Merging by Decomposition Revisited

S. DVORAK*t anDp B. DURIAN}

t Centre of Tesla Roznov, 1. mdje 1000, 75661 Roznov pod Radhostém, Czechoslovakia
1 Research Institute of Computer Technology (VUVT) Zilina, Nerudovd 33, 01001 Zilina, Czechoslovakia

This paper presents some modifications of stable merging by decomposition (referred to as DM here). The changes
made reduce the time requirements considerably. Furthermore, a O(1)-space version of merging is described. The

modifications of DM resemble improvements to the original Quicksort method for sorting, since both the algorithms are

of the same generic scheme.

Received September 1986, revised March 1987

1. INTRODUCTION

In this article we are dealing with stable merging (&) of
two segments 2 = A(1..m), # = A(m+1..n) of a one-
dimensional array 4 into A(1..n). A merging method is
said to be stable if it preserves the relative order of
records with identical keys. We assume non-decreasing
sequences of integers in the merged segments. The
generalisation for records with an arbitrary structure of
keys and with a non-empty information part is straight-
forward.

An interesting merging method based upon a decompo-
sition has been developed by Pratt! and simplified by
Dudzinski and Dydek afterwards.® In what follows, we
shall tune the latter procedure. Its generic scheme re-
calls immediately the famous Quicksort, suggested by
C. A. R. Hoare, while the changes we are suggesting for
DM in turn recall the changes implemented in the
original Quicksort during its history.

2. THE GENERIC SCHEME OF DM

DM in Dudzinski and Dydek’s version is based upon a
decomposition of a merging problem into two sub-
problems of smaller size which is carried out in Fig. 1.
In the shortest segment of those merged together (2 =
2,x9, in Fig. 1, |9| < |5#|) the median x is taken as a
pivot for decomposition and upper segment # is split
into
Hy={LICeH, E<x}, Hy={{|{eH, > x}

The inequalities in the definitions of 5, and J#, are to be

obeyed for the merging to be stable. Then x%, and #,
are exchanged, giving the arrangement

D, H xDy H, 1)

with pivot x in the proper place. The original problem is
decomposed into two smaller problems 9, & #, and 2, &
H, now.

If the shortest segment is 5, we take x as median of
H = A, x¥,. Then sets

91={élée@96<x}s @2={élé€9,é>x}

are determined and the exchange 5, x and 2, leads to
decomposition (1) again.
The same procedure is applied now for merging 9, &

* To whom correspondence should be addressed.

e
Elements > x

%<

The first (left)
subproblem 2, and

Figure 1

The second (right)
subproblem 2, and ¥,

¥, and 9, & A, ; we arrive quite naturally at the following
recursive merging procedure:

procedure DecMerge (2, ¥):
if |2| > 0 and |5 | > 0 then
find the decomposition of DK ;
exchange middle parts as stated above
to receive the arrangement 9, X, x9, #,;
DecMerge (2,, ,);
DecMerge (2,, K ,)
endif
endproc DecMerge;

But the above scheme is the classical one well known
from different algorithms. The same scheme is employed
in one of the most successful sorting methods —
Quicksort.**

Quicksort kept improving for more than 20 years to
reach the present level of perfection. We have im-
plemented similar improvements in DM. The conse-
quences of these changes are even more expressive than
in the Quicksort.

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 553

¥20¢2 I4dy 60 Uo 1senb Aq 96€811/£55/9/ L £/8101e/|ulWwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

S. DVORAK AND B. DURIAN

3. DM TUNING

We propose the following changes in DM (in Dudzinski
and Dydek’s version):

— a modification in the decomposition itself (by the
way, the original algorithm contains some serious
flaws in this part),

— the use of rotational exchanges (following Pratt’s
technique),

— the final merging steps are performed together by
direct mergmg with a small workspace,

— recursion has been eliminated and replaced by the
direct control of a stack.

Now we shall describe some details of these changes

(A) Decomposition. We avoid the unnecessary steps in
decompositions. Let us assume we are to solve the
particular merging problem

L) g A W), | y(dd. . hh); hd = dh+1.
2 #

Assume that |2| < || and let s be the index of median
in 9. For x = A(s), 2 = 9,x9, it holds:
— if x < A(hd), the whole segment %, x occupies the
beginning of the merged segments and we have to
merge 2, and 5 only:

A(s+1..dh) & A(hd. .hh) > A(s+1. . hh);

— if x > A(hh) then x2, = A(s..dh) and # will be
exchanged. x%, is in the proper place then and it
remains to merge %, and #;

— otherwise A(hd) < x < A(hh). Therefore, there is
a te[hd, hh] such that

A < x <A@ +1).

The subscript will be determined by the binary search
in [hd, hh]; t defines the decomposition 3 = #, #,

With s Ahd.)= e, £ <),
Hy= A(t+1. .hh) = (E|EeH, &> x).

This is just the decomposition of s# which we need
according to DM description.
For |9| > |# |, similar steps are carried out. In this way
we do not work with parts which remain in place.

(B) Exchange The exchange of segments as specified
above is one of the key phases of the algorithm. The
algorithm used by Dudzinski and Dydek for this purpose
can be considered as the implementation of the inverse
permutation to

(0 1 m—1lmm+1.. n-—1
= n—mn—m+1..n-1(0 1 .n—m-—1

on A(0..n—1). Although this method requires only
n+ ged(m, n) transfers of exchanged elements we found it
to be slower than ‘rotational’ exchange in Pratt’s DM.
Exchange times for the former method are 130-160 % of
times for the latter. Therefore, we used rotational
exchanges. If Rot(a, b) is the rotation of A(a. .b),

procedure Rot(a, b):

i<a;j<b,

while i < jdo A())=A()); i< i+1; j<«j—1 endloop
endproc Rot;

then the exchange of A(dd..dh) and A(hd..hh) is
implemented as

procedure Xchg (dd, dh, hh):
Rot (dd, dh); Rot (dh+ 1, hh); Rot (dd, hh)
endproc Xchg;

(C) Recursion. As well as the initial version of
Quicksort, DM was presented as a recursive procedure.
For Quicksort, it was soon recognised that it is better to
control the stack of unsolved problems than to invoke
the procedure recursively. For DM we applied the same
idea putting into stack the middle and upper indices of
the right subproblem. The lower index can be calculated
from the upper index hh of the previous problem as
hh+2.

U

(D) Direct merging at the end. For Quicksort, it has 2 :
been proved to be advantageous to terminate partitioning 5 5
as soon as the length of a segment to be partitioned falls & =3
below a certain limit. Then the sequence of short segments < 8
which are in correct relative order is sorted by a 81mple)
insertion technique. This would be possible for merging > :
as well, if we were to implement merging w1thoutTJ
additional workspace to the stack. >
But if we devote for merging workspace W(1..lenW), 8
we are able to merge the segments directly (m one pass) 2 &
as soon as the length of at least one of them is < lenW. o
The workspace size can be rather small (we chose%
lenW = 16). For instance, if 2 = A(dd..dh), # = 3
A(hd. .hh), hd = dh+ 1 and |2| < len W, we move @ into 3.
W and merge back from W and #:

S<dd; t< hd,
fori<1to|2|do
1< W(i);
while x> A(r) do A(s)< A(?);
endloop;
A(S) < x; s<s+1
endloop;

S<s+1; t<t+1

There is a sentinel (> all the elements of 2, #) assumed
behind the last element of #. For || <lenW we
proceed similarly. The sentinels are to be set only at the
start. To transfer contiguous blocks, a fast block transfer
can be employed if available. One-side merging alone
leads to considerable time savings, for it eliminates the
overhead in many final short exchanges.

The DM with all the suggested modifications is given
in Pascal in the Appendix. Measured time values are
collected in Table 1. Quicksort times were added for
comparison. Since the efficiency of Quicksort is well
known, this comparison reveals the cost of stability in
merging.

The theoretical analysis of the tuned version of DM
remains basically the same as in Dudzinski and
Dydek,* therefore it is not repeated here. If longer
records (of size reclen) are being considered, the time
required for merging of m and n—m records may be
expressed as

202 Iudy 60 uo 1senb Aq 96€811/€GG/9/ L E/811E/|UulWo9)

T(n) = T, *nlg,m+ T,, *reclen x g, (n/m),

where T; is connected with comparisons and 7, with
movements. Both T, and 7,, may be determmed easily
from merging time measurements for records of different
lengths but with the same structure of keys.

554 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

MERGING BY DECOMPOSITION REVISITED

Table 1. Timing of merging methods

Modified
Modified DM, Original
n DM no stack DM Quicksort

Case m =}*n
1000 434 634 1027 838
2000 1007 1426 2153 1871
3000 1654 2333 3460 2971
4000 2260 3254 4627 4080
5000 3014 4411 5953 5213
6000 3687 5267 7334 6359
7000 4320 6133 8507 7541
8000 5007 7212 9747 8750
9000 5766 8628 11073 9951
10000 6580 9693 12514 11131

Case m=1xn
1000 547 740 1347 1129
2000 1214 1647 2807 2441
3000 2013 2827 4434 3820
4000 2640 3641 5874 5859
5000 3646 5126 7580 7748
6000 4406 6238 9293 9080
7000 5054 7154 10867 11770
8000 5820 8052 12407 12021
9000 6893 9180 13920 15100
10000 7827 11039 15760 16600

Case m=32«n
1000 460 599 1120 879
2000 1020 1359 2394 1889
3000 1640 2332 3767 2959
4000 2253 3034 4966 4131
5000 3000 4395 6440 5240
6000 3600 5134 7767 6369
7000 4179 5940 9067 7541
8000 4840 6707 10226 8762
9000 5580 7512 11673 9869
10000 6313 9113 13113 11119

Working area in modified DM : 16 words. Measurements on
samples of random integers, time in msec. Average values on
three samples. Computer: KBR 1630. Programming language
Fortran 77.

4. STABLE MERGING IN O(1)-SPACE

DM (the original as well as modified versions) allow for
one more modification which leads to stable merging
algorithm with 0(1) workspace only: the stack is no
longer needed. This is the first merging algorithm of this
type since 1977, when L. T. Pardo’s work was published.?
In the tested range (n < 10*) the efficiency of our 0(1)-
space version is much higher than that of Pardo’s
merging despite the claimed linear behaviour of the latter
method.

There is no need to put the limits of the right-merging
subproblem (2, & #,) into the stack: when the current
merging subproblem is solved we shall look for the limits
of the problem next to the one just solved. Therefore,

REFERENCES

1. D. E. Knuth, The Art of Computer Programming, vol. 1,
Sorting and Searching. Addison-Wesley, Reading, Mass.
(1975).

1.0 +
o
2
2 0.5
8
=
1 |
1
+ + t + t +—L+ +
1 2 4 8 16 32 64 128 256 5121024
Working area size
Figure 2

stack and stack operations (marked by underlining in the
Appendix) are replaced by the following code:

while h1h < n do begin

dd:= hh+2; dh:= dd,
while A[dh] < A[dh+1] do dh:= dh+1;
if dh < = n then begin

hh:=dh+1; x:= A[dh];

while x > = A[hh] do hh:= hh+1;

hh:=hh—1; hd:= dh+1;

Some further minor changes are to be done. A sentinel
is to be inserted into A(n+2) in advance. It is clear that
the search reduces the efficiency of DM. Anyway, the
stackless version of DM remains still faster than Pardo’s
linear merging.

The same search can be embodied into Quicksort
itself. This leads to a O(1)-space-sorting algorithm with
only slightly lower efficiency as compared to standard
Quicksort.®

5. CONCLUSION

The suggested changes in DM have radically improved
its efficiency. Moreover, a O(1)-space version of DM has
been described. This version — although slightly reduced
in efficiency by the renewed search for segment limits —
is still considerably faster than the only known method
for stable O(1)-space merging (which is even linear in
time, contrary to DM).

Let us recall that workspace size is a parameter in the
modified DM; it can be varied widely according to
available memory and required speed. The relationship
between merging time and workspace size is illustrated in
Fig. 2.

As far as we are aware, the modified DM as described
here is the most efficient merging method for a workspace
size less than 2 * ni. Above this limit the method of block
merging is superior.”® But there is still room for further
promising improvements of DM.

2. L. T. Pardo, Stable sorting and merging with optimal
space and time bounds. STAM J. Comp. 6 (2), 351-372
1977).

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 555

¥20¢2 I4dy 60 Uo 1senb Aq 96€811/£55/9/ L £/8101e/|ulWwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

S. DVORAK AND B. DURIAN

3. K. Dudzinski and A. Dydek, On a stable minimum storage
merging algorithm, Inf. Proc. Lett. 12 (1), 5-8 (1981).

4. C. A. R. Hoare, Alg. 64: Quicksort. Comm. ACM 4
(7) (1961).

5. R. Sedgewick, Implementing Quicksort programs. Comm.
ACM 21 (10), 847-856 (1978).

6. B. Durian, Quicksort without a stack. Proceedings of

APPENDIX
The algorithm of the modified DM-merging

procedure MERGE (var m,n: integer);

{The stable merging of A[l..m] and Alm+1..n] into
A[l. .n]}

var d, h, dd, dh, hd, hh, i, s, t, x, bcorr: integer,

var lenW, lenD, lenH, top: integer;

var stckD,stckH,W': array [1..16] of integer;

label dflen;

procedure XCHG(1, m, u: integer);
var i, j, x: integer;
begin
i:=1;j:=m;
while j > i do
begin x:= A[i]; A[]]:= Al]; All:=x; i:=i+1;
ji=j—1 end;
ir=m+1;j:=u;
while j > i do
begin x:= A[i]; A[i]:= Alj]; Al):
ji=j—1end;
ir=1;j:=u;
while j > i do
beginx: = A[];A[i]:= A[j];AU):= x;i:=i+1y:=j—1
end;
end;

=x; i:=i+1;

begin
A[0]: = —maxint; A[n+1]:= maxint;
lenW:=16; hh:=—1;
top:= 1; stckD[top]:= m; stckH[top]: = n;
while zop > 0 do begin
dd:= hh+2;
hh:= stckH[top); dh:= stckDltop]; top:= top—1;
hd:=dh+1,
dflen:
while (hd > dd) and (hh > dh) and (A[dh] > A [hd]) do
begin
lenD:= hd—dd; lenH:= hh—dh;,
if lenD < = lenW then begin {left-hand side merging}
for i:= 1 to lenD do W[i]:= Ali+dd—1];

d:=dd; h.:=hd,
for i:= 1 to lenD do begin
x:= WIi;

while A[h] < x do

begin A[d]:= A[h); d:=d+1; h:=h+1
end;

Aldl:=x;d:=d+1

end;

MFCS 86, Bratislava (August 1986). Springer-Verlag,
Berlin (1986). -

7. B. Durian, Stable merging in 0(/ N) memory and nonstable
merging in 0(1) memory [in Slovak]. Informacné systémy
(1), 67-86 (1985). _

8. S. Dvofdk and B. Durian, Stable linear time sublinear
space merging. The Computer Journal 30 (4), 372-375
(1987).

end
else if lenH < = lenW then begin {right-hand side
merging}
for i:=1 to lenH do WIi]:= A[i+hd—1];
d:= hh; h:= dh;
for i:= lenH downto 1 do begin
x:= WIi;
while A[h] > x do
begin A[d]:= A[h]; d:=d—1; h:=h—1
end;
end;
end

else begin {decomposition}
if lenD < = lenH then begin
s:= (dd+dh) div 2; x:= A[s]; bcorr:=0;
if x < = A[hd]thenbegindd: = s+ 1 ;gotodflen
end;
if A[hh] < x then begin
XCHG(s,dh,hh); dh:=s—1; hh:=
s+hh—hd; hd:= s;
goto dflen
end;
d:=hd; h:= hh; t:= (d+ h) div 2;
repeat begin {binary search for x in [hd, hh]}
if x > A[f] then d: =t else h:=1t;
t:= (d+h) div 2
end
until ¢ = d;
end
else begin
t:= (hd+hh) div 2; x:= A[1]; bcorr:=1;
if x > = A[dh] then begin hh:=t—1; goto
dflen end;
if A[dd] > x then begin
XCHG(dd,dh,t); dd:= dd+t—dh; dh:=t;

hd:=t+1;
goto dflen
end;

d:=dd; h:=dh; s:= (d+h) div 2;
repeat begin {binary search for x in [dd, dh]}
if x > = A[s] then d:= s else h:=s;
s:= (d+h) div 2
end;
until s = d,;
s:=h
end;
XCHG(s, dh, t);
top:= top+ 1;stckD[top]: = t;stckH[top: = hh;
dh:=s—1; hh:=s+t—hd—bcorr;
hd:=s
end;
end;
end;
end;

556 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20¢2 I4dy 60 Uo 1senb Aq 96€811/£55/9/ L £/8101e/|ulWwoo/woo dnoolwsepeoe//:sdpy wolj papeojumoq

