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Two algorithms for solving the problem of detecting undefined (or uninitialised) variables during compilation are
considered. The first, well-known algorithm solves the problem by computing the use-definition chains for a program
flow graph. Its time complexity is O(IN?) where |N| is a number of nodes of the flow graph. An O(|N)) algorithm is
proposed that analyses the direct acyclic graph of a reducible flow graph. The implementations of both algorithms in an

Ada compiler are evaluated and compared.

The number of programming languages in use today is very large ... The number of high-quality language implementations,

however, is quite small. - W. A. Wulf2¢
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1. INTRODUCTION

One of the most common programming bugs is the use
of undefined (or uninitialised) variables. However, it is
rare to find a language implementation that detects
references to undefined variables, or support pro-
grammers to detect them. Even in the Ada language,
which was designed with program reliability as one of the
(three) overriding concerns, the demand for recognition
of undefined variables was eventually withdrawn. (Ac-
cording to the requirement contained in the Steelman
document,” the use of an undefined value raised
the NO_VALUE_ERROR exception in the Green
language'® and the preliminary Ada, but this exception
has been removed from the later versions of the
language.!® %)

There are two methods of solving the problem of
detecting undefined variables (abbreviated as UV
problem). Both of them are run-time methods; that is,
they detect the undefined variables during the execution
of a program. In the first method, a compiler inserts into
the object program run-time checks for testing whether a
value of a variable is defined every time it is referenced.
The second method is based on using special hardware to
detect that a variable being referenced during the
execution of a program has not been previously defined.

Unfortunately, neither method is suitable for most
practical implementations. The first causes a great
degradation of a program’s performance, because of the
amount of run-time checking; the second is not general
enough, as only a few machines have hardware that
allows detection of undefined variables.’

This paper considers an efficient method of detecting
undefined variables during compilation. Although, as we
will see, the method does not detect all references to
undefined variables, it can help a programmer to discover
most of them before a program execution.

The paper consists of six sections. Section 2 contains
the basic definitions and results for program flow graphs.
The UV problem is formulated in Section 3. Section 4
considers the method of solving the UV problem by
computing the use-definition chains for a flow graph. An
efficient method of solving the problem by analysing the
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direct acyclic graph of a flow graph is described in
Section 5. Section 6 contains an evaluation of implemen-
tations of these methods in an Ada compiler.

2. PRELIMINARIES

For detecting undefined variables at compile-time we will
use a model of a program, called a program control flow
graph (or flow graph). First, we partition the program
into basic blocks; that is, maximal sequences of con-
secutive statements that may be entered only at the
beginning, and when entered are executed sequentially,
without branches. A flow graph is a triple G = (N, E, n,),
where

N is a finite set of nodes, representing the basic blocks

of the program;

E is a finite set of edges, i.e. ordered pairs of nodes

(n, n;) representing the flow of control;

node n,€ N is the initial node; it represents the block

containing the first statement of the program.

There is a directed edge from node n, to node , if the
basic block represented by n;, could be executed im-
mediately after that represented by n, We say that n, is a
predecessor of n;, and n, is a successor of n,. Fig. 1 shows
an example program and its flow graph G = ({1, 2, 3, 4,

(a)

GET(A); GET(B);
if A > B then
D:=A—B;
elsif A < B then
D:=B-A,
else
E:=D;
end if;
end;

Fig. 1. The example program (a) and its flow graph (b)
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f) 6}, {(1, 2), (1, 3), (2, 6), (3, 4), 3, 5), (4, 6), (5, 6)},

Let us define the sets of predecessors P[n] and
successors S[n] of node n in a flow graph G as follows:
P[n] = {xeN|(x,n)e E}, S[n] = {yeN|(n, y)e E}.

A path from n, to n, is a sequence of nodes (n,, n,, ...,
n,), where each n, is an immediate predecessor of n,,,
for1 <i<k-1.

In the definition of a flow graph G we require that
there should be a path from n, to every node in N. We say
that node m dominates node n in G if every path from the
initial node of G to n contains m. Edge (n, m) in G is
backward if and only if either n = m or m dominates 7 in
G.

A cycle is a path that begins and ends at the same node.
The path is a simple (or cycle-free) path if the nodes in the
path are distinct. A directed acyclic graph (dag) of a flow
graph G = (N, E, n,) is an acyclic flow graph D = (N, E’,
n,), such that £’ < FE and for any edge e in E—E’, (N,
E’ U{e}, n,) is not a dag. That is, D is a maximal acyclic
subflowgraph.®

We define a flow graph G = (N, E, n,) to be a reducible
flow graph (rfg) if and only if it can be decomposed
uniquely into adag D = (N, E’, n,) and a set of backward
edges E— E’; otherwise, the flow graph G is non-reducible.
(The empirical studies have shown that flow graphs
arising from ‘real’ computer programs are almost always
reducible, i.e. more than 95% of the time.> %14 It has
also been shown that any non-reducible graph can be
transformed to a reducible one by a process known as
node splitting.* 3 %%)

A depth-first spanning tree (DFST) of a flow graph G is
a directed, rooted, ordered spanning tree grown by
Algorithm'*-2:4? given below. This algorithm also defines
an ordering on the nodes of DFST of G that we call
rPostorder, i.e. reverse Postorder.

Algorithm 1

rPostorder computation by depth-first search

Input: A flow graph G whose nodes are numbered
from 1 to |N] in an arbitrary manner.

Output: (1) ADFST for G. (2) A numbering rPostorder
of the nodes from 1 to |N], in array rPOSTORDER,
indicating the reverse of the order in which each node
was last visited during a depth-first search of G.

Method: Initially, all nodes are marked ‘unvisited’.
There is a global integer array rPOSTORDER (1 . . |N))
and a global integer i with initial value n. The algorithm
consists of a call to DFS(n,), where DFS is the recursive
procedure defined as follows:
recursive procedure DFS(x);

Mark x ‘visited’;

while S[x] / = & loop

Select and delete a node y from S[x];
if y is marked ‘unvisited’ then
Add edge (x, y) to DFST;
call DFS(y);
end if;
end loop;
rPOSTORDER(x):= i;
ii=i-1;
return; []

It may be shown® that after the execution of Algorithm
1 the condition r/POSTORDER(n) > rPOSTORDER(m)
holds for each backward edge (n, m) of G.

We will evaluate each algorithm given in this paper by
establishing the time needed to solve a problem as a
function of the quantity of input data. This function is
called the time complexity of the algorithm. The time
will be expressed in terms of the number of elementary
operations (computational steps) executed in the al-
gorithm, for example logical operations on sets. Because
all algorithms operate on graphs, the number of nodes
and/or edges will be the measure of the quantity of input
data. For the approximate evaluation of time complexity
functions we will use O-notation.!*

It has been shown that Algorithm 1 requires
O(MAX(|N|, |E))) steps on a graph with |N]| nodes and |E|
edges.*

4. FORMULATION OF THE UV PROBLEM

By a use of (or reference to) variable 4 we mean any
occurrence of 4 as an operand. By a definition of A we
mean a statement that can modify the value of A4, such as
an assignment or a GET statement.

Let us consider the use of a variable 4 within node n
that is not preceded by any definition of 4 in n. A
variable 4 used in n might be undefined if there is a
simple (cycle-free) path from the entry of the initial node
of a flow graph to the entry of node n, such that no
definition of A4 appears on the path.

Note that we cannot assert that variable 4 referenced
in n is undefined because the path that does not contain
any definition of 4 may involve some tests that can never
be simultaneously satisfied, so that path could never be
taken during the program execution. For example, in
Fig. 1(b) there is a path from the initial node 1 to the
node 5 in which variable D is used, and there is no
definition of D on this path. Thus, one might say that
variable D in node 5 is undefined. However, the path (1,
3, 5) contains tests 4 > B and 4 < B that cannot be
simultaneously satisfied, so this path will never be
traversed.

To simplify the problem we shall assume that all paths
in a flow graph are traversable. As the result, the warning
will be given for the program of Fig. 1(b) that variable D
used in node 5 might be undefined, though this is not true
in practice.

A more severe drawback of this method of solving the
UV problem during compilation is that it is virtually
impossible to find all references to undefined variables.
Consider the following program:

declare

I: INTEGER

A: array (1 .. 10) of INTEGER,;
begin

A (5):=0;

GET (1),

PUT A(I);
end;

Because the value of Iis unknown at compile time, we
cannot say whether the indexed variable A() referenced
in the PUT statement is defined or not. It will be defined,
of course, only when the value of 7 is 5.

In the sequel we assume that an indexed variable might
be undefined if there is a simple path from the initial
node of a flow graph to the use of the indexed variable,
such that no definition of any indexed variable for the
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same array appears on the path. Consequently, no
warning will be given for the last program.

4. SOLVING THE UV PROBLEM BY
COMPUTING THE UD-CHAINS

Uses of undefined variables might be found by computing
the use-definition (or ud-) chains.® For a given use of
variable A4 in node n, the ud-chain is a list containing all
definitions that define the value of 4 used in n. If we
introduce dummy definitions of all variables prior to the
initial node of a flow graph, and the ud-chain for a given
use of 4 in n contains the dummy definition of A4, it
means that the value of 4 might be undefined at this
node.

In order to compute the ud-chains we have to solve
one of the data-flow analysis problems, namely, the
reaching definitions problem. Its goal is to determine, for
each node n of a flow graph, the set IN[n] of definitions
that reach the entry of n. A definition d of variable 4 in
node n, is said to reach the entry of node n, if (a) variable
A is not redefined in n,, and (b) there is a path from (the
exit of) n, to the entry of n, such that no definition of 4
appears on the path.

It follows from these conditions that while determining
the IN sets we need consider only the last definition of a
variable in each node, because none of the definitions
appearing before the last definition in a node can be
contained in any of the IN sets.

Given a node n in a flow graph, the set IN[n] can be
defined in terms of the following sets.®

GENIn] is the set of definitions generated within 7, i.e.
the set of last definitions of variables within node n; and

KILL[n] is the set of definitions that are killed within n,
i.e. the set of those definitions outside »n that define
variables that also have definitions within n.

The sets GEN[n] and KILL[n] which can be computed
from local (basic block) information, lead to 2|N]
simultaneous equations that relate IN[n]s and OUT|[n]s
for a flow graph G of |N] nodes:

OUTIn] = (IN[n]—KILL[n]) U GEN[n]
IN[n] =UOUT[p]
pEPn) )

The sets OUT|[n] are analogous to the IN[n] but
contain the definitions that reach the exit of node n.

The simplest algorithm to solve this set of equations is
an iterative algorithm given below. (According to M. S.
Hecht,° this algorithm was probably first used by V. A.
Vyssotsky as part of a compile-time diagnostic facility
for a Bell Laboratories IBM 7090 FORTRAN II compiler
in 1961. The analysis of the algorithm can be found in

Refs 22, 9 and 13.)

Algorithm 2

The iterative algorithm for the reaching definitions
problem
Input: (1) A flow graph G = (N, E, n,). (2) KILL[n]
and GENI[n] for each ne N.
Output: IN[n) and
OUT|n] for each ne N.
Method:
begin
Initialisation
for each ne N loop
IN[n]:= &,
OUTI[n]:= GENI[nj;

end loop;
CHANGE:= TRUE; To get the while-loop going.
while CHANGE loop

CHANGE:= FALSE;

for each ne N loop

NEWIN:= UOUT[p]; Hold IN[n] in a tem-
porary to check for a

pEePln]
change.

if NEWIN/ = IN|[n] then
CHANGE:= TRUE;
IN[n}:= NEWIN;
OUT|n]:= (IN[n]—
KILL[n]) U GENI{n];
end if;
end loop;

end loop;
end; [J

The algorithm starting with IN[n] = & for ab a
‘propagates’ definitions to nodes by repeatedly visiting
them until the flow of definitions stabilises. The algorithm
terminates when none of IN sets has been changed
during a pass through nodes of a flow graph.

Once the reaching definitions problem is solved, the
ud-chain for a given use of a variable 4 in node n can be
computed as follows.®

(1) If a use of A4 is preceded by a definition of 4 in n,
then only the last definition of A in n prior to this use
reaches the use. Thus, the ud-chain for this use consists
of only this one definition.

(2) If a use of A is preceded by no definition of 4 in n,
then the ud-chain for this use consists of all definitions of
A in IN[n].

As has been mentioned earlier, the ud-chains give the
solution to the UV problem. That is, if the ud-chain for
any use of variable 4 contains the dummy definition of
A, we conclude that 4 might be undefined at this point of
use.

The main problem in detecting undefined variables by
computing the ud-chains is to determine the reaching
definitions sets. Although the iterative algorithm is easy
to implement, it generally finds those sets in several
passes through the nodes of a flow graph. In the worst
case the algorithm could take time O(|N]?) to process a
flow graph with |N] nodes. (The average time complexity
of Algorithm 2 can be decreased by passing over the
nodes of a flow graph in rPostorder,’ but for some
pathological graphs it still takes time O(|N]?).)

5. EFFICIENT METHOD FOR SOLVING
THE UV PROBLEM

An efficient method for solving the UV problem is based
on the following observations.

During the computation of ud-chain for a use of
variable 4 in a given node n in G, we take into account all
paths that begin in nodes of G containing a definition of
A and end in node n. Such paths may consist of any edges
of G; in particular, any backward edges. However, in
discovering whether the variable A is undefined in node
n, we are interested only in those definitions of 4 that can
reach node n along the simple, i.e. acyclic, paths from the
initial node of G to node n. In other words, in solving the
UV problem we can omit all backward edges (which
form cycles) and consider only the dag of a flow graph.
This simplification allows us to find the reaching
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definitions sets for a dag of G performing only one pass
through its nodes. It must be noted, however, that such
an approach is possible only for reducible flow graphs,
because only these graphs have the unique dags.

Algorithm 3 given below builds the dag for a reducible
flow graph G.

Algorithm 3

Finding a dag

Input: A reducible flow graph G = (N, E, n,).

Output: The dag D = (N, E’, n,)) of G.

Method: Our task is to find the set E’ of the dag by
eliminating all backward edges of G from the set E. This
can be done in two steps: (1) Compute a number
rPostorder of the nodes of G using Algorithm 1. (2)
Eliminate the backward edges of G as follows.
begin

E:=E,

for all (n, m) e E loop

if rPOSTORDER(n) = rPOSTORDER(m) then
E :=E —(n m);
end if;

end loop;
end; [

It is easy to see that this algorithm takes time O(|E]) for
a flow graph with |E] edges.

Let IN’[n] and OUT’[n] be the sets of definitions that
reach the entry and exit of node » in a dag, respectively.
Those sets can be easily computed by applying equation
(1), provided that a node n is processed after all its
predecessors. This condition will be satisfied if the nodes
of a dag are processed in linear order, i.e. in order that
embeds the partial order established by predecessor—
successor relationships. Linear orders are usually found
by topological sorting*®® of nodes of a flow graph (or a
dag), but it has been shown that rPostorder topologically
sorts the dag of an rfg.? Thus we can use this order to find
the sets IN’[n] and OUT'[n] in a dag as follows:

Algorithm 4

One-pass algorithm for the reaching definitions problem
for the dag of a flow graph G

Input: (1) The dag D = (N, E’, n,) of G. (2) KILL[n]
and GEN[n] for neN.

Output: IN’'[n] and OUT’[n] for ne N.

Method.:

n
IN'[n,]:= &; (1)
OUT’[n,]:= GENIn,]; 2
for each ne N—{n,} in rPostorder loop

IN'[n]:= v OUT'[p]; 3)

PE Pln]
OUT’[n):= (IN'[n]—
KILL[n]) U GENIn]; )
end loop;
end; [J

It is easy to prove that the time complexity of Algorithm
4 is O(|E]+|N|—1). Namely, assume as the elementary
operations in the algorithm the logical operations on
sets, such as U and —. At each node of a flow graph
other than the initial node, the computation of

UOUT[p]
PEPln)

in step 3 requires one less set operation than the number
of edges entering that node; and so the entire flow graph
requires |E| — (|N]— 1) operations. Two set operations are
required to compute (IN'[n]— KILL[n]) U GEN[#n] in step
4, for a total of 2(|N]—1) operations. Summing the
operations in step 3 and 4 we get

[E1=(N—D]+[2(IN—1)] = |E]+ N — L.

Finally, the UV problem can be solved by executing
Algorithms 1, 3 and 4. Algorithm 1 finds a numbering
rPostorder of nodes of a flow graph G. This numbering
is used in Algorithm 3 to build the dag of G, and in
Algorithm 4 to find the reaching definitions sets IN'[n]
and OUT’[n]. The ud-chains for the dag of G that are
computed from those sets give the immediate solution to
the UV problem. Obtaining this solution takes time

O(|N)), as the complexity of each of Algorithms 1, 3 and
4 is O(|N)).

6. EVALUATION OF IMPLEMENTATIONS
OF THE ALGORITHMS

The algorithms for solving the UV problem (presented in
Sections 4 and 5) have been tested using the Y. k Ada
workbench compiler.® The compiler was written for a
VAX 11 computer system running the UNIX operating
system. The implementation language was C. The
algorithms were implemented on an intraprocedural
level; that is, each procedure of a program under analysis
was considered separately, and the worst-case assump-
tion about the effects of procedure calls was made. So it
was presumed that all global variables and the pass-by-
reference actual parameters were changed due to each
procedure call. The algorithms were the parts of the
Control and Data Flow Analyser designed for the York
Ada compiler. Using this analyser the speed of algorithms
for solving the UV problem has been measured. The
results are as follows:

Table 1. The times of solving the UV problem for sample
programs

No. of Ada  Aho-Ullman Efficient

source lines  method method
Program 1 151 18.9 15.3
Program 2 275 79.5 64.7
Program 3 449 292.9 225.6

Table 1 contains the times of solving the UV problem
for three sample Ada programs. Each time comprises the
time necessary for executing the algorithms (Algorithm 2
in the Aho-Ullman method and Algorithms 1, 3 and 4 in
the efficient method) and the time spent on detecting
undefined variables. The times (in fiftieths of a second)
were measured using the UNIX time(I) command.
Programs 1, 2 and 3 solve the ‘Tower of Hanoi problem’,
the ‘Scientific calculator’ and the ‘Mastermind game’,
respectively.

The comparison shows that the efficient method is
about 20 % faster than the Aho—Ullman method.
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7. CONCLUSIONS

In the paper the efficient algorithm for solving the
problem of detecting undefined variables during com-
pilation is presented. It has been proved that its time
complexity is O(|N]), where |N] is a number of nodes of
the flow graph. The comparison for some example
programs showed that the efficient algorithm is about
20% faster than the Aho—Ullman algorithm. It must be
noted however that the former algorithm does not
compute the use-definition chains that might be valuable
for other goals of compilation, i.e. the object code
optimisation.
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