A Smooth Reshuffling Algorithm for Solving the Bulterman’s

Problem

M. C. ER*

Department of Computer Science, The University of Western Australia, Nedlands, WA 6009, Australia

This paper presents an efficient algorithm for solving the Bulterman’s reshuffling problem in the spirit of smoothsort.
The Bulterman’s reshuffling problem is concerned with permuting an array of red and blue elements such that red
elements are moved to specified positions without disturbing the relative order of blue elements. This smooth reshuffling
algorithm solves the problem by utilising two processes, left sweep and right sweep ; the latter is callable from the
Jormer. This algorithm is shown to be superior to a previously published algorithm which uses a brute force approach.

Received February 1987, revised March 1987

1. INTRODUCTION

The Bulterman’s reshuffling problem? may be stated
simply as follows. Given an array x[0.. N —1] consisting
of R red elements and (N — R) blue elements in random
order, where N= R*M, R > 1 and M > 1, the object is
to permute the array of elements such that (1) the relative
order of the blue elements is preserved; and (2) the red
elements are moved to the positions rxM, where
0 <r < R. The relative order of the red elements is
immaterial.

In his paper,® Feijen stated this problem and presented
a solution to it. His solution, however, utilises a brute
force approach, and is not very efficient. More specifi-
cally, his solution moves all red elements to the left end of
the array without disturbing the relative order of the blue
elements; then a train of red elements is rolling rightward,
uncoupling the last red elements at the appropriate
positions r * M, where 0 < r < R. This simple brute force
approach will solve the problem effectively, but does not
take into account those red and blue elements that are
already in place. More seriously, if all red elements
already occupy the desired positions r*M, for
0 < r < R, to begin with, Feijen’s algorithm still collects
them to the left end of the array and then restores them
to their original positions. Such a mindless approach is
clearly undesirable.

A similar problem also exists in heapsort. Specifically,
if a given array is already in sorted order to begin with,
heapsort destroys the sorted order by building a tree, and
then sifts through the elements to restore them to their
original positions. This problem was solved by Dijkstra
by deriving a new heapsort, called smoothsort.* Since
smoothsort does not disturb array elements that are
already in sorted order, its best-case complexity is
linear.

It is the purpose of this paper to present an efficient
algorithm for solving the Bulterman’s reshuffling problem
in the spirit of smoothsort. Namely, if all red elements
already occupy the correct locations to start with, one
pass through the array should suffice to determine the
case. In doing so, the worst-case complexity should not
be increased.

* Now at Department of Maths and Computing Sciences, St Francis
Xavier University, Antigonish, Nova Scotia, Canada B2G 1CO.

2. ANEW RESHUFFLING STRATEGY

To avoid disturbing red elements that are in place,
obviously all red elements cannot be swept to one side of
the array. Those that are in place should be skipped over
while scanning the array. The actual situations, however,
can be very complex — some right elements may occupy
the appropriate positions, but the density of red elements
may not be evenly distributed throughout the array. It is
not obvious how to move things around without engaging
in complex book-keeping operations.

A simple approach is to consider each red element in
turn, and move it to the appropriate position. The
necessity of maintaining the relative order of the blue
elements means that a train of blue elements has to be
moved for each insertion of a red element at the right
place. Such an approach can easily lead to a quadratic
algorithm.

A better approach is to move a train of red elements,
as the last element of the train can swap with the blue
element blocking the train, thus resulting that the blue
element jumps over the train without disturbing the
relative order of the blue elements. Because now each
blue element moves over a larger distance, the resulting
algorithm is more efficient. During the first pass of the
algorithm we selectively sweep red elements leftward,
leaving movable red elements in the appropriate pos-
itions, whereas those red elements that have overshot
their respective positions initially should be left intact.
During the second pass, the sweep is reversed rightward,
moving astray red elements to appropriate positions,
with a train of red elements formed whenever possible.

It turns out that the second pass can be avoided if all
red elements are already in place or can be moved to the
appropriate positions during the first pass. A well-known
trick is to introduce a Boolean flag and set it as soon as
an astray red element is found to be overshooting its
appropriate position. However, once the flag is set the
second pass is unavoidable. In a random distribution
situation, some red elements are bound to be moved to
their appropriate positions in the first pass; hence, there
is no need to revisit those array segments that contain no
astray red elements at all. The separation of left sweep
and right sweep into two passes implies that those array
segments containing astray red elements that require
attention in the second pass be memorised during the
first pass. This is clearly not desirable. A better approach
is to conduct the (partial) right sweep during the first

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 557

¥20Z I4dy 01 uo 1senb Aq LOv81Y/2GS/9/1L /8101 e/ |Uulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq



M. C. ER

pass as soon as an array segment that requires attention
is identified. To avoid turning the right sweep into a
quadratic operation, such an array segment should be
made as big as possible, but bounded by two nearest red
elements that are in place or the ends of array. Hence the
right sweep is carried out only when necessary.

3. THE SMOOTH RESHUFFLING
ALGORITHM

A detailed implementation of the algorithm as described
in the previous section turns out to be a non-trivial one.
Before presenting the detailed implementation, a descrip-
tion of the conventions used is in order.

Two pointers, i and j, are used to delimit a left-bound
train, such that i is pointing to a position one place ahead
of the train, and j is pointing to the last element of the
train. Thus it is obvious that i =j when the train is
empty. A similar convention is used for a right-bound
train using p and g pointers.

Furthermore, we adopt a convention that the last
element of a train, if not empty, is always a movable red
element which is ready for swapping with the first
blocking blue element. Such a convention indeed
simplifies the algorithm, as we shall see below.

At any moment, i and j may point to a red or a blue
element. Thus there are four possible combinations to be
considered.

(i) x[i] =red and x[j] =red. This case may occur
when an empty train runs into a red element, or a red
train is in the process of expansion. If it is the latter, we
simply advance i by one position without altering j.
However, if it is the former, we have to decide whether or
not this red element is a movable unit, and if it is not,
whether or not it is the left boundary of an array segment
that requires right sweep. To help with the determination,
a variable ¢ is introduced, which records the number of
red elements to the right of j. A decision can easily be
made by comparing the value of ¢ with the number of
slots supposed to be occupied by red elements. An
adjustment to j and the right sweep are then carried out
accordingly.

(i1) x[i] = red and x[j] = blue. This case should never
exist given the adopted convention for representing a
train. Therefore it is unnecessary to consider it further.

(iii) x[i] = blue and x[j] = blue. This is the trivial case
as the train is empty. All we have to do is to advance the
train one position leftward.

(iv) x[i]] = blue and x[j] =red. Since the adopted
convention suggests that the last red element of the train
is movable, we simply swap x[i] with x[;] in order to
move the train leftward without disturbing the relative
order of blue elements. To maintain the same adopted
convention, we need to test whether or not the new last
red element (it must be red) is movable, and again if it
is not, whether or not it is the left boundary of an array
segment that requires right sweep. Again, an adjustment
to j and the right sweep are then carried out accordingly.

An algorithm for sweeping leftward, with the above
cases implemented, is shown in Fig. 1. Note that the
procedure ceiling computes the following:

ceiling (a, b) = [g]

procedure SweepLeft;
var i, j, c, k: integer;

begin
i:=N-—1;
ji=N-—1;
c:=0;
k:=N;

while i > = 0 do begin
if x[{] = red then begin
if (i =) and (¢ < R—ceiling (j, M)) then begin
{x[i] = red and x[j] = red}
c:=c+1;
if (j mod M = 0) and (¢ = R—ceiling (j, M))
then SweepRight (j, k);
Ji=j—-1;
end;
ir=i—1;
end
else if x{j] = blue then begin
{x[]] = blue and x[j] = blue}
ii=i—1;
Ji=j-1
end
else begin {x[i] = blue and x[j] = red}
Swap (x[i], x[/]);
ii=i—1;
Ji=j-1
if j mod M = O then begin
{xU] = red}
c:=c+1;
if ¢c= R—ceiling (j, M) then
SweepRight (j, k);

J=j-1
end;
end;

end;
end {SweepLeft};

Figure 1. An algorithm for sweeping leftward.

The reversed process for sweeping rightward is similar
to left sweep, with the reversal of direction. Again, there
are four possible combinations of red and blue, but only
three of them are valid. Here we adopt the same
convention for representing a train —p points to the
location one place ahead of the train, and ¢ points to the
last red element of the train. Since right sweep does not
cover the whole array, but only a small segment of the
array, we introduce a variable k to denote the right
boundary of the array segment under consideration. The
left boundary is, of course, delimited by j. The right
boundary needs to be adjusted once the array segment
concerned is swept over; it is simply set to the current left
boundary. The detailed operation of right sweep, taking
into account the three valid combinations of red and
blue, is presented in Fig. 2.

A trace of the reshuffling of R red and (N— R) blue
elements in x[0..N—1] carried out by the smooth
reshuffling algorithm is shown in Fig. 3, where N = 21,
R=7and M =3.

4. AN ANALYSIS OF THE ALGORITHM

In the best-case situation where all red elements are in
place, it is obvious that our reshuffling algorithm executes

558 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

¥20Z I4dy 01 uo 1senb Aq LOv81Y/2GS/9/1L /8101 e/ |Uulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq



A SMOOTH RESHUFFLING ALGORITHM FOR SOLVING THE BULTERMAN’S PROBLEM

procedure SweepRight (j: integer; var k: integer);
var p, q: integer,

begin
if K > (j+ M) then begin
pi=j+1;
qg:=j+1;

while p < = (k— M) do
if x[p] = red then
pi=p+1
else if x[g] = blue then begin
{x[p] = blue and x[q) = blue}

pi=p+1;
q:=q+1;
end

else begin {x[p] = blue and x[q] = red}
Swap (x[p], x[g]);
pi=p+1;
g:=q+1;
if g mod M = 0 then
qg:=q+1;
end;
end;
k:=j;
end {SweepRight};
Figure 2. An algorithm for sweeping rightward.

0 123456 78 91011121314/151617181920
00000000000 00GOGOGOGOGOIOSOSO
00000000000 000C0OCOCOCOO0O®
00000000000 0OGOGOGOGOGOOO®
00000000000 0OGOGOGOGIOGOOOO
000000000000 00CCOCOGIO0OOS
0000000000000 00000000
0000000000000 00000000
000000000000000000000
000000000000000000000
000000000000000000000
000000000000000000000
0000000000000 00000000
C00000000000000000000

@ Blue
O Red

Figure 3. A trace of the reshuffling of the blue and red elements
carried out by the smooth reshuffling algorithm, here R = 7
and M =3,

the first pass through the array by using the procedure
SweepLeft (see Fig. 1) only; the right sweep is not carried
out at all. More importantly, none of the elements needs
to be moved.

In the worst-case situation where all red elements
overshoot their desired locations, with the exception of

the leftmost one, the left sweep and the right sweep cover
the whole array. Thus two full passes through the array
will suffice to settle all red elements into the appropriate
locations. As will be proved later, each red element
moves along one direction only, either left or right, and
each blue element moves only once.

In the average-case situation where red elements are
randomly distributed in the array, some array segments
may or may not require right sweep during sweeping
leftward. Thus at least one pass through the array is
required, but at most two passes through the array
suffice; generally it is somewhere in between. As we shall
prove below, each red element moves, if it moves at all,
along one direction (left or right) at most, and each blue
element moves at most once.

We summarise our claims in the following theorems.

Theorem 1

The reshuffling algorithm moves each red element along
one direction at most, either left or right, but not
both.

Proof. The result is trivially true if red elements are in
place.

In the general case, a red element either stays to the
right of the desired location or overshoots the desired
location. In the former case, it will be moved by
SweepLeft to the desired location. In the latter case, it
will not be moved by SweepLeft at all, but will be moved
by SweepRight to the appropriate place. Hence the result
is correct. W

Theorem 2

The reshuffling algorithm moves each blue element at
most once, either leftward or rightward.

Proof. Consider a blue element. It splits the array into
two halves. In the right half of the array, if the number
of red elements is equal to the number of slots for red
elements, the blue element concerned need not be moved
at all during the reshuffling process, as this condition
implies that the same equilibrium condition also exists in
the left half of the array. If one of the two halves is
empty, the argument is still valid.

If, however, the number of red elements is greater than
the number of available slots for red elements in the right
half of the array, then a left-bound train of red elements
will have to pass through the blue element concerned.
Hence this blue element will be moved rightward when
the left-bound train runs into it. Once this train passes
through it, the equilibrium state is established in the right
half (and also in the left half); hence the blue element will
not be moved again.

Conversely, if the number of red elements is less than
the number of available slots for red elements in the right
half of the array, a left-bound train, when it runs into the
blue element concerned, must be empty. Thus this blue
element is not moved at all during left sweeping.
However, the equilibrium state for the right half is still
not reached. This implies that a right-bound train must
pass through it at a subsequent stage. Once a right-
bound train runs into it, it will be moved leftward. After
that, the equilibrium state is established and the blue
element concerned need not be moved again.

This completes the proof. W

THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988 559

¥20Z I4dy 01 uo 1senb Aq LOv81Y/2GS/9/1L /8101 e/ |Uulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq



M. C. ER

S. CONCLUDING REMARKS

As a conclusion, we compare our reshuffling algorithm
with Feijen’s algorithm on a case-by-case basis.?

In the best-case situation, Feijen’s algorithm requires
two passes through the array. Each red element, with the
exception of the leftmost red element, is moved leftward
and then rightward. Each blue element, with the
exception of the right-end ones, is moved twice, first
rightward and then leftward. In contrast, our algorithm
requires only one pass through the array, and moves no
element at all.

In the worst-case situation, Feijen’s algorithm also
requires two passes through the array. Each red element
is moved leftward then rightward, whereas each blue
element is moved twice, first rightward and then leftward.
In contrast, our algorithm also requires two passes
through the array, but each red element moves along one
direction only, and each blue element moves only
once.

In the average-case situation, Feijen’s algorithm again
requires two passes through the array. Most red elements
are moved leftward then rightward, whereas most blue

REFERENCES

1. E. W. Dijkstra, Smoothsort — an alternative for sorting in
situ. Science of Computer Programming 1, 223-233
(1982).

560 THE COMPUTER JOURNAL, VOL. 31, NO. 6, 1988

elements are moved twice, first rightward and then
leftward. In contrast, our algorithm requires one full left
sweep through the array and one half right sweep, on
average, through parts of the array. Each red element is
moved along one direction at most; some red elements
that are already in place need not be moved at all. Also,
each blue element is moved at most once; some blue
elements need not be moved at all.

In summary, our reshuffling algorithm is superior to
Feijen’s algorithm in all cases.

The lesson learned is, perhaps, more significant. In
designing an efficient algorithm, one must take advantage
of partial orders that already exist in the array. A brute
force approach may solve the problem, but in a less
efficient way. It is precisely this challenge that makes the
design and analysis of algorithms so interesting.

Acknowledgement

The author wishes to thank the referee who suggested an
inclusion of a pictorial representation of the Bulterman’s
problem.

2. W. H. Feijen, Bulterman’s reshuffling problem. Science of
Computer Programming 1, 145-147 (1981).

¥20Z I4dy 01 uo 1senb Aq LOv81Y/2GS/9/1L /8101 e/ |Uulwoo/woo dnosolwspeoe//:sdpy wolj papeojumoq



