Knowledge Acquisition from Technical Texts using Attribute

Grammars

J.KONTOS anD J.C. CAVOURAS

Dept. of Informatics, Athens School of Economics and Business Science, 76 Patission St, Athens 104 34, Greece.

The work reported in the present paper concerns the development of a computer system which can acquire an attribute
grammar knowledge base from a technical text. The use of attribute grammars is explored both in the implementation of
the system and in the target-knowledge representation of the text content. Knowledge-based encoding of the text
knowledge content is accomplished and inferential exploitation of the resulting knowledge base is possible using the

same attribute grammar interpreter as our knowledge engineering tool. The specific problems involved in using attribute
grammars for representing both the knowledge content of a text and the knowledge required for extracting and
Sformalising that content are studied, and some solutions are proposed. The techniques proposed can be applied to
technical texts that deliver knowledge about the structure of objects and the functional relations of their parts. The
prerequisite knowledge problem for text analysis is addressed and faced using attribute grammars. The kinds of
prerequisite knowledge considered include subject-related background knowledge, linguistic knowledge and

representation knowledge.

Received August 1986, revised June 1987

1. INTRODUCTION

The work reported in the present paper aims at the
development of a computer system which can acquire a
knowledge base from an expository or instructional text.
The use of attribute grammars is explored both in the
implementation of the system and in the target-
knowledge representation of the text content.

The development of systems with the ability to read
texts and assimilate the knowledge contained in them is
one of the long-range goals of artificial intelligence and
computational linguistics.” One approach is to translate
texts into some knowledge-representation formalism and
use that representation to perform retrieval and inference
with it. The first kind of texts translated to some
formalism by computer were simple stories. Some early
efforts used the Conceptual Dependency formalism.!* A
recent critical survey of language data processing was
written by Garvin.® Norton® wrote a program that
translated a technical text using PROLOG as the target-
knowledge representation formalism.

The text that Norton considered concerns pro-
gramming in the BASIC language. The subject matter
being communicated by such a text covers both the
syntax and the semantics of BASIC programs and their
subcomponents. The connections between syntax and
semantics must be elucidated during the text analysis
process. We propose that attribute grammars may be a
good target-representation formalism for such texts,
since they are specifically designed for the representation
of syntax and semantics. The use of attribute grammars
as a knowledge-representation formalism has already
been proposed by Papakonstantinou and Kontos
(1986).° In the present paper we study the specific
problems involved in using attribute grammars for
representing both the knowledge content of a text and
the knowledge required for extracting and formalising
that content.

The example text that we use to illustrate our method
is very similar to the one used by Norton. We believe,
however, that our techniques can also be applied to other
texts that deliver knowledge about any kind of object. It
is only necessary that the knowledge delivered by the text
concerns the structure of objects and the functional
relations between the parts of that structure. Attribute-
grammar techniques of narrative text analysis were
proposed by Kontos some years ago*® and summarised
in Ref. 6.

2. THE TEXT BEING ANALYSED

The example text that we used to illustrate our method is
very similar to the text used by Norton. Norton’s
example text has four sections or paragraphs, namely
sections A, B, C and D. We have chosen to essentially
omit section B, which merely describes the structure of
numbers. We have only retained that part of section A
that refers to the form of the variables. After these
changes and some additional editing, our example text
consists of the three sections a, f, y and reads as
follows.

(a1) The form of a variable is ‘letter’.

(«2) The form of a variable is ‘letter’, ‘digit’.

(B1) Expressions are formed according to the rules of
arithmetic.

(B2) Expressions may use variables as operands.

(B3) Constants may be used as operands.

(B4) The operators +, —, *, / are available.

(»1) The form of a command is ‘variable’ = expres-
sion.

(»2) A command means evaluate the expression and
insert the value in ‘variable’.

In brief, section « refers to the syntax of variables,
section f refers to the syntax and semantics of expressions
and section y refers to the syntax and semantics of LET
commands.

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 525

¥20Z I4dy 01 uo 1senb Aq 9G€811/G2S/9/ 1L ¢/8101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

J.KONTOS AND J. C. CAVOURAS

3. PREREQUISITE KNOWLEDGE

As Norton emphasised,® there is a large amount of
knowledge required to read a text on any subject. The
first kind of knowledge required is subject-related
background knowledge, the second is linguistic, and the
third, which we call ‘representation knowledge’, is
necessary whenever the result of the analysis of a text
must be represented. Then some target-knowledge
representation formalism is used which in the case of
Norton is PROLOG and in our case is attribute
grammars. This third kind of prerequisite knowledge,
namely representation knowledge, is used for the actual
conversion of the text being analysed into some rep-
resentation formalism.

The subject-related knowledge required for the ex-
ample-text analysis includes knowledge about digits,
letters, constants, rules of arithmetic, evaluation, inser-
tion and semantics. In Norton’s system most of this
knowledge is in the form of pre-existing PROLOG rules,
which are added to the PROLOG rules synthesised by
the text-analysis program. In our system this knowledge
is in the form of attribute values of the text-analysis
attribute grammar. These values are passed to synthesised
attributes and combined with the attribute-grammar
fragments that are synthesised from knowledge delivered
by the text itself.

The prerequisite linguistic knowledge includes lexical,
syntactic and semantic knowledge of English. This kind
of knowledge is represented in two ways by Norton.
Most of it is embodied in the PROLOG rules forming his
program and the rest is encoded in a lexicon. In our
system all linguistic knowledge is of course embodied in
attribute-grammar BNF rules and associated semantic
rules. The attribute-grammar interpreter does all the
parsing of the text sentences, as does the PROLOG
interpreter.

The prerequisite representation knowledge in Norton’s
system is represented by some portions of his text-
analysis program. In our system the representation
knowledge is embodied in attribute-grammar rules.

4. A BRIEF INTRODUCTION TO
ATTRIBUTE GRAMMARS

Attribute grammars were proposed first by Knuth as a

tool for formal language specification.® The basis of an.

attribute grammar is a context-free grammar. This
context-free grammar is augmented with attributes and
semantic rules. Attributes are associated with the
nonterminal symbols of the grammar. We write X(< non-
term>) to denote attribute X of the nonterminal nonterm.
Semantic rules are associated with the grammar pro-
ductions. These rules describe how the value of some
attributes of nonterminals appearing in a production is
defined in terms of the values of other attributes of the
nonterminals or terminals of the production. Semantic
rules may also impose conditions on the values of the
attributes of a production. Whenever a condition is not
fulfilled the grammar rejects the current analysis of the
input string. See Kontos,*> Watt and Madsen? and
Yellin and Mueckstein'? for the introduction and use of
semantic conditions. Translation of strings can be
specified using an attribute that collects the translation of
an input string.

pl: <8>::=The form of < NOUN> is
<STRING >
U(<s>)=conc(U(<NOUN>),
“::="U(<STRING >))
p2: <NOUN> ::=variable
U(£<NOUN >)="* <variable >
p3: <STRING> ::= <KNOWN >
U(<STRING>)=U(<KNOWN >)
p4: <STRING>::= <KNOWN >
— <KNOWN>
U(<STRING> =conc(U(<KNOWN >1),
U(<KNOWN >2))
pS5: <KNOWN > ::=letter
U(<KNOWN>)="*<letter>"
p6: <KNOWN > ::=digit
U(<KNOWN>)=*“<digit>"

Figure 1. A simple attribute-grammar example.

A small example of an attribute grammar is given in
Fig. 1. This grammar describes the translation of simple-
structure sentences to syntactic productions, in particular 2
the translation of The form of variable is letter to &
<variable> ::= <letter>. The nonterminals of this 3
grammar are <S>, <NOUN>, <STRING>, and 3
<KNOWN>. All nonterminals have a single attributeé‘
called U. This attribute is used for the collection of the S
translation which finally resides in U(< S>). Each of the g
six productions pl to p6 consists of a syntax rule and a &
semantic rule written below the syntax rule, e.g. in pl %
<8>::=The form of a <NOUN> is <STRING> is 2
the syntax rule and U(<S>)=conc(U(<NOUN>),
“::=",U(<STRING>)) is the semantic rule. The
function conc used in the semantic rules means concaten-
ation and it may be omitted whenever it is obvious. The
quotation marks in the example mean that the constant
string written between them will be copied in the string
value of the attribute computed by this function.

eOojUMO(]

5. THE SYSTEM IMPLEMENTATION

The system we developed is based on an attribute-
grammar interpreter, and it can acquire an attribute-
grammar knowledge base by translating a text. The
attribute-grammar interpreter is written in UCSD Pascal
and is based on a parsing algorithm proposed by
Floyd.! The translation of the text into an attribute
grammar is accomplished with the linguistic knowledge
of English required for the translation. This grammar
also contains representation knowledge in the form of
semantic rules. The subject-related knowledge required is
given to the system in the form of attribute values of this
grammar. A simpler interpreter written in BASIC was
used for some illustrative examples presented below.
Our Translation Attribute Grammar (TAG) recognises
three kinds of sentence: structure sentences, meaning
sentences and hybrid sentences. Structure sentences
describe the structure of objects. These objects in the case
of BASIC are commands, expressions, operands, oper-
ators, variables and constants. The structure sentences
define the structure of such objects in terms of objects of
lower order. Such sentences in the example text are the
sentences a1, a2 and y1, which have the form The form
of <NOUN> is <NOUNSTRING > . The nonterminal
<NOUN> may correspond to any of the objects
mentioned above. The nonterminal < NOUNSTRING >
may correspond to a list of one or more objects.

20z 1udy 0| uo 1senb Aq 9G£811/52G/9/1 €/8191Me/|ufwoo/woo d

526 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

KNOWLEDGE ACQUISITION USING ATTRIBUTE GRAMMARS

Structure sentences are translated by TAG into syntax
rules of the Object Attribute Grammar (OAG). The
meaning sentences define the meaning of objects in terms
of a series of one or more actions. These actions, in the
case of BASIC, are evaluation and insertion actions. The
sentence y2 is the only meaning sentence of the example
text. Meaning sentences are translated by TAG into
semantic rules of the OAG that define attribute man-
ipulations. The hybrid sentences are the most complex
sentences handled by TAG and have the properties of
both structure and meaning sentences. Such sentences in
the example text are the sentences 1, 2, #3 and f4. The
sentences are further complicated by the fact that they
refer to prerequisite knowledge, which in the case of the
example text refers to letters, digits, constants and
arithmetic expressions. This prerequisite knowledge is
encoded as attribute-grammar fragments that are given
as values to certain TAG attributes and are combined
with the text translation to form the OAG.

6. THE TRANSLATION OF THE EXAMPLE
TEXT

Our system translates a technical text into an attribute
grammar, which can be used as a knowledge base. The
example text of Section 2 is translated into the object-
attribute grammar (OAG) as described below.

From The form of a variable is a letter (a1) we
obtain:

al.l
al.2
al3

<variable> ::= < letter >
K <variable >):=t(< letter >)
v(<variable>):=t(<letter <)

al.4 <letter>::=A
al.5 H<letter>):=4
al.6 <letter>::=B
al.lT H <letter>).=B
al.8 <letter>::=C
al9 H<letter>).=C

where #(<variable >)=t(< letter >) means the name of a
letter becomes the name of the corresponding variable.

From The form of a variable is letter, digit (a2) we
obtain:

a2.l
a2
a3
a24
a2.5
a2.6
a7

<variable > ::= <letter > < digit >
1(<wvariable >):=t(< letter >)t(< digit >)
v(<variable>): = t(< letter >)t(< digit>)
<letter>::=A
W <letter>):=A
<letter>::=B
t(<letter>):=B

a2.56 <digit>::=0
a2.57 H <digit>):=0

a2.58 <digit>::=1
a2.59 t(<digit>):=1
etc.

The steps involved in the translation of the above two
sentences can be described by using an attribute grammar
that is based on Fig. 1. All productions except p2 must be
augmented to include semantic rules that represent the
prerequisite knowledge of letters and digits as well as

*x+— GRAMMAR — ##+
Rule (1)

<STRUCTURE > =The form of <NOUN> is <STRING >$
4110 X$=V$(0+2)@Y$=V$(0+1)

4120 Z$=Y$&": ="&X$&"——V("&Y$&") = V("&XS&")"

4130 Z$=Z3&"++"&T$(0 +2)

4140 V$(0)=2Z$

4198 RETURN

4199 !

Rule (2)

4210 V$(0)="<variable > "
4298 RETURN
4299!

Rule (3)

<STRING > = <KNOWN >—<KNOWN >/ <KNOWN > §
4300 ON A GOTO 4310, 4320

4310 V$(0)=V$(0+ 1)&VS(0+2)

4312 Y$=SY$(0+ 1)&"——"&SE$(0+ 1)

4314 X$=SY$(0+2)&"——"SE$(0+2)

4316 T$(0) = Y$&"++"X$

4318 RETURN

43191
4320 V$(0)=V$(0+1)

4322 T$(0)=SY$(0+ 1)&"——"&SES$(0 + 1)
4328 RETURN

4399 1

Rule (4)

<KNOWN > letter/digit$

4400 ON A GOTO 4410, 4420

4410 SY$(0)="<letter> =A/B/C”

4412 SE$(0)="V(A)=A,V(B)=B,V(C)=C"
4413 V§(0)="<letter >"

4418 RETURN

4419!
4420 SY$(0)="<digit> =1/2/3"

4422 SE$(0)="V(1)=1,V(2)=2,V(3)=3"
4423 V§(0)="<digit>"

4428 RETURN

4429 !

Figure 2. An illustrative translation attribute grammar.

translation knowledge. This augmented attribute gram-
mar is shown in Fig. 2 with semantics written in BASIC
as processed by the interpreter written in BASIC.

The steps involved in the translation of the sentence
The form of variable is letter, digit, are summarised in
Fig. 3. Five steps are shown, although other steps are
involved that would complicate the explanation. The first
column shows the nonterminal of the left-hand side
(LHS) of the rule used at this step. For example step 1
uses the <NOUN>::.=variable rule. The second
column (POS) shows the position in the input string
where the currently recognised substring ends. For
example the word variable), which is recognised as
< noun>, ends at the 20th position. The third column
V(LHS) shows the values taken by the attribute V of the
left-hand side of the production currently used. At the
5th step V(< STRUCTURE >) contains the full object-
attribute grammar that represents the above sentence.

Some explanations are necessary for the understanding
of the translation-attribute grammar of Fig. 2. First of

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 527

¥20Z I4dy 01 uo 1senb Aq 9G€811/G2S/9/ 1L ¢/8101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

J.KONTOS AND J. C. CAVOURAS

Rule, LHS POS V(LHS)

1. <noun> 20 <variable>

2. <KNOWN > 30 <letter>

3. <KNOWN > 36 <digit>

4. <STRING > 36 <letter> <digit>

5. <STRUCTURE> 36 <uvariable>::= <letter> < digit>

V(<variable >)=V(<letter > < digit>)
<letter>::=A/B/C
(A)=A4,V(B)=B,V(C)=C
<digit>::=1/2/3
V(H)=1V(22)=2,V(3)=3

Figure 3. Summary of the steps involved in the translation of
the sentence The form of variable is letter, digit.

all, the syntax rules use the / convention for rules with
the same left-hand side. For example the two rules:

<KNOWN> ::=letter and <KNOWN > ::=digit

are written as a single rule with two alternatives as
follows:
<KNOWN > ::=letter/digit

The ON...GOTO statements guide the interpreter to
use the appropriate semantic rule depending on the value
of A which stands for the position of the alternative
involved at the right-hand side of the syntax rule. Such a
statement is no. 4400, which points to statements 4410
and 4420 for 4 =1 and 4 = 2 respectively.

The attributes used in Fig. 2 are V, SY, SE and T. The
attribute V' plays the same role as U in Fig. 1. The
attribute SY contains syntax rule knowledge and SE
semantic rule knowledge that originates from the
prerequisite knowledge about letters and digits (Rule 4).
T contains the syntax and semantics of <STRING >
and is used in building up the grammatical representation
of <STRUCTURE> in V. V(0+n) means ‘the value of
V corresponding to the nth non-terminal of the right-
hand side of the syntax rule involved’.

It proved fairly straightforward to express the trans-
lation process using attribute grammars. However, a
non-procedural semantic metalanguage would further
simplify this task.

From Expressions are formed according to the rules of
arithmetic (82) we get:

B1.1 <expression> ::= <arithmetic >
B1.2 v(<expression>):=uv(< arithmetic>)

B1.3 <arithmetic > ::= <operand>

B1.4 v(<arithmetic>):=uv(< operand>)

B1.5 <arithmetic> :: = <operand> < operator>
< arithmetic >

B1.6 uv(<arithmetic>): =flv(<operand>),
1 < operator >), v(< arithmetic >))

where f is a function defined by the prerequisite
knowledge.

From Expressions may use variables as operands (2)
associated with <expression> are also:

B2.1 <operand> ::= <variable >
B2.2 v(<operand>):=v(<variable>)

From Constants may be used as operands (83) we
get:

B3.1 <operand> ::= <constant >
B3.2 wv(<operand>):=(<constant>)
B3.3 <constant > ::= <digit>

B3.4 v(<constant>):=v(< digit>)

B3.5 <constant > ::= <digit> < constant >
3.6 v(<constant>):=10xv(< digit>)
+v(<constant>)
B3.7 <digit>::=1
B3.8 u(<digit>):=1
B39 <digit>::=2
B3.10 v(<digit>:=2
etc.

From The operators +, —, *, / are available (84) we

get:

p4a.1 <operator>::= +
p4.2 t(<operator>).=+
p4.3 <operator> ::= —
p4.4 t(<operator<):= —
B4.5 <operator>::=x
B4.6 t <operator>):=#»
p4.7 <operator>::=/
p4.8 t(<operator>):.=/

From The form of a command is variable = expression
(y1) we get:

1.1 <command> ::= <variable> = < expression >
1.2 t(<command>): =t(<variable>)

‘¢ =" < expression>)
1.3 v(<command>):=1t()

(1.2 and y 1.3 are not used for the evaluation of BASIC
expressions).

From A command means evaluate the expression and
insert the value in variable (y2) we get:

y2.1 <command> has semantics:

v(<variable >):=v(< expression>)

When this OAG is used by the attribute-grammar
interpreter, strings of BASIC commands presented to it
are recognised and executed. Some examples are given
below:

Ex1. String presented: A2=2+3
Interpreter answer: The value of A2 is 5
Ex2. String presented: A=3—2; B=A
Interpreter answer: The value of B is 1
Ex3. String presented: A=3; B=Ax2.
Interpreter answer: The value of B is 6
Ex4. String presented: A=3; B=A+2, C=B—1.

Interpreter answer: The value of C is 5

In order to be able to recognise and execute a sequence
of commands, the OAG must be augmented with the top
production having the syntax part:

<question> := <command> ;/
<command> ;< question >

where <gquestion> corresponds to a simple BASIC
program consisting of a sequence of LET commands.

It should be noted that in the OAG #(<x>)t(<y>)
means conc(t(<x>), t(<y<)) and so on for more
strings.

For illustrative purposes the actions of the interpreter
when presented with the input string A2 =2+ 3 of ExI
are given in Fig. 4. The three columns show the same
information as that of Fig. 3, but for the object-attribute
grammar corresponding to the text being analysed. The
other column appearing second in Fig. 4 gives the

528 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq 9G€811/G2S/9/ 1L ¢/8101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

KNOWLEDGE ACQUISITION USING ATTRIBUTE GRAMMARS

Analysis of: 412=2+3——

Rule LHS Alternative String-position V(LHS)

<letter > 1
<digit> 2
<variable > 1
<constant > 2
<operand > 2
<operator > 1
<constant > 3
<operand > 2
<constant > 3
<operand > 2
<arithmet > 2
<arithmet > 1
< express > 1
<command > 1

AN UNDE AN —
LN UNWLWWLWWLWWW=—=NDNOO O

Figure 4. Actions of the interpreter using the grammar of Fig.
5 for A2=2+3.

xx—GRAMMAR — #%
Rule (1)

<command > = <variable > = <express >.—$

4100 V(0+1)=V(0+2)
4105 V(0)=V(0+2)

Rule (2)

<express > = <arithmet > $§

4200 V(0)=V(0+1)
Rule (3)

<arithmet > = <operand > <operator > <arithmet > / <operand > §
4300 ON A GOTO 4310, 4320

4310 QI =V(0+1)@Q2=V(0+2)@Q3=V(0+3)

4315 V(0)=FNOP(Q1,Q2,Q3)

43191

4320 V(0)=V(0+1)
Rule (4)

<operand > = < variable > / <constant > $

4410 V(0)=V(0+1)

Rule (5)
<constant>=1/2/3/4/5/6/7/8/9%

4500 V(0)=A
Rule (6)

<operator> = + /- /*/:$

4600 V(0)=A
Rule (7)

<variable > = <letter > <digit> / <letter>$

Rule (8)

<letter> =A/B/C/D/E/F$

Rule (9)

<digit> =1/2/3/4/5/6/7/8/9%

Figure 5. An illustrative object-attribute grammar.

alternative position being used in the right-hand side of
the OAG, which is written in the / convention and is
shown in Fig. 5 as used by the interpreter version written
in BASIC. In Fig. 5 FNOP is the name of a predefined
function corresponding to f above.

This function is included in the prerequisite knowledge
and is used for the evaluation of the arithmetic
expressions. Also in Fig. 5 the RETURN statements
have been removed for simplification purposes. For
example such statements are necessary after statements
4315 and 4320 as well as at the end of every semantic
routine. The explanations of Fig. 2 apply here too, except
for the fact that the attribute ¥ now collects the arithmetic
value of the LHS and RHS of a command.

7. CONCLUSION

With the work reported in the present paper it was
shown that attribute grammars can be successfully used
for the acquisition and representation of knowledge from
a technical text. Attribute grammars were used both in
the implementation of a text analysis system and as the
target representation formalism of the text content. The
interpretation of the attribute grammars used was easily
performed by using an attribute-grammar interpreter. It
is believed that attribute grammars are a good represen-
tation formalism for texts that describe the structure
and function of objects. Further research is required in
order to overcome the limitations of the present
system.

Some of the main limitations existing due to the fact
that our system is the first attempt to exploit attribute
grammars for knowledge acquisition from texts are
discussed below.

The semantics of the translation attribute grammar
are at present written in the procedural language that the
interpreter is written in. The adoption of an interpreter
with a declarative semantic language will certainly speed
up the expansion of the system.

The method has been applied to a special kind of text
only, and other kinds must be tried. Here it must be
noted that attribute grammars allow for the representa-
tion of only two main kinds of relations between
sentences. The one kind is represented by the relation
between two different productions, and the other is
represented by the relation between a syntactic and a
semantic rule. For those texts whose sentences exhibit
relations that are not representable by these two
grammatical relations, some extensions of the method
may be needed.

The vocabulary used was very small. For practical
applications with large vocabularies an interpreter must
be used which is capable of communicating with a lexical
database.

The attribute-grammar representations produced
answer one kind of question only. These questions are of
the form ‘what is the meaning of A=B+3, where
A=B+3 is a BASIC command and A and B are
variables. The treatment of other kinds of questions
such as ‘why’ questions and ‘diagnostic’ questions is a
possible expansion that will render the attribute-grammar
representations of the texts more useful. We are currently
studying ways of performing diagnostic question-
answering with attribute grammars. By this we mean the

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 529

¥20Z I4dy 01 uo 1senb Aq 9G€811/G2S/9/ 1L ¢/8101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

J.KONTOS AND J. C. CAVOURAS

in grammatical form. Further research is required to find
ways of utilising prerequisite knowledge expressed in
natural-language texts or dictionaries.

analysis of strings with errors and the generation of an
answer that classifies each error.’
Finally, the prerequisite knowledge is given at present

REFERENCES

1. R. W. Floyd, The syntax of programming languages — a 8. L. M. Norton, Automated analysis of instructional text.

survey. IEEE Trans. Electronic Computers EC-13 (4),

Artificial Intelligence 20, 307-344 (1983).

346-353 (1964). 9. G. Papakonstantinou and J. Kontos, Knowledge represen-
. P. L. Garvin, The current state of language data processing. tation with attribute grammars. The Computer Journal
Advances in Computers 24, 217-275 (1985). 29 (3), 241-245 (1986).
. D. E. Knuth, Semantics of context-free languages. Mathe- 10. R. C. Schank, Conceptual Information Processing. Elsevier-

matical Systems Theory 2, 127-145 (1968).

. J. Kontos, Syntax-directed processing of texts with action
semantics. Cybernetica 23 (2), 157-175 (1980).

. J. Kontos, Syntax-directed plan recognition with a micro-
computer. Microprocessing and Microprogramming 9, 277—
279 (1982).

. J. Kontos, Natural Language Processing of Scientific/
Technical Data, Knowledge and Text Bases. Artint Work-
shop, Luxembourg (1985).

. J. Larkin, J. McDermott, D. P. Simon and H. A. Simon,
Expert and novice performance in solving physics prob-
lems. Science 208, 1335-1342 (1980).

530 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

11.

12.

13.

North Holland, New York (1975).

C. D. Spyropoulos and J. Kontos, Automatic organization
diagnosis based on behavioural modelling with grammars.
International Conference on Modelling and Simulation,
Karlsruhe (1987).

D. A. Watt and O. L. Madsen, Extended attribute gram-
mars. The Computer Journal 26 (2), 142-153 (1983).

D. M. Yellin and E.-M. M. Mueckstein, The automatic
inversion of attribute grammars. /EEE Trans. on Software
Engineering SE-12, 590-599 (1986).

¥20Z I4dy 01 uo 1senb Aq 9G€811/G2S/9/ 1L ¢/8101e/|ulwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

