origins in the continuation semantics
of Strachey and the transformational work of Wand?2-14
It is, in a sense, a brute-force strategy, since it can be
applied uniformly to any functional program and the
result of applying it is rarely a particularly impressive
program. Type simulation, however, is in general a more

subtle technique, which requires greater creativity and
which, with care, produces improved programs. These
techniques are complementary, because it is the type of
the extra datum introduced by higher-order accumu-
lation which is simulated in a second transformation in
the examples we will consider here. In earlier work® we
have shown how these techniques subsume a still wider
class of otherwise distinct program development
strategies including (first-order) accumulation, gener-
alisation, recursion elimination and some aspects of
exception handling and backtracking.

The programming notation we employ is a language of
typed, higher-order, pattern-directed recursion equations
with a lazy semantics. It resembles the language Mir-
anda.’® Our notation for types differs somewhat from that
of Miranda but is easily grasped. The reason is that we
need to state many properties of polymorphic functions
and relations. This is best done within a type theory. We
will not make this theory explicit, relying instead on a
second-order logical notation. We write 4 — B for the
type of functions from type A to type B. A x B is the
ordinary cartesian product type and 4+ B is ordinary
(disjoint) union. Finally we introduce the notion of a
variable over types (which we write with Greek letters)
and then Ilx. ¢ is the polymorphic type ¢ over a. Objects of
this type satisfy the axiom: zrela.f<> (V1) (t€fla «1)).
For example, suppose we have a function, reverse which,
given a list, reverses it. Its type is: ITe. List () — List (),
that is, List (f) — List (¢) for any type ¢. This type, because
it can reverse lists of any element type. We need two type
constructors called List and Sexp which given a type ¢
yield lists whose elements are in ¢ and binary trees whose
leaves are in ¢, respectively. These are given as follows:

List (o) = {[ ]} +a x List ()
Sexp (a) = a+ Sexp (a) x Sexp (@)

Data constructors are the names given to form tuples of
a cartesian product type. For example, we will take it
that the product operation in the definition of List uses
an infix colon and the product in Sexp uses an infix
double colon. Thus, 3:4:[] is an element of List(N)
(where we take it that ‘:” associates to the right and, in
future, that 3:4:[] and other lists will be sugared in an
obvious way to [3 4]). Moreover, 3::4 is an element of
Sexp (N).

We will use the ordinary set membership relation, €, to
indicate the relation ‘has the type’ in the rest of the
paper.
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2. HIGHER-ORDER ACCUMULATION AND
TYPE SIMULATION

In this section we will introduce the techniques of higher-
order accumulation and type simulation by applying
them to a simple program scheme for computing with
trees.

Definition 2.1 — Higher-order accumulation

Let fe(Ila)(I1B) (x —»B). We associate with this a
function: f'e(Ila)(I18) ((« — f) —» f) by means of the
following definition:

fxk=(kof)x

where o is functional composition. W

Corollary 2.2

Let k, k'e(Ila)(x > a), let fe(Ila)(T1f)(a— ) and
f e (Ila) (I1B) (¢ = (B — B) — P), then, for all x:

k(Exk) = x(kok)). W

The definition of ' in terms of f is taken to be a eureka
definition and can be used to undertake a transformation.

We begin with a classic structural recursive scheme
over trees or, for the sake of simplicity, binary trees.
Recall that Sexp («) is the type of s-expressions over .
We define a program:

je (M) (TIB) (( = B) x (Bx B — B) x Sexp () = f)
jdh(sy::s)) = h(ighs,)(ighs,)
jdha=da
where h is associative and has a unit, 1,.

In fact, it is more convenient to work with the simpler
program scheme, in which we take d and h to be program

variables of the appropriate types. For convenience, we
will write the program variable, A, as an infix, @.

fe (Ila) (T1B) (Sexp () — B)
f£(s,::59) = (f5) @ (f'sp)
fa=da

The task of transforming this program scheme into an
iterative system of recursion equations was originally
undertaken in the seminal paper by Burstall and
Darlington.!

We attack this with higher-order accumulation, ob-
taining a new function, f' € (Iler) (T1S) (Sexp («) - (B — B)
— f) by setting:
fsk=(kof)s.

We show just one step in the transformation of this
program into a form independent of f; that for a
compound expression, s,::s,. This proceeds as follows.

£(s,:i8)k =

(kof) (s,::5,) =

k((fs) ® (fs,)) =

k((Az.z @ (fs,)) (f's,) =
(ko(Az.z @ (fs,)) of) 5, = (fold)
fs,(ko(Az.z2® (fs,))) =

f's,(ko(Az.((Az' .z @ 2') o) 5,))) = (fold)
fs(ko(Az.fs,Az' .z ® 2’)) = (corollary 2.2)
fs,(Az.F5,(Az" . k(z D 2°)))

The steps labelled ‘fold” are justified because s, and s, are
proper subexpressions of s,::s,. The complete trans-
formation yields the following system of equations:

fs="fsid
£(s,::8) =s,(Az.Fs,(A2" . k(z @ 2')))
fak = k(da)

As we indicated in the introduction, the technique is
uniform and does not involve any creativity for its
application. We now turn to the next stage, which
involves the simulation of the argument k, which now
occurs in our transformed program f. We begin by
observing that the class of functions which can occur as
accumulators in f may be given by an inductive
definition.

Definition 2.3
(Va) (VB) (Vk € B — P) (acc (k) <>y k = id v

(AseSexp(a))3k’eB— ) (acc (k) Ak =
Az fs(Az . kK'(z® 2)). B

It is now possible to investigate the accumulators of f'.
We look for some simple property which will form the
basis for a type simulation.

Proposition 2.4
(Vo) Vkea — a) (acc (k) = (Azea)

(VZ'ea)((k2) =2 @ 2))
Proof

Since accumulators are given by an inductive definition
we may establish this by induction on their structure. We
also make use of the properties of the operator ®. W

This result suggests a relational connection between
certain lists and accumulators which spells out when a
list can be said to simulate an accumulator. We are thus
led to

Definition 2.5

(Va)(Vkea » a) (Vzea)(z x k<>yy
(VZea)((kz)=2®Dz). B

Corollary 2.6

zx A2 .2 @z whence lgxid. W

We now stipulate a constraint on a proposed function
g. This is the specification of g and note that it is not a
program — it is a requirement which must be satisfied. In
spite of this we still derive g from the specification by
transformation:

g€ (Il) (TIB) (Sexp (x) —» B — B)
(Vo) (VB) (Vke B — B) (Vzep)

(z ~ k= ((VseSexp () (gsz = f'sk)))

Surprisingly, the lack of a functional connection between
g and f’ does not present a problem. A technical remark :
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the transformational step called folding, under this form
of eureka constraint, is only reasonable when the
argument of the expression being folded is lower in some
well-ordering than that of the equation being trans-
formed. We proceed as follows.

Suppose that z ~ k:

g(s,::8)z =
F(s i)k =
fs,(Az" .Fs,(Az" . k(z' @ z"))) = (assumption)
fs,(Az’ .f5,(Az".2" @ z” ® z)) = (Corollary 2.2)
fs,(Az’ .2 @ (fs,(Az".2” @ 2))) = (fold)
fs,(Az’ .2’ @ (gs, 2)) = (fold)
gs,(gs,2)
Suppose that z ~ k:
gaz=
fak =
k(da) = (assumption)
da)®:z
Since 14 = id:
fs=
fsid =
gslg

In summary we obtain the following system of
equations:

fs=gslg
g(sl : :s2) zZ= gsl(g s2 Z)
gaz=(da)®:z
If we take ‘@’ to be append (and so 15 =[]), d, to be
list (list s = [s]) then f computes the ‘fringelist’ of its
argument. Its space complexity (due to data structure
creation) lies between quadratic and linear (with n.log n
being the average case). The new version of f, in terms of
g, is linear, independent of argument shape; indeed it
uses half the space required by the original program in
the best case.

In order to demonstrate the relationship between the
simulation and the final program we now show that there

is another way to characterise continuations of f and
that this leads to another version of the program f.

Definition 2.7

Rep e (I1a) (T1B) (List (Sexp (x)) = B — B)
Rep[] =id

Rep(s:)) = Az.fs(RepDo(Az’.z®2"). R

Proposition 2.8
Accumulators, k, of f have the following property:

(Vo) (Vkea - a)
(acc (k) = (Al List (Sexp (a))) (Rep )) = k)))

Proof

As before we make use of the inductive structure of the
accumulators. W

This suggests another relation.

Definition 2.9
~ < (Ila) (T1P) (List (Sexp () x (B — )
(Va) (VB) (Vke B — B) (VIe List (Sexp («))
(l ~ k ¢>de£’((ch I) = k)) ]
Corollary 2.10
[I~id W

We can introduce a new constraint on a proposed
function, ff:

fl e (ITx) (I1F) (List (Sexp (o)) — B)
(Vo) (V) (Vke B — B) (Vie List (Sexp (a))
(I~ k=({])=(klg))

Note that if we define ff as follows, the constraint is
always satisfied :
fi[]=1g

since [] ~ id and (id 15) = 14).

fi(s:)) =f's(Rep))

since, if (s:/) &~ k then k = (Rep(s:))) and so
k= (Az.fs(Rep Do (Az'.z ® 2)).

Now

(klg) =fs(Repholz. 14 @z =fs(Repl)oid.

This now establishes a functional formulation of the
relational constraint and we can transform with respect
to it. The transformation step when the argument is a
leaf is most troublesome. We require the following
lemmata.

Lemma 2.11
(V) (VB) (Vx € List (Sexp (a)) (Vy, zep)
(Repx(y®2)=yD®(Repxz) N

This is a version of Corollary 2.2 at the level of
representation functions.

Lemma 2.12
(Vo) (Vz, 2’ ea)(Repz2) = 2/ @ (ff2))

Proof
This follows from Lemma 2.12 and Corollary 2.2. W

After the transformation we obtain the new version of
f, which is:

fs = fi[s]

fi[]=1g4

F((sy::8,):0) = fH(s,:(5,:0)
fi(a:]) = (da)® (1))

The programming technique which is here subsumed by
the continuation transform is usually called general-

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 519

¥20Z I4dy 01 uo 1senb Aq y1E81Y// 1 G/9/1L /8101 |Uulwoo/woo dnoolwspeoe//:sdpy woly papeojumoq



M. C. HENSON

isation. Under this advice one takes a program of type
A — B and introduces a new one of type C — B where
there is an embedding ie 4 — C. In our example 4 =
Sexp(a) and C = List(Sexp («)) so ie(I1a)(Sexp (a) —»
List (Sexp («))) is just: is = [s].

This device was used by Burstall and Darlington® to
avoid overcomputation in the classic ‘samefringe’ prob-
lem.* The program ff can if required be transformed into
an iteration by adding an accumulator for the prefix:
‘(ga) @’ in the final equation.

3. STACK EXTRACTION BY HIGHER-
ORDER ACCUMULATION AND TYPE
SIMULATION

A criticism, often head, of functional languages is their
inability to make destructive updates to data structures,
leading to poor space utilisation. The truth is that a
functional program may well make a destructive update
(if it is safe to do so) but there is, however, no way of
articulating this within the language. An example of safe
destructive updating is the optimisation of tail recursion
to iteration. There has also been research aimed at
establishing criteria by which certain data structures in a
functional program might be destructively updated.”®
Schmidt defines a datum as ‘single-threaded’ if it is
possible to replace it by ‘access rights to a single global
variable while preserving operational properties’.

Often, in a functional program, one deals with
an argument which is definitely not single-threaded.
Perhaps, however, it is possible to transform the program
into one in which the argument is single-threaded. Our
example demonstrates how the combination of higher-
order accumulation and type simulation can factor out
singly threaded data objects from a multiple-threaded
context, and concerns the notion of a symbol table or
environment. Such entities are classic instances of
multiple-threaded data objects which can be recast in a
single-threaded fashion by generalising them to stacks.
We investigate this by considering a very small imperative
programming language with just sufficient content to
cause us the problem that we wish to tackle.

3.1 Syntax
ceCMD, deDEC, ec EXP, ie Var, ne NUM
ci:=‘ir=e’|‘c;c’|‘begind; c end’

= n’l‘i,l‘e+e,
d::="‘vari’|‘d;d’

Commands are assignments, sequences or blocks
(block structuring being the most important for the
purposes of this example). Expressions are numerals,
identifiers and sums. Declarations are individuals or
sequences.

It is not difficult to simulate parse trees of this small
language as elements of types in our notation, with
suitable data constructors for various components. We
will not do this explicitly, but from now on we will treat
the domains CMD, EXP, DEC, NUM and VAR as these
types.

We will define a function (in fact a recursive family of
functions) which expounds the evaluation of these
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programs. We begin by defining the types required to
model evaluation.

Let S = List (LOC x (N + {* Unactivated })) be the type
from which the store is obtained. That is, an element of
type S represents the store with respect to which programs
are executed. Let ENV = List (VAR x LOC) be the type
of environments from which the bindings of variables to
locations can be obtained. It is elements of this type
which will concern us most. For both ENV and S we will
write the obvious ‘lookup’ operations as though they are
function applications. This keeps the presentation simple
and clear.

We now introduce three evaluation functions for the
three syntactic classes. The techniques employed for this
are just those well-known principles from denotational
semantics.'% 1

cemdeCMD - ENV -S> S
expeEXP - ENV -5 S N

dece DEC - ENV - S - ENV x S
cmd (i: = e)ps = updates(pi) (expeps)

emd(c;c’)ps=cmdc’p(cmdcps)
emd (begind;cend)ps =letp’:s” = (decdps) in(cmd ¢ p’s%

diny wouy papeojumoq

We will not bother with the details of update except to ;
say that it is a polymorphic function (we will use it again 3
in another type context). The let expression is just O
syntactic sugar in the following sense:

letx =cine’ = (Ax.e)e

An important corollary of this definition which we will
have occasion to use is:

Corollary 3.1
Assuming that x is not free in e”;
let x=ein(lety=¢" ine”)=lety=
(let x=ein¢’) in e’

/2 1G/9/1.€/8101He/|ulWod/Wwod dno"ol

Note that the second and third equations above %
prevent the argument p from being a single thread; p =
appears for both subsequents and indeed may, by the<
third equation, be altered by either or both.

expnps=n
expips=s(pi)

exp(e+e’)ps = plus (expeps) (expe’ps)

dec (vari)ps = (update pi (new s)):(activate (new s) 5)
dec (d;d)ps=1let p’':s' = (decdps) in (dec d'p’s’)

We will not go into the details of the functions new
(which obtains the first unactivated location in its store
argument) and activate, which marks a location as
activated (= not unactivated).

It is possible by careful presentation to see that the last
argument of these three functions is in fact safe for
destructive updates. This is not immediate (see the last
equation for exp for example) but we go into no further
detail. The reader should consult Ref. 9 for syntactic
criteria for establishing single threading. It is comforting
that this is the case, because one expects the store of an
imperative language to be destructively updated!

Instead we tackle the harder problem of transforming
this collection of functions into a form in which the

20z |4dy 01 uo jsenb
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environment appears as a singly threaded entity too. Our
first stage is to apply higher-order accumulation simul-
taneously to the first functions.

We introduce three new functions, Cmd, Exp and Dec
as follows:

Cmdcpgs = (qo(cmdcp))s
Expepks = (ko(expep))s
Decdpxs = (xo(decdp))s

These eureka definitions induce the types of the new
functions and, in particular, the three kinds of con-
tinuations:

CmdeCMD > ENV—->CCON-> S-S
Expe EXP - ENV—SECON-> S-S
Dece DEC - ENV->DCON - S— §
where

CCON=S§-S, Econ=N->S-S and
DCON = ENV xS S.

In fact we will curry DCON, obtaining DCON =
ENV - § — S, and this requires us to alter the eureka
definition to:

Decdpxs =letp’:s’ = (decdps)inxp’s’

Armed with these we can transform, utilising the natural
substructure ordering on the parse trees as the well-
ordering necessary for the fold steps. We give two of the
interesting transformation steps.

Cmd (begin d;c end)pgs =

(g0 (cmd (begin d;c end) p)s =

(gqo(As.letp’:s’ = (decdps) in(cmd c p's’))) s =
(go(As.(Decdp(cmdc)s)))s =

Decdp(qo(cmdc))s =

Decdp(ip’.Cmdcp'q)s

Dec(d;d)pxs =

letp’:s’ = (dec(d;d)ps)in xp’s’ =

letp’:s” = (letp”:s” = (decdps) in (decd’p”s”)) inxp’s’
letp”:s” = (decdps) in (let p’:s" = (dec d'p”s”) in xp’s’)
letp”:s” = (dec dps) in (Dec d'p”s"x) =

letp”:s” = (dec dps) in (Ap".Dec d'p’'x)p’s” =
Decdp(ip’.Decd'p’x)s

Note the use of Corollary 3.1 in the second of these steps.
After the transformation we have the following new
version of the three functions:

Cmd (i:=e)pqs = Expep(in.is.(q(update s(p i) n))) s

Cmd(c;c)pgs =Cmdcp(Cmdc'pq)s
Cmd (begind;cend)pgs = Decdp(ip’.Cmdcpq) = s

Expnpks=kns
Expipks =k(s(pi))s
Exp(e+e’)pks =Expep(in.Expe'p(in’ . k(plusnn’)))

Dec (var i) p x s = x(update p i (new s)) (activate (new s) s)
Dec(d;d)pxs = Decdp(Ap’.Decd'p’x)s

This new model of the evaluation is well known to
semanticists as the continuation semantics for the
language. It is particularly useful because we can
formulate an algebraic presentation which highlights
certain constraints on the argument we are looking to
factor out.

We now define the family of functions and infix
binary connectives. Note that we now overload the
symbol ‘ —’, which is one of these connectives. The sense
of the symbol should be clear from the contexts in which
it appears.

Let us set CM =ENV->CCON->S—-S, EM=
ENV-ECON—-»S—-S and DM = ENV - DCON
—S—> S and let m range over CM, r over EM and v
over DM.

m— m’ = Apqs.mp(m’pq) s

r=.r =Apkz,...z,s.rp(r'pk)z, ...z, s

vo>0v = Apxs.vp(Ap’ . v'p'x) s

v ——m = Apqs.vp(Ap’.mp'q) s

r=>== = Apgs.rp(An.fnpqs)

ADDknn's = k(plusnn’) s

PUSHnks=kns

LOOKUPipks = k(s(pi))s

DECL ip x s = x(update p i(new s)) (activate (new s)s)
ASSIGN inpqs = g(update s(p i) n)

These allow us to rewrite the three functions above as
follows:
Cmd (i: = e) = (Expe) = —= (ASSIGN )

Cmd(c;¢’) = (Cmdc) » - (Cmd ¢)

Cmd (begin d;cend) = (Decd) - —— (Cmd ¢)
Expn = PUSHn

Expi = LOOKUP

Exp(e+e’) = (Expe) =,(Expe’) =, ADD
Dec (vari) = DECL

Dec(d;d’) = (Decd) - > (Decd’)

This algebraic technique has been investigated by Raoult
and Sethi® and by Wand.’® Wand pioneered the
investigation of the properties of these kinds of semantic
algebra.

One property which is easy to establish is the following:

Proposition 3.2
(Vm, m’', m"eCM); im->m)->m"=m->m -m”") R

What is the significance of such associativity laws?
Wand uses them to obtain code generators by rotating
semantic trees into instruction sequences by sufficient
applications of left-to-right associativity. We will see
later that his technique can be made to work on our
example; but it will not at present because there are
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insufficient associativity laws. More particularly we are
interested in the algebra of these higher-order connectives
because they highlight the ways in which contextual
information, which we can take to mean any data objects
implicitly processed by the connectives, can be manipu-
lated. To be more specific we turn to an interesting
example.

Consider the program fragment: begin d;c end; ¢’. In
terms of the algebra of connectives this is: (d > — ¢) -
¢’. Is there an associativity law for such expressions? The
‘obvious’ choice: d » — (¢ — ¢’) is not equivalent to
the earlier expression. Intuitively this happens because in
the latter case the subcommand ¢’ obtains an environment
enriched by the declarations in d whilst the former one
avoids this. The failure of this property is necessary;
indeed it is the way that the algebra of connectives
enforces scope control.

Indeed there seems to be no way to define a new
connective which would solve the problem: Suppose that
‘@’ is a connective such that: (v > ——c)>c=v®
(c—> ). Clearly, & will have to communicate two
environments to the sub-expression (¢ — ¢’) in order that
the two sub-expressions of this are evaluated properly. A
little further thought should reveal that in the case of
iterated block structure (a common situation) the
connective @ might have to communicate a host of
environments to its right sub-expression.

This counter-argument contains the seeds of a solution.
If the environment was represented as a list of ‘small
environments’ (one for each nested block) the problem
could be overcome by means of operations on these new
environments (called NEW and OLD) which add or
subtract layers.

We are led to consider the introduction of a new data
type of ensembles, defined as follows: ENS = List
(ENV) and then to obtain a new family of functions in
terms of this. Since we are about to transform the
definition we might as well take the opportunity to
introduce a partial result stack too, given by the type:
STK = List(N) in order to avoid the family of con-
nectives, =,. In other words, rather than deal with
arbitrary numbers of partial result arguments, we carry
around a single stack on which the partial results can be
placed.

Moving from the type ENV to the type ENS and from
N to STK are classic examples of generalisation, which
we discussed in our elementary example in the previous
section. In these cases the embedding takes each
environment to a singleton ensemble and each number to
a singleton stack.

If we introduce stacks of partial results and en-
vironments we will need to consider how this affects the
types of certain continuations. In fact those for dec-
larations can remain the same, since a declaration
generates an environment and not an ensemble. On the
other hand the continuations for expressions must be
generalised (again in the sense of Section 2) so that they
accept arguments of type List (N) (= STK) rather than
just N by setting ECON = STK —» S — S. Moreover,
the function that evaluates expressions will be extended
to take a stack as an explicit argument.

We need a type simulation for the next continuations
in terms of the old. In fact we can introduce a
representation function for the new continuations for
expressions and the partial result stack in terms of the

old, and for ensembles in terms of environments. To this
end we define:

Repecontk z = An.k(n:z)

The intuition here is that, in the old version, partial
results are embedded within the continuations, whereas,
in the new version, they appear explicitly as a stack.
Repecont embeds the stack in the appropriate fashion.

Repens y = smooth y

where smooth = reduce append []. That is, smooth is
append extended to lists of lists.

Armed with these we can provide eureka definitions
for three new functions of the following types:

CmddeCMD - ENS - CCON -»5—- S
Exppe EXP - ENS>ECON ->STK - S-S
Decce DEC > ENS—->DCDN-> S-S

Cmddcygs = Cmdc(Repensy)gs
Exppeykzs = Expe(Repens y (Repecontk z) s
Deccdy xs = Dec d(Repens y) x s

It is necessary to define the following function for linkin
environments and ensembles:

pA[]l=[p]
PA(p':y) = (appendpp’):y

After a straightforward transformation, again utilisin
the natural substructure ordering on the data, w
obtain:

Cmdd(i:=e)yqs = Exppey(ASSIGNiydq)[]s
Cmmd (c;¢)ygs =Cmddcy(Cmddc’yq)s

g°dn0'0!wepeoe//(5duq woly papeojumoq

Cmdd (begind; c end) ygs =
Deccdy(Ap’.Cmdd c(pA(1:y)) q)

Exppnykzs=k(n:z)s

Exppiykzs =k((s(yi):2)s
Expp(e+e)ykzs=Exppey (Exppe’y(PLUSK))zs
Decc(vari)yxs = DECLiyxs

Decc(d;d)yxs =

Deccd y(Ap.Deccd' (p A y)(Ap". x(p'A(p A y)))) s

for suitable simple redefinitions of the functions=
ASSIGN, DECL and so on.

Note how there is no lambda abstraction over values™
in the function Expp. This is because values have been
factored out of the continuations. On the other hand we
still have abstraction over environments in Decc. Fac-
toring out these, which we now turn to, is more difficult
because of the multiple threading of environments which
occurs, particularly, in the second equation for com-
mands.

Inspection of the types shows that ensembles are
embedded within continuations. A typical continuation,
say: (Cmdd cy q) is already relativised with respect to y.
Note that it is not relativised with respect to s or z. We
are led to define a new type of continuations called
universal continuations, which factor out all the data
types we are using:

uc UCON = ENS - STK - S - §.

dy 01 uo 3senb Aq prE8YY/L 1L STR/LE/ePIME/ulwoo/fo
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HIGHER-ORDER TRANSFORMATIONS AND TYPE SIMULATIONS

In order to underline their universality we define the type
of all statements:

neSTM = CMD +EXP + DEC
and the type of a single, proposed function:
Evale STM - UCON - UCON.
This can be unrolled to:
Evale STM - UCON - ENS - STK - S —» S

and this demonstrates that statements are evaluated with
respect to an ensemble, a stack, a store and a universal
continuation (representing the rest of the execution
without reference to any values of ENS, STK or S).

We will need to specify constraints on this new
function in order to undertake a transformation. This
presupposes that we have at our disposal notions of
simulation between a number of higher-order types. For
convenience we define:

teTUC = UCON - UCON

the type of transformations of universal continuations.
We wish to know when an element e TUC simulates a
value meCM, re EM or ve DM. Furthermore, we will
need to know when a universal continuation, ue UCON,
simulates a value ge CCON, ke ECON or xe DCON.

Let us start with the type CCON. Three points stand
out: elements of CCON are relativised with respect to
ENS, they are not relativised with respect to the type S
and they are not defined over the type STK. Elements of
UCON are defined over all three types but are not
relativised with respect to any of them. We are led to
define a three-place relation written:

(- ® -)mod_ < UCON x CCON x ENS,

which relates elements of UCON and CCON modulo an
ensemble. We set:

(u~ g) mod y <>y, (Vze STK) ((uyz) = q)

We will use the same notation for relations of other
types. The context will always indicate which relation is
intended.

Elements of ECON are also relativised with respect to
an ensemble. This leads to:
(u~ k)mody<,, (uy) = k.

The domain of the type DCON is ENV (and not ENS).
These elements are partially relativised with respect to
ensembles. Note that DCON is not defined over the type
STK. This leads us to:

(u = x) mod y <>
(VzeSTK)(Vpe ENV) (u(pAy) z) = (xp)).
Next we move to the higher-order types. These are
quite straightforward and ensure that continuation
transformers preserve the representations defined
above:
(t X m) ¢>def
(v, ¢, u) (u ~ gymod y = ((1u) ~ (my g)) mod y)
(=) ey
(V. k, ) (u ~ k)mod y = ((tu) ~ (r y k)) mod y)
(t x U) <:>de1'

(Vy, x, u) (u =~ x)mod y = ((u) ~ (vyx)) mod y)

We are now in a position to specify the relational
constraints we wish to impose in order to characterise a
new function Eval:

(Evalc) =~ (Cmdd ¢)
(Evale) ~ (Exppe)
(Evald) ~ (Decc d)

Some example steps in the transformation are the
following.

Let (u ~ g) mod y.
Eval (c;c")uyz = (for any z)
Cmdd(c;c)yq =
Cmddcy(Cmddc’yq) =
[from the assumption we can fold to obtain:
((Eval ¢'u) ~ (Cmdd ¢’y d)) mod y
and by folding again we have:
((Eval ¢ (Eval ¢’'u)) ~ (Cmdd c y (Cmdd ¢’y g))) mod y]
Evalc (Evalc'u)yz

Note that it is the substructure well-ordering which we
appeal to in this transformation. Next we tackle the most
difficult step, for blocks. We will need two functions of
type TUC which we alluded to earlier:

OLD e UCON - UCON
NEWe UCON - UCON

OLDu(p:y)zs=uyzs
OLDuy[]zs=u[]zs
NEWuyzs=u([]:y)zs

Let (u = g)mod y.
Eval (begind;cend)uyz = (for any z)
Cmdd (begind;c end)yg =
Deccdy(Ap.Cmdd c (pA([]:y))q =
[from the assumption we can fold to obtain:
((Eval ¢ (OLD u)) ~
(Cmdd c (pA([]:)) @)) mod (pA([]:y))
This is subtle: note that u and q are related modulo y
so we need to arrange that the ensemble supplied to u
is y, and not p’:y for some p’e ENV. The above holds
for any peENV, so we can use the relationship
between UCON and DCON, yielding:
(Eval c (OLD ) ~ (Ap.Cmdd c(pA([]:y)) g) mod[]:y
Folding again provides us with:
(Eval d(Eval c (OLD u))) ~
(Deccdy(Cmdd c (pA([]:p)) g)) mod []:y]
NEW (Eval d(Eval c(OLD w))) y z s
For an example of a transformation step for a primitive
function let us take PLUS. We need a function Plus of
type TUC. The constraint is established via the re-
lationship between TUC and EM. Assume that we have
(u =~ k) mod y.

Plusuy(n:n’:z) =

PLUSk(n:n’:z) = (by assumption)

PLUS (uy) (n:n’:z) = (by definition) u y (n+n):2).
Thus we have

Plusuy(n:n’':z)s = uy((n+n’):z)s

It is now possible to rewrite the result of the trans-
formation using a single connective defined as follows:

t—t = Auyzs. ((t'u) yzs
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M. C. HENSON

Proposition 3.3

— is an associative operation. W
Eval (i: = e) = (Eval ¢) » Assign
Eval(c;c’) = (Evalc) — (Eval ¢)
Eval (begind;c end) =

NEW - (Evald) - (Eval ¢) - OLD
Eval n = Pushn

Evali = Lookup i

Eval (e +¢’) = (Eval e) - (Eval ¢') - Plus
Eval (vari) = Decl i

Eval(d;d) = (Evald) — (Evald)

This looks rather like a code generator. Note that the
entities which are manipulated by the connective are
continuations of continuations. Indeed, there is no
reason why this formulation should not be concretised
by a final transformation as follows:

We begin by defining an enumerated type of in-
structions (INS) by means of:

7€ INS = {new, old, lookup i, decl i, push n,
assign, plus}

for all ie VAR and ne NUM. From this we define a type
UCOM of universal completions. Such first-order rep-

resentatives of continuations were introduced in Ref.
5.

5e UCOM = List (INS)
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